
Designing and Building Context-Aware Services:
The ContextServ Project

Quan Z. Sheng1, Jian Yu2, Wei Emma Zhang3, Shuang Wang1,4, Xiaoping Li4,
and Boualem Benatallah5

1Department of Computing, Macquarie University, NSW 2109, Australia
2Department of Computer Science, Auckland University of Technology, New Zealand

3School of Computer Science, the University of Adelaide, SA 5005, Australia
4School of Computer Science and Engineering, Southeast University, Nanjing, China

5School of Computer Science and Engineering, UNSW, NSW 2052, Australia

Abstract. In the era of Web of Things and services, context-aware ser-
vices (CASs) are emerging as an important technology for building inno-
vative smart applications. CASs enable the information integration from
both the physical and virtual world, which affects the way human live.
However, it is still challenging to build CASs, due to lack of context
provisioning management approach and lack of generic approach for for-
malizing the development process. In this paper, we briefly introduce a
large research project, ContextServ, which provides a platform for model-
driven development of CASs based on a UML-based modelling language.
We discuss the literature and also highlight several future research op-
portunities for context-aware service research and development.

Keywords: Context-aware services, Internet of Things, model driven
development, modeling language, ContextUML, adaptive services

1 Introduction

Over the years, the Web has gone through many transformations, from tradi-
tional linking and sharing of computers and documents (i.e., “Web of Data”)
to current connecting of people (i.e., “Web of People”). With the recent ad-
vances in radio-frequency identification technology, sensor networks, and Web
services, the Web is continuing the transformation and will be slowly evolving
into the so-called “Web of Things and Services” [13, 27]. Indeed, this future Web
will provide an environment where everyday physical objects such as buildings,
sidewalks, and commodities are readable, recognizable, addressable, and even
controllable using services via the Web. The capability of integrating the infor-
mation from both the physical world and the virtual one not only affects the way
how we live, but also creates tremendous new Web-based business opportunities
such as support of independent living of elderly persons, intelligent traffic man-
agement, efficient supply chains, and improved environmental monitoring [23,
27]. Therefore, context awareness, which refers to the capability of an appli-
cation or a service being aware of its physical environment or situation (i.e.,



2 Q. Z. Sheng et al.

context) and responding proactively and intelligently based on such awareness
[1, 15, 19], has been identified as one of the key challenges and most important
trends in computing today and holds the potential to make our daily lives more
productive, convenient, and enjoyable.

Nowadays, Web services have become a major technology to implement
loosely coupled business processes and perform application integration [24, 36].
Through the use of context, a new generation of smart Web services is currently
emerging as an important technology for building innovative context-aware ap-
plications. We call such category of Web services as context-aware Web services
(CASs). CASs are emerging as an important technology to underpin the de-
velopment of new applications (user centric, highly personalized) on the future
ubiquitous Web. A CAS is a service that uses context information to provide
relevant information and/or services to users [19, 31, 9, 6]. A CAS can present
relevant information or can be executed or adapted automatically, based on
available context information.

Although the combination of context awareness and Web services sounds ap-
pealing, injecting context into services raises a number of significant challenges,
which have not been widely recognized or addressed by the services community
[31, 36, 30]. One reason for this difficulty is that current Web services standards,
such as the Web Services Description Language (WSDL), Web Application De-
scription Language (WADL), and the Simple Object Access Protocol (SOAP),
are not sufficient for describing and handling context information. CAS devel-
opers must implement everything related to context management, including col-
lection, dissemination, and usage of context information, in an ad hoc manner.
Another reason is that, CASs are frequently required to be dynamically adap-
tive in order to cope with constant changes, which means a service being able to
change its behavior at runtime in accordance with the contexts. Unfortunately,
service-oriented systems built with WS-BPEL (Web Services Business Process
Execution Language) are still too rigid. The third reason is, to the best of our
knowledge, there is a lack of generic approaches for formalizing the development
of CASs. As a consequence, developing and maintaining CASs is a very cumber-
some, error-prone, and time consuming activity, especially when these CASs are
complex.

In this paper, we will first give an overview of the ContextServ project, which
provides a comprehensive platform that supports the full lifecycle of CASs de-
velopment, including a visual ContextUML editor, a ContextUML to WS-BPEL
translator, and a WS-BPEL deployer (see Figure 1). Another feature of Con-
textServ is that it supports dynamic adaptation of WS-BPEL based context-
aware composite services by weaving context-aware rules into the process. Con-
textServ exploits a model-driven approach that offers significant design flexibility
by separating the context modeling and context awareness from service compo-
nents, which eases both development and maintenance of CASs. It also supplies
a set of automated tools for generating and deploying executable implementa-
tions of CASs. We will then review the relevant literature and highlight several
future research opportunities for CAS research and development.



Designing and Building Context-Aware Services: The ContextServ Project 3

ContextUML model

Context-aware Web 

service interface

Service 

Developer

WSDL 

specification 

of service

Web service 

registry (UDDI)

Execution 

engine (e.g., 

BPWS4J)

Web server

Transform to WSDL Publish service to registry

Service 
consumer

Deploy service

Transform service 

model to executable 

specification

Configure and run service 

at the engine

Invoke 

service

Search 

service
Bind to service 

implementation
Specify service 

interface

Specify context 

provisioning

Specify context-

aware Web 

service in 

ContextUML

Context

Context Manager

community composition

ContextUML Modeler

Executable specification 

of service (e.g., BPEL)

RubyMDA Transformer

Fig. 1. Architecture of the ContextServ platform

2 The ContextServ Project

ContextServ adopts model-driven development (MDD). The basic idea of MDD
is that by adopting a high-level of abstraction, software systems can be speci-
fied in platform independent models (PIMs), which are then semi-automatically
transformed into platform specific models (PSMs) of target executable plat-
forms using some transformation tools. The same PIM can be transformed into
different executable platforms (i.e., multiple PSMs), thus considerably simplify-
ing software development. This section will briefly introduce the ContextUML
language, the RubyMDA transformer, and the adaptive CAS process.

2.1 The ContextUML Language

ContextServ relies on ContextUML [28], a UML-based modeling language that
provides high-level, visual constructs for specifying context-aware Web services.
As shown in Figure 2, ContextUML metamodel consists of three main parts: the
context modeling metamodel, the context-awareness modeling metamodel, and
the service modeling metamodel. We will focus on introducing the first two parts
since the service modeling metamodel (the left part of Figure 2) follows the
standard service definitions.

Context Modeling. In ContextUML, a context is further distinguished into
two categories that are formalized by AtomicContext and CompositeContext.
Atomic contexts are low-level contexts that do not rely on other contexts and can
be provided directly by context sources. In contrast, composite contexts are high-
level contexts that may not have direct counterparts on the context provision. A



4 Q. Z. Sheng et al.

Fig. 2. The ContextUML metamodel in ContextServ

composite context aggregates multiple contexts, either atomic or composite. The
concept of composite context can be used to provide a rich modeling vocabu-
lary. ContextUML abstracts two categories of context sources, formalized by the
context source subtypes ContextService and ContextServiceCommunity. A con-
text service is provided by an autonomous organization (i.e., context provider),
collecting, refining, and disseminating context information.

To solve the challenges of heterogeneous and dynamic context information,
we abstract the concept of context service community, which enables the dynamic
provisioning of optimal contexts. A context service community aggregates mul-
tiple context services, offering with a unified interface. It is intended as a means
to support the dynamic retrieval of context information. A community describes
the capabilities of a desired service (e.g., providing user’s location) without refer-
ring to any actual context service (e.g., WhereAmI service). When the operation
of a community is invoked, the community is responsible for selecting the most
appropriate context service that will provide the requested context information.
Context services can join and leave communities at any time. By abstracting
context service community as one of the context sources, we can enable the dy-
namic context provisioning. In other words, CAS designers do not have to specify
which context services are needed for context information retrieval at the design
stage. The decision of which specific context service should be selected for the
provisioning of a context is postponed until the invocation of CASs.

The quality of context is extremely important for CASs in the sense that con-
text information is used to automatically adapt services or content they provide.
The imperfection of context information may make CASs misguide their users.
For example, if the weather information is outdated, our attractions searching
service might suggest users to surf at the Bondi Beach although it is rainy and
stormy. Via context service communities, the optimal context information is
always selected, which in turn, ensures the quality of CASs.



Designing and Building Context-Aware Services: The ContextServ Project 5

Context Awareness Modeling. ContextUML abstracts two context aware-
ness mechanisms, namely context binding and context triggering. The former
models automatic contextual configuration (e.g., automatic invocation of Web
services by mapping a context onto a particular service input parameter), with
the semantics of that the value of the object is supplied by the value of the
context. The context triggering models the situation of contextual adaptation
where services can be automatically executed or modified based on context in-
formation. A context triggering mechanism contains two parts: a set of context
constraints and a set of actions, with the semantics of that the actions must be
executed if and only if all the context constraints are evaluated to true.

Context awareness mechanisms are assigned to context-aware objects, mod-
elled as CAObject, by the relation MechanismAssignment, indicating which ob-
jects have what kinds of context awareness mechanisms. CAObject is a base
class of all model elements in ContextUML that represent context-aware objects.
There are four subtypes of CAObject: Service, Operation, Message, and Part.
It should be noted that the four primitives are directly adopted from WSDL,
which enables designers to build CASs on top of the previous implementation of
Web services.

2.2 ContextUML Modeler and RubyMDA Transformer

In the ContextServ platform, the ContextUML modeler provides a visual inter-
face for defining context-aware Web services using ContextUML [29]. In partic-
ular, we extend ArgoUML1, an existing UML editing tool, by developing a new
diagram type, ContextUML diagram, which implements all the abstract syntax
of the ContextUML language.

Fig. 3. RubyMDA data flow

Services represented in ContextUML diagrams are exported as XMI files for
subsequent processing by the RubyMDA transformer, which is responsible for
transforming ContextUML diagrams into executable Web services, using Ruby-
Gems2. The ContextServ platform currently supports WS-BPEL, a de facto

1 http://argouml.tigris.org.
2 https://rubygems.org/.



6 Q. Z. Sheng et al.

Fig. 4. An anatomy of the adaptive runtime environment

standard for specifying executable processes. Once the BPEL specification is
generated, the model transformer deploys the BPEL process to an application
server and exposes it as a Web service. In the implementation, JBoss Application
Server is used since it is open source and includes a BPEL execution engine
jBPM-BPEL. RubyMDA is developed based on the model transformation rules.
The model transformation rules are mappings from ContextUML stereotypes to
BPEL elements.

Figure 3 shows the data flow of RubyMDA model transformer. RubyMDA
takes the XMI document as an input which represents the ContextUML diagram.
RubyMDA reads the XMI document and constructs the UML model which is
a set of data structure representing the components in UML class diagram.
After the UML model is constructed, RubyMDA transforms it into CAS model
which is a set of data structure representing the CAS described in ContextUML
diagram. Finally, RubyMDA generates a BPEL process and WSDL document
for a CAS. Moreover, it generates a set of deployment files needed to deploy
CAS to a server.

2.3 Adaptive CAS Processes

As stated by Papazoglou in [24], “services and processes should equip themselves
with adaptive service capabilities so that they can continually morph themselves
to respond to environmental demands and changes without compromising oper-
ational and financial efficiencies”. It is particularly important to CASs to cope
with the functional changes raised from both business requirements and envi-
ronmental contexts, and bringing dynamic adaptability (or agility) to service
processes, which means a CAS should have the ability of behavior adaptation.

We further develop MoDAR PIMs [34, 35] which include the base model, the
variable model, and the weave model. The base model represents the relatively
stable processing procedures, or flow logic, of a CAS system; while the variable
model represents the more volatile decision aspect of the business requirements.
To make the base model and the variable model semantically inter-operable,
we use a minimum set of ontology concepts as the basic elements in defining
activity parameters in processes and also in defining rule entities. We also adopt
an aspect-oriented approach to integrate the base model and the variable model



Designing and Building Context-Aware Services: The ContextServ Project 7

using a weave model. This approach ensures the modularity of the base model
and the variable model so that they can evolve independently.

The variable model is automatically transformed into Drools rules, and the
weave model is automatically transformed into an abstract BPEL process, where
at every join point, the invocation to a rule aspect is translated to a special
Web service invocation. After the designer manually associates concrete Web
services with abstract services in the process to implement their functionalities,
the process is automatically transformed into an executable BPEL process. As
shown in Fig. 4, the BPEL process and the Drools rules are deployed to their
corresponding engines. Dynamic adaptability is achieved in a way that we can
freely add/remove/replace business rules defined in the modeling phase and then
transform and redeploy them without terminating the execution of the process.

3 Literature Discussions

With the maturing and wide-adopting of Web service technology, research on
providing engineering approaches to facilitate the development of context-aware
services has gained significant momentum. Using model-driven paradigm to de-
velop CAS has been proven to be a valuable and important strand in this research
area considering the quality and efficiency it brings along.

In general, the approaches for developing CASs fall into five categories: i)
Middleware solutions and dedicated service platforms, ii) Use of ontologies, iii)
Rule-based reasoning, iv) Source code level programming/Language extensions,
and v) Message interception [21]. Each kind of approach has its own pros and
cons. For example, the source code level approach can give more freedom to
developers to do all kinds of context-aware adaptation, but it does not separate
apart the concerns on context-awareness and suffers from a significant main-
tenance cost. As for the model-driven approach, apart from its advantages, it
requires to keep the consistency between high level models and low level exe-
cutable code at all times, which brings extra complexity.

In this section, we overview the representative research efforts in the liter-
ature on model-driven development of context-aware services. Table 1 gives a
detailed summary of some representative related works and comparison from
the perspectives of modeling language, MDD techniques, tools and platform.

In [5], Ayed et al. proposed a UML metamodel that supports context-aware
adaptation of service design from structural, architectural and behavioral per-
spectives. The structural adaptation can extend the service objects structure by
adding or deleting its methods and attributes. The architectural adaptation can
add and delete service objects of an application according to the context. The
behavioral adaptation can adapt the behavior of the service object by extending
its UML sequence diagram with optional context related sequences. Further-
more, based on the UML metamodel, Ayed ed al. proposed an MDD approach
to model context-aware applications independently from the platform, which in-
cludes six phases that approach step by step the mechanisms required to acquire
context information and perform adaptations.



8 Q. Z. Sheng et al.

Table 1. Summary and comparison of model-driven approaches for context-aware
application development

Ayed
2008

Sindico-Grassi
2009

Prezerakos
2007

Kapitsaki
2009

Hoyos
2013,2016

Boudaa
2017

ContextServ
2009, 2015

Context
modeling

Modeling language
(based-Model)

UML
UML

(CAMEL)
UML

(ContextUML*)
UML

(ContextUML*)
DSL

(MLContext)
Ontology&

UML
UML

(ContextUML)
Atomic context + + + + + + +
Composite context - + + + + + +
Context quality + - - - + - +
Context sensing + - - - + + -

Service modeling - - + + - - +

Context-awareness
modeling

Context binding + + + + + + +
Context triggering + + + + + + +
Behavior adaptation + - - - - + +

Decoupling business logic and context logic + + + + + + +

Adaptation time (design-time/run-time) design-time
design-time

run-time
design-time

run-time
design-time design-time

design-time
run-time

design-time
run-time

Implementation platform unspecified AspectJ SOA SOA OCP/JCAF
SOA

(FraSCAti)
SOA

(BPEL)

Supporting software
tools

Graphical modeling
environment

- + + - + + +

Transformation tool - - + + + + +

In [32], Sindico and Grassi proposed CAMEL (Context Awareness ModEling
Language) which considers both model-driven development and aspect-oriented
design paradigms so that the design of the application core can be decoupled from
the design of the adaptation logic. In particular, CAMEL categorizes context
into state-based which characterizes the current situation of an entity and event-
based which represents changes in an entitys state. Accordingly, state constraints,
which are defined by logical predicates on the value of the attributes of a state-
based context, and event constraints, which are defined as patterns of event [7],
are used to specify context-aware adaptation feature of the application.

In [17], Hoyos et al. proposed a textual Domain-Specific Language (DSL),
namely MLContext, which is specially tailored for modeling context information.
It has been implemented by applying MDD techniques to automatically generate
software artifacts from context models. The MLContext abstract syntax has been
defined as a metamodel, and model-to-text transformations have been written
to generate the desired software artifacts (e.g., OCP middleware and JCAF
middleware). The concrete syntax has been defined with the EMFText tool,
which generates an editor and model injector. Furthermore, in [18], MLContext
is extended for modeling quality of context (QoC) and the models can be mapped
to code for two frameworks (COSMOS and SAMURA) supporting QoC.

In [25], Prezerakos et al. addressed the decoupling of core service logic from
context-related functionality by adopting a model-driven approach based on a
modified version of ContextUML [28]. Core service logic and context handling are
treated as separate concerns at the model level as well as in the resulting source
code. In the design phase, besides class diagrams, UML activity diagrams are
used for modeling the core service logic flow in conjunction with MDE (Model-
driven Engineering) transformation techniques and AOP (Aspect Oriented Pro-
gramming). In the coding phase, AOP encapsulates context-dependent behav-
iors in discrete AspectJ code modules. Context binding information provided in
UML models is used to create pointcuts and related advices, as well as to create
the binding between them. In [20], Kapitsaki et al. proposed an architecture



Designing and Building Context-Aware Services: The ContextServ Project 9

for the context adaptation of Web applications consisting of Web services and
a model-driven methodology for the development of such context-aware com-
posite applications. In the methodology, the Web application functionality is
completely separated from the context adaptation at all development phases
(analysis, design and implementation). In the modeling level, composite web ap-
plications are modeled in UML and the application design is kept, at a great
extent, independent from specific platform implementations and flexible enough
to allow the introduction of different code specific mappings. Context adaptation
is performed on a service interface level to keep client independent. The model-
ing exploits a number of pre-defined profiles, whereas the target implementation
is based on an architecture that performs context adaptation of web services
based on interception of Simple Object Access Protocol (SOAP) messages.

In [12], Boudaa et al. proposed an approach taking advantage of combining
MDD and AOP to sustain the development of context-aware service-based appli-
cations in mobile and ubiquitous environments. Contexts are modeled with a pro-
posed ontology-based context model which is structured on three sub-ontologies:
generic, domain and application ontologies. A UML-based metamodel, called
ContextAspect, is proposed to define and specify where and how the context-
aware adaptation takes place. The ContextAspect metamodel is composed of
three parts: aspect modeling, context modeling and context-awareness modeling.
AOM handles the context-awareness logic in ContextAspect models (as variants)
to fill context-aware application elements (as variation points) by using weav-
ing techniques at design and run times. At design-time, the weaving enables
to produce a wide range of context-aware application models without designing
them from the beginning. The run-time weaving consists of weaving necessary
reconfiguration into the running application according to the context change, so
accomplishing its dynamic adaptation.

To the perspective of modeling language for context-aware application devel-
opment, we compare ContextUML with the other metamodels from the issues of
context modeling, servcie modeling, and context-awareness modeling. It should
be noted that, in [25, 20], their models are modified versions of ContextUML, so
most of the language capabilities of their models equal to ContextUML’s and the
comparison with them will not discussed below. As we can see from the table,
all languages support the modeling of atomic context. For composite context,
although CAMEL claims that atomic contexts can be aggregated but no details
were given in the paper. In [12], composite context is inferred from low-level
contexts using Semantic Web Rule Language (SWRL), and in MLContext, sim-
ple references are used to link composite context with their atomic contexts.
ContextUML gives a complete approach to composing a composite context from
atomic contexts in statechart which is a widely used formalism integrated into
UML. ContextUML supports context quality modeling and use context service
community to support QoC-based context selection. Although Ayed UML is able
to specify the quality attributes of a context, no runtime support was reported
in the paper. In [18], MLContext was extended for modeling QoC. However, it
does not support QoC-based context selection.



10 Q. Z. Sheng et al.

As to service modeling, only ContextUML directly supports the structure of
Web services, which is of enormous importance to the development of context-
aware Web services. The other languages just use plain UML classes to represent
Web services or even without support of Web services.

For context-awareness modeling, all the languages except MLContext sup-
port the main features including context binding and context triggering. How-
ever, only ContextUML, Ayed UML and ContextAspect model support behavior
adaptation, which means a service or process has the ability to change its be-
havior at runtime in accordance with the changes in the requirements and/or
the external environment(contexts). Ayed UML only supports to define behav-
ior adaptation in design-time, and no run-time support is reported in the paper.
Both of ContextServ and ContextAspect model support behavior adaptation
in design-time and run-time. The mechanism of behavior adaptation in Con-
textAspect model enables to change alternatively the application behavior by
selecting one among several behaviours in accordance with current contextual
situation.

Because dynamic adaptation is closely related to the targeting system, we also
listed the supported targeting implementation platform of each approach. Dif-
ferent implementation languages or underlying frameworks/platforms and mid-
dleware are adopted in each approach. ContextServ and approaches presented
in [25, 20, 12] support the SOA paradigm. After modeling adaptation in Contex-
tUML, it can be transformed and the behavior adaptation will be reflected in
standard BPEL that has become a de facto industry standard (widely adopted
by major IT service providers including IBM, Oracle, and SAP) to create com-
posite service processes and applications. [12] uses FraSCAti platform as the
target platform which supports Service Component Architecture (SCA). Models
of MLContext can be transformed to specific context middleware (e.g., OCP and
JCAF). CAMEL is still an ongoing work, so only examples on how to transform
to ContextJ [16] were described in the paper. As to Ayed UML, no targeting
systems are reported in the paper.

For supporting software tools, ContextUML has a comprehensive graphical
modeling environment developed on top of ArgoUML and also a full-fledged
automatic transformation tool for generating deployable BPEL code. All of
CAMEL, MLContext and language in [12] have a graphical modeling environ-
ment based on Eclipse EMF3, but no fully workable transformation tools are
reported.

4 Open Research Issues

Although context-aware services have been an active research topic for more
than a decade, existing research efforts generally focus more on addressing some
specific aspects and lack of a holistic view on the problem [24, 31, 13]. Moreover,
the rapid rise and adoption of new computing paradigms such as the Internet

3 http://www.eclipse.org/modeling/emf/



Designing and Building Context-Aware Services: The ContextServ Project 11

of Things (IoT), Edge Computing also present compounded challenges in CAS
development. In this section, we identify several important directions for future
research in this area.

Contextual Data Management. Contextual information is a critical integral
component of CASs. There is an urgent need for a holistic approach on the life
cycle of contextual data management, from data acquisition, contextual data
modeling, reasoning, and transformation, to dissemination. IoT is increasingly
becoming an important source for rich and real-time contextual information
for CASs. However, the diverse, heterogenous, large scale, and unreliable IoT
sensors present significant challenges [27, 26]. This calls for more research on
solutions that can effectively aggregate and distill heterogeneous and large IoT
data to obtain contextual data of appropriate quality. Future IoT is expected
to be 50 to 100 times bigger than the current Internet. This poses a new set
of challenges to discover the right IoT devices at the right time and right place
for a particular contextual information offering [33, 4]. One technical direction
towards IoT discovery is to exploit the textual descriptions associated with IoT
devices and perform the natural order ranking of IoT contents.

Context-Aware Requirements Engineering. ContextUML and the Con-
textServ platform comprise the design and implementation phases of a software
development process. One of the important open research issues remains: How
can we inject context-awareness into the initial requirements engineering phase?
One line of research on this issue is initiated by Ali et al. [2] where the authors
propose a contextual goal modelling framework to derive goal model variants
that meet the goals in a given context. Later on, in [3], the framework inte-
grates the detection of both the context specification inconsistencies and goal
conflicts resulting from variabilities. Recently, based on the above work, Botan-
gen et al. [11] propose an approach for context-based requirements variability
analysis in the goal-oriented requirements modelling where contextual goals and
contextual preferences can be defined to specify the relationships of contexts
with requirements and preferences. Future research questions include how to op-
timize the automated conflict detection algorithm and how to deal with evolving
contextualization derived from the ever-changing nature of requirements.

Context-Aware Services Recommendation. In the era of information ex-
plosion, the number of Web services also increases rapidly, which brings new
challenges for users to choose the right Web services among tens of thousands
candidates. The research field of context-aware service recommendation aims to
recommend services to users based on their contextual information. In [37], a
time-aware service recommendation approach that integrates temporal informa-
tion with content similarity is proposed. In [14], a two-level topic model that
combines service content and service social network information is proposed for
Web API recommendation. Recently, Botangen et al. [10] propose a geographic-
aware collaborative filtering approach for Web services recommendation. Open
research questions include how to exploit the recently flourishing deep learning
methods in context-aware service recommendation, and how to design a generic



12 Q. Z. Sheng et al.

ensemble architecture to facilitate the integration of different types of contextual
information.

Security and Privacy on Context-Aware Services. Security and privacy
are the serious challenges for CASs, which need to be addressed for users to fully
embrace the services. Contextual information often is related to sensitive per-
sonal data such as activities, transactions, and whereabouts. With embedding
sensing being more and more prevalent on personal devices, personal sensing can
be used to detect users’ physical activities and bring privacy concerns. Building a
trusted ecosystem among context-aware services requires appropriate measures
on security and privacy between CASs, IoT devices that provide contextual in-
formation, and their interactions with service users [8]. Unfortunately, security
and privacy are still not adequately addressed by the majority of existing ap-
proaches. The Blockchain technology has the potential to address these issues
but need to consider several challenges such as resource limitation and low trans-
mission rates of IoT devices. We believe that intensive research and development
are needed in order to realize secure and trustworthy context-aware services.

Context-Aware Services in Mobile Edge Computing. With the prolifer-
ation of IoT and mobile devices, more and more services are moving towards
the network edge, which minimizes the need on data transfers and reduces the
latency. Mobile edge computing (MEC) has emerged as a key technology to as-
sist wireless networks with cloud computing like capabilities, offering low-latency
and mobility support services directly from the network edge. However, the dy-
namic and complex environment of MEC makes context-aware and adaptive
predicting QoS of services a challenging task. In a recent work by Liu et al. [22],
two context-aware QoS prediction schemes are proposed by considering user-
related and service-related contextual information and MEC service scheduling
scenarios. More research efforts are needed in this important direction.

5 Conclusions

Over the recent years, context-aware services (CASs) are emerging as an impor-
tant technology for building innovative smart applications. Unfortunately, de-
spite of active research and development, CASs are still difficult to build, due to
lack of context provisioning management approach and lack of generic approach
for formalizing the development process. In this paper, we have introduced the
ContextServ project that focuses on developing a platform for model-driven de-
velopment of CASs. We also review some representative research efforts on CASs
in the literature and identify several open research issues that we wish to stim-
ulate further research in this important area.

Acknowledgments

The ContextServ project has been partially supported by an Australian Research
Council (ARC) Discovery Project grant DP0878367. Quan Z. Sheng’s research
has been also partially supported by an ARC Future Fellowship FT140101247.



Designing and Building Context-Aware Services: The ContextServ Project 13

References

1. Abowd et al, G.D.: Context-Aware Computing. IEEE Pervasive Computing 1(3),
22–23 (2002)

2. Ali, R., Dalpiaz, F., Giorgini, P.: A goal-based framework for contextual require-
ments modeling and analysis. Requirements Engineering 15(4), 439–458 (2010)

3. Ali, R., Dalpiaz, F., Giorgini, P.: Reasoning with contextual requirements: Detect-
ing inconsistency and conflicts. Information and Software Technology 55(1), 35–57
(2013)

4. Aljubairy, A., Zhang, W.E., Sheng, Q.Z., Alhazmi, A.A.F.: SIoTPredict: A Frame-
work for Predicting Relationships in the Social Internet of Things. In: Proc. of
the 32nd International Conference on Advanced Information Systems Engineering
(CAiSE 2020). pp. 101–116. Springer, Grenoble, France (2020)

5. Ayed, D., Taconet, C., Bernard, G., Berbers, Y.: CADeComp: Context-aware de-
ployment of component-based applications. Journal of Network and Computer Ap-
plications 31(3), 224–257 (2008)

6. Badidi, E., Atif, Y., Sheng, Q.Z., Maheswaran, M.: On Personalized Cloud Service
Provisioning for Mobile Users using Adaptive and Context-aware Service Compo-
sition. Computing 101(4), 291–318 (2019)

7. Benatallah, B., Dumas, M., Fauvet, M.C., Rabhi, F.A., Sheng, Q.Z.: Overview
of Some Patterns for Architecting and Managing Composite Web Services. ACM
SIGecom Exchanges 3(3), 916 (2002)

8. Bertino, E., Choo, K.R., Georgakopoulos, D., Nepal, S.: Internet of Things (IoT):
Smart and Secure Service Delivery. ACM Transactions on Internet Technology
16(4), 22:1–22:7 (2016)

9. Botangen, K.A., Yu, J., Han, Y., Sheng, Q.Z., Han, J.: Quantifying the Adaptabil-
ity of Workflow-based Service Compositions. Future Generation Computer Systems
102, 95–111 (2020)

10. Botangen, K.A., Yu, J., Sheng, Q.Z., Han, Y., Yongchareon, S.: Geographic-aware
collaborative filtering for web service recommendation. Expert Systems with Ap-
plications 151, 113347 (2020)

11. Botangen, K.A., Yu, J., Yeap, W.K., Sheng, Q.Z.: Integrating context to prefer-
ences and goals for goal-oriented adaptability of software systems. The Computer
Journal (2020)

12. Boudaa, B., Hammoudi, S., Mebarki, L.A., Bouguessa, A., Chikh, M.A.: An
Aspect-oriented Model-driven Approach for Building Adaptable Context-aware
Service-based Applications. Science of Computer Programming 136, 17–42 (2017)

13. Bouguettaya, A., Singh, M.P., Huhns, M.N., Sheng, Q.Z., Dong, H., Yu, Q., Neiat,
A.G., Mistry, S., Benatallah, B., Medjahed, B., Ouzzani, M., Casati, F., Liu, X.,
Wang, H., Georgakopoulos, D., Chen, L., Nepal, S., Malik, Z., Erradi, A., Wang, Y.,
Blake, M.B., Dustdar, S., Leymann, F., Papazoglou, M.P.: A Service Computing
Nanifesto: the Next 10 Years. Communications of the ACM 60(4), 64–72 (2017)

14. Cao, B., Liu, X., Rahman, M.M., Li, B., Liu, J., Tang, M.: Integrated content
and network-based service clustering and web apis recommendation for mashup
development. IEEE Transactions on Services Computing (2017)

15. Dey, A.K., Mankoff, J.: Designing Mediation for Context-aware Applications. ACM
Transactions on Computer-Human Interaction 12(1), 53–80 (2005)

16. Hirschfeld, R., Costanza, P., Nierstasz, O.: Context-Oriented Programming. Jour-
nal of Object Technology 7(3), 125–151 (2008)



14 Q. Z. Sheng et al.

17. Hoyos, J.R., Garćıa-Molina, J., Bot́ıa, J.A.: A domain-specific language for context
modeling in context-aware systems. Journal of Systems and Software 86(11), 2890–
2905 (2013)

18. Hoyos, J.R., Garćıa-Molina, J., Bot́ıa, J.A., Preuveneers, D.: A model-driven ap-
proach for quality of context in pervasive systems. Computers & Electrical Engi-
neering 55, 39–58 (2016)

19. Julien, C., Roman, G.C.: EgoSpaces: Facilitating Rapid Development of Context-
Aware Mobile Applications. IEEE Transactions on Software Engineering 32(5),
281–298 (2006)

20. Kapitsaki, G.M., Kateros, D.A., Prezerakos, G.N., Venieris, I.S.: Model-driven de-
velopment of composite context-aware web applications. Information and Software
Technology 51(8), 1244–1260 (2009)

21. Kapitsaki et al., G.: Context-aware Service Engineering: A Survey. Journal of Sys-
tems and Software 82(8), 1285–1297 (2009)

22. Liu, Z., Sheng, Q.Z., Xu, X., Chu, D., Zhang, W.E.: Context-aware and Adap-
tive QoS Prediction for Mobile Edge Computing Services. IEEE Transactions on
Services Computing pp. 1–1 (2019, Early Access)

23. Mo, J.P.T., Sheng, Q.Z., Li, X., Zeadally, S.: RFID Infrastructure Design: A Case
Study of Two Australian RFID Projects. IEEE Internet Computing 13(1), 14–21
(2009)

24. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Com-
puting: State of the Art and Research Challenges. Computer 40(11), 38–45 (2007)

25. Prezerakos, G.N., Tselikas, N., Cortese, G.: Model-driven Composition of Context-
aware Web Services Using ContextUML and Aspects. In: Proc. of the 5th Interna-
tional Conference on Web Services (ICWS’07). pp. 320–329 (2007)

26. Qin, Y., Sheng, Q.Z., Falkner, N.J.G., Dustdar, S., Wang, H., Vasilakos, A.V.:
When Things Matter: A Survey on Data-centric Internet of Things. Journal of
Network and Computer Applications 64, 137–153 (2016)

27. Sheng, M., Qin, Y., Yao, L., Benatallah, B. (eds.): Managing the Web of Things:
Linking the Real World to the Web. Morgan Kaufmann (2017)

28. Sheng, Q.Z., Benatallah, B.: ContextUML: A UML-Based Modeling Language for
Model-Driven Context-Aware Web Service Development. In: Proc. of the 4th In-
ternational Conference on Mobile Business (ICMB’05). pp. 206–212. Sydney, Aus-
tralia (2005)

29. Sheng, Q.Z., Pohlenz, S., Yu, J., Wong, H.S., Ngu, A.H., Maamar, Z.: ContextServ:
A Platform for Rapid and Flexible Development of Context-Aware Web Services.
In: Proc. of the 31st International Conference on Software Engineering (ICSE’09).
pp. 619–622. Vancouver, Canada (2009)

30. Sheng, Q.Z., Qiao, X., Vasilakos, A.V., Szabo, C., Bourne, S., Xu, X.: Web Services
Composition: A Decade’s Overview. Information Sciences 280, 218–238 (2014)

31. Sheng, Q.Z., Yu, J., Dustdar, S. (eds.): Enabling Context-Aware Web Services:
Methods, Architectures, and Technologies. CRC Press (2010)

32. Sindico, A., Grassi, V.: Model Driven Development of Context Aware Software
Systems. In: International Workshop on Context-Oriented Programming (COP
’09). pp. 7:1–7:5. New York, NY, USA (2009)

33. Tran, N.K., Sheng, Q.Z., Babar, M.A., Yao, L.: Searching the Web of Things: State
of the Art, Challenges, and Solutions. ACM Computing Surveys 50(4), 55:1–55:34
(2017)

34. Yu, J., Han, J., Sheng, Q.Z., Gunarso, S.O.: PerCAS: An Approach to Enabling
Dynamic and Personalized Adaptation for Context-Aware Services. In: Liu, C.,



Designing and Building Context-Aware Services: The ContextServ Project 15

Ludwig, H., Toumani, F., Yu, Q. (eds.) Proc. of the 10th International Conference
on Service-Oriented Computing (ICSOC 2012). pp. 173–190. Springer, Shanghai,
China (2012)

35. Yu, J., Sheng, Q.Z., Swee, J.K., Han, J., Liu, C., Noor, T.H.: Model-driven de-
velopment of adaptive web service processes with aspects and rules. Journal of
Computer and System Sciences 81(3), 533–552 (2015)

36. Yu, Q., Liu, X., Bouguettaya, A., Medjahed, B.: Deploying and Managing Web Ser-
vices: Issues, Solutions, and Directions. The VLDB Journal 17(3), 537–572 (2008)

37. Zhong, Y., Fan, Y., Huang, K., Tan, W., Zhang, J.: Time-aware service recom-
mendation for mashup creation in an evolving service ecosystem. In: 2014 IEEE
International Conference on Web Services. pp. 25–32. IEEE (2014)


