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Abstract. This paper addresses the design and implementation of an
adaptive document version management scheme. Existing schemes typ-
ically assume: (i) a priori expectations for how versions will be manip-
ulated and (ii) fixed priorities between storage space usage and average
access time. They are not appropriate for all possible applications. We
introduce the concept of document version pertinence levels in order
to select the best scheme for given requirements (e.g., access patterns,
trade–offs between access time and storage space). Pertinence levels can
be considered as heuristics to dynamically select the appropriate scheme
to improve the effectiveness of version management. We present a testbed
for evaluating XML version management schemes.

1 Introduction

In several applications (e.g., digital government applications) there is a need
for processing an increasing amount of data usually formatted using mark-up
languages such as HTML and XML. In these applications, the issue of document
content evolution is very important. For example, during a legislative mark-up
process (i.e, the process of creating bills that will be proposed as laws), an initial
document (i.e, the draft bill) is presented [1]. Legislators then begin a process of
suggesting changes to the document, which ultimately voted out or are reconciled
in a final document (i.e, the final bill).

1.1 Background

The work described in this paper focuses on the issue of managing multiple
versions in document management systems such as file systems, HTML, and
XML repositories. A variety of version management schemes has been developed
for various data models including object, XML, HTML, text document models
[2–17]. Indeed, some these schemes can be used to manage versions in different
document representation models. However, existing schemes typically assume:



(i) a priori expectations for how versions will be manipulated and (ii) fixed

priorities between storage space usage and average access time. Consider the
following schemes as examples [18, 17, 2]:

– Scheme 1 - Store last version and backward deltas: In this scheme,
only the most recent version is stored. In order to be able to generate other
versions, backward deltas (i.e, changes from a version to the previous one)
are stored. The generation of recent versions is rather efficient (e.g., access
to the last version is immediate). However, this scheme is not appropriate
for applications which require access to historical information (i.e, temporal
queries).

– Scheme 2 - Store all versions: In its simplest form, this scheme stores
all versions. Thus, this solution is appropriate for applications which require
access to historical information. The main drawback of this scheme is storage
overhead. In addition, extra processing is needed to generate deltas which
makes this solution inappropriate for change queries.

Clearly, a fixed scheme is unlikely to be appropriate for requirements (e.g.,
access to multiple versions may not necessarily follow predictable patterns, pri-
orities between storage space usage and average access time may vary) of all
possible applications. For example, once a legislative process has been com-
pleted, historical search may be performed across different versions of bills, by
academics and citizens alike. Access to bills and versions thereof may be highly
unpredictable. Some bills may have greater social significance or be more con-
troversial than others. In addition, researchers may engage in different types of
analyses across versions. The co–existence of all these situations in this type of
document management system calls for an adaptive versioning scheme.

1.2 Contributions

In this paper, we propose an adaptive document version management scheme,
which supports different version management schemes. Our work aims at provid-
ing a unified framework that can be used to combine several document versioning
schemes. More precisely, the salient features of our approach are:

– A version is stored only if its existence is justified on performance, information–
loss avoiding, or trade–offs between access time and storage space grounds,
for example. Otherwise, it is generated on–demand. We refer to the latter
as a calculated version. For example, a version may be kept as a stored ver-
sion when it is intensively requested. However, when it is rarely requested,
it may be kept as a calculated version. Furthermore, our approach features
the deletion of old versions that are no longer useful.

– To decide if a version is to be stored, calculated, or deleted, we introduce the
concept of document version pertinence levels. A version may be pertinent,
relevant, or obsolete. Intuitively, the pertinence level of a version is a means
to characterise the importance of the availability of a version in the history
of a document with regard to application needs [8]. A version is:



• pertinent if its availability is deemed highly important (e.g., intensively
requested). Maintaining such a version as a stored version may, e.g., help
increasing access performance.

• relevant if its availability is not deemed highly important, but its exis-
tence is still necessary (e.g., rarely requested). Maintaining such a version
as a calculated version may not have, e.g., any major negative impact
on the overall access performance.

• obsolete if its availability is deemed useless (e.g., no longer needed by
applications, not expected to be requested in the future). The deletion of
an obsolete version may, e.g., help improving performance and reducing
the volume of a document history.

This classification is based on a number of criteria, including past user access
patterns, storage space and processing time trade–offs.

– We propose a technique that continuously adjusts the history of a document
to match the intensively requested versions. We show that transformations
of a document history over time, result in offering better alternatives of its
content. Our approach helps in reducing the volume of a document history by
enabling deletion of obsolete versions and replacement of stored versions by
calculated versions when their status changes from pertinent to relevant. We
give experimental results which demonstrate the effectiveness of the proposed
technique.

The remainder of this paper is organised as follows. Section 2 presents the
adaptive document versioning scheme. Section 3 discusses the refreshing of a
document history. Implementation and evaluation issues are discussed in Sect. 4.
Section 5 gives some conclusions.

2 Adaptive Document Versioning Scheme

The adaptability of our approach lies in the following features. Firstly, the history
of a document is continuously adjusted to provide an effective versioning scheme
based on criteria such as estimation of future usage of versions. Secondly, our
approach allows explicit tuning of: (i) the used criteria and (ii) how such criteria
contribute to the selection of a given versioning scheme.

We propose the concept of pertinence agent to facilitate the adaptability of
a versioning scheme. The role of this agent is to continually gather and evaluate
information about versions and recommend changes to a document history. A
pertinence agent is an extensible object that can be attached to a document3. It
contains operational knowledge such as number of versions, number of times a
version is requested, size of versions, and change control policies related to the
document history (e.g., a pertinence agent can be programmed to periodically
refresh versions). It also provides operations for refreshing a document history
(e.g., deleting versions, generating new versions).

3 Note that a pertinence agent can be attached to several documents (e.g., documents
of an XML repository).



A pertinence agent is extensible in the sense that it is possible to change
its operational knowledge, e.g., tuning certain parameters in order to provide
applications with ability to dynamically adjust the version management scheme
to their precise needs. The remainder of this section is organized as follows. Sec-
tion 2.1 presents the document version model used in our approach. Section 2.2
discusses the usage of the pertinence agent to determine version pertinence levels.

2.1 Basic Concepts and Definitions

In this section, we present the version model used in our approach. In this model,
a document is associated to the set of its versions. This set can be regarded as the
physical representation of the document itself. At the system level, a document is
represented by a pair (d,vers), where d is the document identifier (e.g., name)
and vers is the set of its versions. A version is identified by a pair (d,num),
where d is the identifier of the document and num is the number that the system
associates to the version, at its creation time. We use the notation vi(d) to denote
the ith version (i.e, version number i) of the document d. We designate the latest
version of a document as the current version. A historical version of a document
is any of its versions which is not the current version.

As we already mentioned before, our approach differentiates between stored
and calculated versions. A calculated version is generated on–demand. To gen-
erate a calculated version vi(d), a sequence of change operations is applied to
stored version vj(d), called the generation root of vi(d). In Section 4, we will
discuss how to determine a generation root. A version is represented by a tuple:

(vi(d), i, status, pi(d))

where status can be either “stored” or “calculated”. pi(d) is a pointer by
which the content of the version can be obtained. In particular, if status is
“stored” then pi(d) refers to the document associated to vi(d). Otherwise, pi(d)
refers to a sequence of change operations which allows to generate the version
vi(d) from its generation root.

In order to generate a version from another one, we maintain changes between
versions. We use the term delta to refer to the sequence of changes between two
versions of a document. It should be noted that our versioning model does not
target a specific model such as XML or HTML. Instead, it uses concepts that
are common in any document model.

Below, we introduce some notations that will be used in the remainder of the
paper. We denote by:

– A(t, d) the set of version numbers i such that vi(d) is accessible at time t,

A(t, d) = {i : vi(d) is accessible at time t}

– D(t, d, i, j) the distance between vi(d) and vj(d) at time t,

D(t, d, i, j) =

{

#{l : l ∈ At(d), i < l ≤ j} if i < j
#{l : l ∈ At(d), i > l ≥ j} if i ≥ j



– L(t, d, i) the distance between vi(d) and its generation root at time t.
– Z(t, d) the average of the distance between a calculated version and its gen-

eration root at time t (taken over all existing calculated versions).
– N(t, d, i) the number of accesses to vi(d) at time t since the last refreshing.
– Sc(t, d) the average size of calculated versions of document d at time t. If

none of the versions is calculated at time t, a default value is assigned to
Sc(t, d). Since maintaining a calculated version requires 2 deltas, the size of
a calculated version is approximated using the size of deltas associated with
it.

– S(d, i) the size of vi(d).
– Ss(t, d) the average size of stored versions of document d at time t.

2.2 Pertinence Criteria

As mentioned before, the pertinence level of a version is determined based on a
number of criteria including user access patterns, storage space and processing
time trade–offs. Based on these criteria, the pertinence agent uses a scoring
function to determine the pertinence levels. Score(t, d, i) is a number between 0
and 1 that represents the score given by the pertinence agent to vi(d) at time t.
Higher value of Score(t, d, i) means that vi(d) is more likely to be pertinent. The
pertinence agent sorts versions according to their scores. A version is classified
obsolete if its score is less than certain threshold τ . The top p % (0 ≤ p ≤
100) of non–obsolete versions are classified pertinent. The remaining versions are
classified relevant. p is a pre–defined parameter (e.g., set by an administrator).
For some applications, it may not be practical to delete any existing version.
To avoid deleting versions, τ should be set to a negative number (e.g., -1).
Calculation of the scores is based on the following parameters: storage space

saving and average access time saving.

Storage Space Saving. Since a version vi(d) can be maintained as either
stored or calculated version, the storage space saving is measured as the dif-
ference between the storage space requirement of these two possibilities, i.e,
S(d, i)−Sc(t, d). Let δS(t, d, i) be the difference between S(d, i) and Sc(t, d) (i.e,
δS(t, d, i) = S(d, i)−Sc(t, d)). The scoring function associated with storage space
saving parameter is defined as follows:

ScoreS(t, d, i) =

{

1 : if δS(t, d, i) < 0
kS/(kS + δS(t, d, i)) : otherwise

ScoreS(t, d, i) represents the score given to the storage space saving of main-
taining vi(d) as a stored version at time t. If it takes less space to maintain
vi(d) as a stored version than as a calculated version, then ScoreS(t, d, i) is 1,
otherwise ScoreS(t, d, i) takes a value between 0 and 1. The higher δS(t, d, i) is,
the lower is ScoreS(t, d, i), and the more likely is vi(d) going to be kept as a cal-
culated version. kS is a positive constant that is used to scale the measurement
unit of the storage space (e.g., if space is measured in K-bytes, kS can be 1, but
if space is measured in bytes, then kS should be 1000).



Total Average Access Time Saving. The scoring function associated with
this parameter takes into account both version popularity and version extraction

time.

Version Popularity. User interest in a version vi(d) is reflected by the number
of accesses to it since the last refreshing time. Higher number of accesses to vi(d)
implies higher popularity of this version.

If vi(d) is an old version (i.e., created before last refreshing), its popular-
ity may be measured by Nt(d, i), i.e., the number of accesses to it since last
refreshing time. On the other hand, since a new version is created after last
refreshing time (i.e., it is created after we started recording number of accesses
to versions), the number of accesses to a new version vi(d) is “scaled up” to
νN(t, d, i)/(D(t, d, i, n) + 1) where n is the version number of the current ver-
sion. Here, ν is called the youth factor which is used to account for the possible
low number of accesses to younger versions (e.g., there may be only few accesses
to recently created versions). Choosing an appropriate value of the youth factor
depends on the number of new versions. More specifically, the value of ν should
be greater than or equal to the number of new versions.

For example, assume that: (i) there are 20 new versions at each refreshing
time, (ii) the average number of accesses to the 10 most heavily accessed old

versions is 10000, and (iii) 1
20

∑

vi(d) is new
N(t,d,i)

D(t,d,i)+1 = 200.

Let’s assume that the new versions should be as popular as the 10 most
heavily accessed old versions (i.e., the average number of accesses to new versions
is equals to the average number of accesses to the 10 most heavily accessed old
versions), then ν can be set to 10000/200 = 50.

The number of accesses to a version vi(d) since the last refreshing time is
computed using the following function:

M(t, d, i) =

{

N(t, d, i) : if vi(d) is an old version
νN(t, d, i)/(D(t, d, i, n) + 1) : otherwise

A straightforward way to compute the popularity of a version vi(d) is to use
the function M(t, d, i). A potential limitation of this approach is that versions
are considered in isolation (i.e., the popularity of versions is computed indepen-
dently of each other). However, if we consider the history as a whole, it may
be beneficial, e.g., to maintain a vk(d) as a calculated if the version vk−1(d) is
maintained as a stored version. affect the decision of whether or not to keep
vk(d) as a stored version. Thus, it is important to consider correlation between
versions when computing the popularity metric. For instance, if vk−1(d) is the
generation root of vk(d), then accessing vk(d) requires accessing vk−1(d) first.
The correlation between these two versions can be reflected in their popularity.
Clearly, the effect of correlation between versions decreases as distance between
them increases. Based on the above discussion, the popularity P (t, d, i) of vi(d),



at time t, can be approximated using the following function:

P (t, d, i) = M(t, d, i) +
∑

j∈A(t,d),j 6=i

µM(t, d, j)

(D(t, d, i, j) + 1)2

We measure the contribution of correlation between vi(d) and vj(d) to the
popularity of vi(d) at time t using:

µM(t, d, j)

(D(t, d, i, j) + 1)2

The predetermined constant µ is called the correlation factor (µ ≥ 0). Here
the expression µ/(D(t, d, i, j) + 1)2 represents the effect of distance between ver-
sions on their correlation. Normally, storing the XML document of vi(d) has more
effect on the pertinence level of vj(d) if vj(d) is closer to vi(d) (i.e., D(t, d, i, j)
is small). If µ = 0 there is no effect of correlation between versions on their pop-
ularity. The higher µ is, the higher is the effect of correlation between versions
on their popularity.

Version Extraction Time. Suppose that vi(d) is to be kept as a stored version,
then the processing time for extracting it is proportional to its size:

T (d, i) = λ1S(d, i)

Here λ1 is a constant called direct access factor, which accounts for costs such as
CPU processing time and disk access. On the other hand, if vi(d) is to be main-
tained as a calculated version, then its XML document needs to be generated
on–demand. Recall from Section 2.1 that this is done by applying the change
operations specified in the deltas to the generation root of vi(d). Therefore, the
processing time to extract vi(d) at time t is approximated using the following
function:

Tc(t, d) = λ2Z(t, d)Sc(t, d) + λ1Ss(t, d)

where λ2Z(t, d)Sc(t, d) is the approximated time for obtaining the deltas and
applying the change operations on them, and λ1Ss(t, d) is the approximation of
access time to the root of generation.

Here λ2 is a constant called indirect access factor, which accounts for costs
such as CPU processing time and disk access as well as the time required for
applying change operations. λ1 and λ2 should not be seen as tuning parameters.
Their values depend only on the characteristics of the computing environment
(e.g., CPU speed, memory size).

As pointed out before, the scoring function associated with the total av-
erage access time saving parameter incorporates both version popularity and
extraction time. Let δT (t, d, i) be the difference between Tc(t, d) and T (d, i) (i.e,
δT (t, d, i) = Tc(t, d) − T (d, i)). The scoring function associated with the total
average access time saving is defined as follows:

ScoreT (t, d, i) =

{

0 : if δT (t, d, i) < 0
P (t, d, i)δT (t, d, i)/(kT + P (t, d, i)δT (t, d, i)) : otherwise



ScoreT (t, d, i) returns a score measuring the contribution of the average access
time parameter in the decision of whether to keep vi(d) as a stored version. The
higher the value of ScoreT (t, d, i) is, the more likely vi(d) is to be kept as a
stored version. If it takes less time to access vi(d) as a calculated version than as
a stored version, then ScoreT (t, d, i) is 0, otherwise ScoreT (t, d, i) takes a value
between 0 and 1. The higher P (t, d, i)δT (t, d, i) is, the higher is ScoreT (t, d, i).
kT is a positive constant that is used to scale the measurement unit of access
time.

Combined Weighted Score. The decision function Score(t, d, i) combines the
scores of storage space saving and total average access time saving. It can be
tuned to capture trade–offs between space and access time. This is done by
assigning weights to the importance of storage space saving and average access
time saving. The combined score of a version vi(d) is computed as follows:

Score(t, d, i) = λScoreS(t, d, i) + (1 − λ)ScoreT (t, d, i)

where λ ∈ [0, 1] is a the weight assigned to the importance of storage space
saving and 1−λ is the weight assigned to the importance of average access time
saving.

3 Document History Refreshing

In this section, we present the algorithm that adapts the history of a document.
During the refreshing: (i) a previously pertinent version may become relevant or
obsolete, and (ii) a previously relevant version may become obsolete or pertinent.

In the adaptation process, the system needs to determine which of the ver-
sions need to be:

– Deleted, i.e, obsolete versions.
– Converted from stored versions to calculated versions, i.e, versions whose

status changes from pertinent to relevant.
– Converted from calculated versions to stored versions, i.e, versions whose

status changes from relevant to pertinent.

In the remainder of this section, we will consider the adaptation of a sequence
of versions vk(d), . . . , vn(d). First, we introduce the basic operations used to
convert or delete versions. We then present the history refreshing algorithm.

3.1 History Refreshing Operations

Some refreshing operations involve composing deltas. Before formally introduc-
ing these operations, we briefly discuss the composition of deltas4. The advantage

4 Note that the focus of this paper is not on composing deltas. We mention this aspect
here for completeness



of composing deltas is that: given ∆i,j(d) and ∆j,l(d), it is possible to generate
∆i,l(d) without accessing any version of d.

We will use the following notations. We denote by ⊗ the composition of
deltas (i.e., ∆i,l(d) = ∆i,j(d) ⊗ ∆j,l(d)), cc the average time for processing the
composition, cg the average time for generating a version vj(d) from vi(d) and
∆i,j(d), and cd the average time for obtaining the changes between two versions
(i.e., getting ∆i,j(d) from vi(d) and vj(d)).

Recall that D(t, d, i, j) represents the distance between vi(d) and vj(d). If
some versions between vi(d) and vj(d) have been deleted, then D(t, d, i, j) <
|j − i|. For clarity, in the following discussion we assume that numbers asso-
ciated to available versions (i.e, identifiers of versions) are always consecutive
natural numbers. This can be achieved by a temporary renumbering of versions
vk(d), . . . , vn(d).

Conversion from Calculated to Stored Version. Suppose that, the status
of vi(d) changes from relevant to pertinent. In this situation, vi(d) needs to
be converted to a stored version. As we already mentioned in Section 2.1, the
generation of a stored version requires the identification of its generation root.
The generation root of vi(d) is its nearest stored version vj(d). In case vi(d) has
two nearest stored versions, the youngest one is selected.
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Fig. 1. Generating vi(d)

vi(d) is generated by applying ∆j,i(d) to vj(d). We use composition of deltas
to get ∆j,i(d):

∆j,j−2(d) = ∆j,j−1(d) ⊗ ∆j−1,j−2(d)
∆j,j−3(d) = ∆j,j−2(d) ⊗ ∆j−2,j−3(d)

. . .
∆j,i(d) = ∆j,i+1(d) ⊗ ∆i+1,i(d)

It should be noted that the deltas ∆j,l(d) (i ≤ l < j − 1) are discarded after
vi(d) has been generated. Let m = L(t, d, i)−1, then the time needed to generate
the stored version is mcc + cg .

Conversion from Stored to Calculated Version. Suppose that the status
of vi(d) changes from pertinent to relevant. In this situation, vi(d) needs to
be converted to a calculated version. Before the conversion, pi(d) refers to the
XML document of vi(d). After the conversion, pi(d) should refer to ∆i−1,i(d) and



∆i+1,i(d). Thus, it is necessary to generate ∆i−1,i(d) and ∆i+1,i(d). In order to
do this, we need to get vi−1(d) and vi+1(d)).
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Fig. 2. Converting vi(d) into a calculated version

Suppose that among the versions vi−1(d) and vi+1(d), s versions are stored
where s ∈ {0, 1, 2}. The average processing time for generating vi−1(d) and
vi+1(d) is (2−s)cg. The average processing time of the conversion is (2−s)cg+2cd.

Deletion of Versions A version can be deleted when it becomes obsolete. This
section discusses the deletion of a number of consecutive versions vi(d), . . . , vj(d)
(k ≤ i ≤ j ≤ n).

If vi−1(d) and vj+1(d) are stored versions, then the deletion is simply done by
removing vi(d), . . . , vj(d). However, if either vi−1(d) or vj+1(d) is a calculated
version, then the situation becomes more complex. The following cases need to
be considered:

Case 1. vi−1(d) is a stored version, vj+1(d) is a calculated version (Fig. 3) 
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Fig. 3. Deleting vi(d), . . . , vj(d) (case 1)

Before the deletion, pj+1(d) refers to ∆j,j+1(d) and ∆j+2,j+1(d). After the
deletion, pj+1(d) should refer to ∆i−1,j+1(d) and ∆j+2,j+1(d). Thus ∆i−1,j+1(d)
needs to be generated. There are two possible alternative strategies.

A first strategy is to generate vj+1(d) and ∆i−1,j+1(d). The generation of
vj+1(d) is done as discussed above. The generation processing time is mcc + cg ,
where m = L(t, d, j + 1) − 1. The overall deletion average processing time is
mcc + cg + cd. Here we have L(t, d, j + 1) ≤ 2 + D(t, d, i, j) and thus m ≤
D(t, d, i, j) + 1.

A second strategy is to generate ∆i−1,j+1(d) from other deltas, i.e.,

∆i−1,i+1(d) = ∆i−1,i(d) ⊗ ∆i,i+1(d)
. . .

∆i−1,j+1(d) = ∆i−1,j(d) ⊗ ∆j,j+1(d)

The average processing time of the compositions in this strategy is (D(t, d, i, j)+
1)cc. However, if not all of the deltas ∆i−1,i(d), . . . , ∆j−1,j(d) are available (i.e.,



some of vi(d), . . . , vj(d) are stored versions), then the generation of these deltas
requires additional processing.

In the algorithm which is presented in Section 4.2, there is a preprocessing
phase where we estimate and compare the costs of the two strategies, and then
select the most efficient one.

The case where vi−1(d) is a calculated version and vj+1(d) is a stored version,
is handled similarly.

Case 2. vi−1(d) and vj+1(d) are both calculated versions (Fig. 4)
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Fig. 4. Deleting vi(d), . . . , vj(d) (case 2)

Before the deletion, pj+1(d) refers to ∆j,j+1(d) and ∆j+2,j+1(d), while pi−1(d)
refers to ∆i−2,i−1(d) and ∆i,i−1(d). After the deletion, pj+1(d) should refer
to ∆i−1,j+1(d) and ∆j+2,j+1(d), while pi−1(d) should refer to ∆i−2,i−1(d) and
∆j+1,i−1(d). Thus ∆i−1,j+1(d) and ∆j+1,i−1(d) need to be generated.

Similar to case 1, this case can be handled using two different strategies. A
first strategy is to generate vi−1(d), vj+1(d), ∆i−1,j+1(d), and ∆j+1,i−1(d). The
average processing time of generating vi−1(d) and vj+1(d) is (m1 + m2)cc + 2cg

(where m1 = Zt(d, i− 1)− 1, m2 = Zt(d, j + 1)− 1). The overall processing time
is (m1 + m2)cc + 2cg + 2cd.

A second strategy is to compose ∆i−1,j+1(d) using ∆i−1,i(d), . . . , ∆j,j+1(d)
and ∆j+1,i−1(d) using ∆j+1,j(d),
. . . , ∆i,i−1(d). In this strategy, the overall processing time is 2(Dt(d, i, j)+1)cc.
However, similarly to the second strategy in case 1, if ∆i−1,i(d), . . . , ∆j−1,j(d)
and ∆j+1,j(d), . . . , ∆i+1,i(d) are not available, the generation of these deltas
requires additional processing. The most efficient strategy is selected at the pre-
processing phase of the refreshing algorithm.

3.2 Refreshing Technique

This section describes the history refreshing algorithm. In this algorithm, op-
erations for converting calculated versions to stored versions are scheduled in
order to avoid repetition in generating deltas. For example, suppose that vi(d)
and vl(d) are calculated versions which need to be converted to stored versions,
and which have the same root of generation vj(d). Suppose also that: (i) vl(d)
is located between vi(d) and vj(d) (i.e., either i < l < j or i > l > j) and (ii)
D(t, d, l, j) < D(t, d, l, i) (i.e, vj(d) is closer to vl(d) than vi(d)). In this situation,
vl(d) is converted before vi(d) in order to avoid repetition in composing deltas.

The detailed description of the algorithm is given in [18]. We summarise
here the different phases of the algorithm, namely, preprocessing, generation of

versions, and history update.



– Preprocessing: This phase consists of three main steps. In the first step,
pertinence levels of versions are determined. In the second step, for each
deletion, a strategy is selected based on the cost analysis discussed in 3.1.
In the third step, the versions which need to be generated are identified. A
sorted linked list, called L, is created. This list contains pairs (i, j), where
vi(d) is a version which needs to be generated and vj(d) is the generation
root of vi(d). L is sorted by L(t, d, i) (i.e., D(t, d, i, j)).

– Generation of versions: In this phase, versions identified in the previous
phase are generated. In order to optimise the processing cost, the version
vi(d) which has the smallest value of L(t, d, i) is generated first. In other
words, the algorithm avoids repetition in generating the deltas. Thus, the
algorithm minimises the overall generation processing time as well as the
storage space.

– History update: In this last phase, pertinent versions which were relevant
(before the refreshing) are stored, obsolete versions are deleted, and rele-
vant versions which were pertinent (before the refreshing) are converted to
calculated versions.

It can be seen that following this algorithm, all the documents which needed
to be generated are identified in the first phase and generated in the second
phase. After that, they are updated in the last phase. The processing time for
the generation of documents is minimized by always generating the documents
with smallest distance to its generation root first. This is because the processing
time for generating the document of a calculated version vi(d) is mcc +cg, where
m = L(t, d, i)−1 and L(t, d, i) is the distance from vi(d) to its root of generation.

4 Experiments and Analysis

In order to evaluate the performance of different XML version management
schemes, we built a simulation testbed. In this section, we first present the ar-
chitecture and implementation of the testbed. Then, we present the experimental
results for evaluating the performance of different schemes.

4.1 Testbed Architecture

Figure 5 shows the generic architecture of the testbed. This testbed consists of
the following components: Simulator, VersionGenerator, RequestGenerator, and
StrategySimulator. The Simulator is used to initialise the experimental environ-
ment using configuration information (e.g., p, λ, µ, ν). The VersionGenerator

acts as an XML document change simulator. Document versions are generated
by randomly applying deleteNode, updateText and insertElement operations
on each node of the XML document 5. The RequestGenerator periodically gen-
erates requests (i.e., retrieving specific XML versions) based on a specific user’s
access pattern. Currently, the testbed supports three access patterns: (a) recent

access in which younger versions (i.e., most recent versions) are intensively re-
quested; (b) early access in which older versions are intensively requested; and

5 Taxonomy of XML change operations can be, e.g., found in [17, 19, 18]
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(b) uniform access in which user’s access does not depend on the age of ver-
sions. The StrategySimulator is used to either insert a new version or retrieve
an existing version to/from the repository according to a versioning scheme.
Currently, three versioning schemes are supported: Store All Versions (SAV for
short), Store Last Version And Backward Deltas (SLVBD for short) and the
Adaptive Scheme (AS for short). AS is the scheme proposed in this paper.

All the components of the testbed have been implemented in Java 2. In
the current implementation, a PostgreSQL 7.1 database server is used as XML
repository. For each scheme, versions are stored in separate tables as text fields
in PostgreSQL tables. Each table has specific attributes to maintain version-
specific meta–data. For example, in the adaptive scheme, these attributes include
status, previous access frequency, etc. Document-specific meta–data is stored in
another table. For example, in the adaptive scheme, these attributes include
youth factor, correlation factor, etc. The storage of deltas is dealt with in the
same way as stored versions because deltas are maintained as XML documents.

4.2 Experiments and Discussions

In this section, we first compare different strategies, namely SAV, SLVBD and
AS. Then we show the effect of varying the refreshing interval on the performance
of AS. A PC with Pentium III processor and Windows NT 4.0 operating system
has been used to run the testbed.

Storage Space vs. Access Time. In the first experiment, we study the effect
of changing the value of p on the average access time and storage space usage
of AS. We use SAV (time optimal) and SLVBD (space optimal) as baselines for
comparison. We use the following experimental settings:

– An average size of 80 K-bytes for versions
– An average size of 2 K-bytes for deltas
– A uniform access pattern on the history of versions
– λ is set to 0.5. ν is set to 50 (the average number of accesses to new versions

is equal to the average number of accesses to the 10 most heavily accessed
old versions, as in the example of section 3.4.2). µ is set to 1.

Figure 6(a) shows the average access time for the three schemes. We can see
that SAV has the smallest average access time which remains almost constant
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(i.e., around 100 ms) even when the number of available versions increases. When
p is equal to 100, the average access time for AS is close to those of SAV. The
difference is due to the additional computation costs in AS (e.g., updating the
meta–data). The average access time in SLVBD increases dramatically as the
number of versions increases. When p is equal to 0, the access time results for
AS are closer to those of SLVBD. When maintaining 20% of versions as stored
versions (i.e., p = 20), the average access time decreases by a factor of 4.7. By
maintaining more versions as stored versions, e.g., p equal to 80, the average
access time is reduced.

Similarly, Fig. 6(b) shows the storage space usage. We can see that SLVBD
has the least storage space usage. By choosing p equal to 0, the storage space
usage of AS is slightly higher than SLVBD. This is due to the fact that more
meta–data is stored in AS. It can also be seen that SAV consumes more space
than the other schemes. When p is equal to 100, storage space usage results of
AS are closer to those of SAV.

In the second experiment, we study the effect of changing the value of λ. We
use the same settings as in the previous experiment except that p is set to 50
and λ varies. Figure 7(a) shows the resulting average access times. It confirms
that small values of λ result in less access time. Similarly, Fig. 7(b) confirms
that large values of λ result in less storage space usage.



Fig. 8. Varying refreshing interval

Effect of Varying Refreshing Interval. This experiment studies the effect
of changing the value of the refreshing interval on performance of AS. We use
the same settings as the previous experiments except that p = 20 and λ = 0.5.
The results are shown in Fig. 8. We can see that the length of the refreshing
interval can significantly affect the average access time. When the interval value
is too small, there is a performance degradation because the system does not
have sufficient time to gather realistic information about usage patterns (e.g.,
number of accesses). On the other hand, when the interval value is too large,
there is a performance penalty because changes in access patterns are not dealt
with immediately. For example, an old version may remain calculated for a long
time even if it should have been transformed into a stored version because of
changes in its access patterns.

5 Conclusions

In summary, we have proposed an adaptive technique for continuously adjusting
and improving the effectiveness of a versioning scheme taking into account both
performance and storage space requirements. We also conducted simulation ex-
periments to gauge the behaviour of few schemes. The comparison results show
clear indications of the potential of the adaptive scheme. They show the viabil-
ity of the adaptive scheme in depicting the behaviour of an effective versioning
scheme for given requirements (e.g., access patterns, trade–offs between access
time and storage space).
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