
contributed articles

130 communications of the acm | november 2008 | vol. 51 | no. 11

The proliferation of mobile dev ices (for example,
PDAs, 3G mobile phones) and the deployment of more
sophisticated wireless communication infrastructures
are empowering the Web with the ability to deliver
data and services to mobile users. New mobile
applications will take advantage of ubiquitous wireless
networking to create virtual worlds, with which we
can interact while walking, driving our cars, or riding
public transport.4 Moreover, like stationary users,
mobile users also require integrated access to relevant
services to achieve complicated goals. For example, a
class assistance service is relevant to college students,
which helps them manage their class activities using
mobile devices, by integrating services like attendance
reminder and question post.

However, several obstacles still hinder the seamless
provisioning of services in wireless environments. On
the one hand, current Web service provisioning

techniques that assume a strong In-
ternet access (for example, fast, low
latency, reliable and durable network
connections), are inappropriate be-
cause wireless environments possess
distinguishing features and inherent
limitations such as low throughput
and poor connectivity of wireless net-
works, limited computing resources,
and frequent disconnections of mobile
devices. On the other hand, the envi-
ronments that mobile users interact
with are generally highly dynamic. The
variability in computing resources, dis-
play terminals, communication chan-
nels, and user conditions and prefer-
ences require applications to be context
aware so that they can adapt to rapidly
changing conditions.8

To date, services provided for mobile
users are still hard to build. Two main
challenges need to be considered. The
first challenge is about the personal-
ized access to services. Personalized
support becomes even more crucial,
when access of services takes place in
wireless environments. For example,
the access to services by mobile users
tends to be time and location sensitive,
meaning that mobile users might need
to invoke particular services in a certain
period of time and/or a certain place. In
addition, mobile users require integrat-
ed access to relevant services because
many of people’s daily activities are not
independent. A service provisioning
environment allowing personalized
discovery, selection, and composition
of services is therefore needed.

The second challenge is about
handling limited resources of mobile
devices. Mobile devices posses, to a
certain extent, limited resources (for
example, battery power and input ca-
pabilities). Therefore, mobile devices
better act as passive listeners (for exam-
ple, receiving the results) than as active
tools for service invocation, so that the
computational power and battery life
of the devices can be extended.

We developed a multi-agent based
architecture that aims at providing
a distributed, adaptive, and context-
aware platform for personalized service

doi: 10.1145/1400214.1400241

by Quan Z. Sheng, Boualem Benatallah, and
Zakaria Maamar

User-Centric
Services
Provisioning
in Wireless
Environments

contributed articles

november 2008 | vol. 51 | no. 11 | communications of the acm 131

provisioning, which takes into account
the needs of mobile users. The founda-
tion of our approach is to enable an ef-
fective access to integrated services by
combining technologies such as Web
services, multi-agent systems, and
publish/subscribe systems. In this ar-
ticle, we review the design principles,
the architecture, and the implementa-
tion of the prototype system.

Design Principles
Leveraging Web services and software
agents in combination with publish/sub-
scribe systems provides the foundation
to enable effective access to integrated
services in wireless environments.

Web Services. Web services provide
the pillars for evolving the Internet into
a service-oriented integration platform
of unprecedented scale and agility.
The foundation of this platform lies in
the modularization and virtualization
of system functions and resources as
services that: can be described, advert-
ized and discovered using (XML-based)
standard languages, and interact
through standard Internet protocols.
The Web services architecture provides
building blocks to enable secure and re-
liable transactions that is vendor, plat-
form, and device independent, which
brings about the convergence of wired
and wireless applications and services.
Since Web services are described and
interacted in a standardized manner,
the task of developing complex appli-
cations by composing other services is
considerably simplified.9

Agents. Agents are software entities
that exhibit certain autonomy when in-
teracting with other entities.12 Agents
use their internal policies and knowl-
edge to decide when to take actions
that are needed to realize a specific
goal. Internal policies can use context
information (for example, user prefer-
ences, device characteristics, and user
location) to enable agents to adapt to
different computing and user activi-
ties. Agents can also be used to pro-
actively perform actions in dynamic
environments. In fact, the combina-
tion of services and agents will provide
a self-managing infrastructure. Agents
extend services by embedding exten-
sible knowledge and capabilities (for
example, context aware execution and
exception handling policies) making
them capable of providing personal-

ized and adaptive service provisioning
in dynamic environments.

Publish/Subscribe System. The pub-
lish/subscribe paradigm offers a com-
munication infrastructure where send-
ers and receivers of messages interact
by producing and consuming messag-
es via designated shared spaces.2 The
communication is asynchronous in the
sense that it completely decouples the
senders and receivers in both space and
time. This enables mobile users to dis-
connect at any time—either voluntarily
to save for example, communication
cost and battery power, or involuntarily
due to breakdowns of connections—
and re-synchronize with the underly-
ing infrastructure upon reconnection.
This communication paradigm has
been identified as an ideal platform for
a variety of Internet applications, espe-
cially in wireless environments.

System Design
We propose a layered, multi-agent
based architecture to provide support
for integrated Web services specifica-
tion, deployment, and execution. Fig-
ure 1 shows the elements of this ar-
chitecture, which are grouped in four
layers. The architecture uses five types
of agents, namely user agent, service
agent, deployment agent, event agent,
and context agent. These agents can
engage in cooperative interactions to
perform the operations related to Web
services composition.

User Layer. The user layer gives mo-
bile users access to service provision-
ing environment through two main
components, namely client and user
agent. The client is an application that
can be downloaded and runs on mobile
devices. It provides users with an inter-
face for specifying user activities, and
interacting with the user agent. The
client interacts with the user agent via
access points in the wireless networks
(for example, IEEE 802.11b).

Users’ activities (for example, class
attendance) are usually complex. The
fulfilment of an activity may call for
multiple services executed in a specific
chorology. It is too tedious to specify
activities from scratch through small
devices like PDA, which have limited
input capabilities. To ease the activity
specification process, we introduce the
notion of process templates.10 A process
template is a reusable business process
skeleton that corresponds to recurrent
user needs (for example, managing class
activities). It is made up of tasks (for ex-
ample, attendance reminder), data/con-
trol flow dependencies between tasks,
and exception handling policies.

We specify process templates with
statecharts.a Succinctly, a statechart
is made up of states and transitions.
States can be basic or compound. A ba-
sic state (also called task) corresponds

a �Process templates developed in statecharts can be adapted
to other process definition languages like BPEL4WS
(http://dv2dev.bea.com/techtrack/BPEL4WS.jsp).

Figure 1.

Wireless
network

Access point

Web Service Web Service Web Service

orchestration tuple
deployment

Tuple space

event
registration/notification

condition/update

interaction

Database Application Web-accessible program

802.11bClient

User Agent
(UA)

Deployment
Agent (DA)

Event Agent
(EA)

Context Agent
(CA)

Service Agent
(SA)

Service
Layer

Orchestration
Layer

Service Agent
(SA)

Service Agent
(SA)

Context
Layer

service status
exceptions

location
connectivity
preferences

User
Layer

Templates

UDDI

Service
registry

Process template

service request/ resultspersonalized composite service

context

User/device profile

SOAP

WSDL

contributed articles

132 communications of the acm | november 2008 | vol. 51 | no. 11

are related to supply-
ing values to the input
parameters and deliver-
ing the values of output
parameters of a task. A
user can specify that the
value of a task’s input
parameter should be
obtained from her pro-
file so that she does not
have to provide the value
manually. Similarly, she
can also specify that the
value of a task’s output
parameter should be
sent to her user agent in
case she wants to know
the results.

A user agent (UA)
acts on behalf of a spe-
cific mobile user. The
UA maintains profile
information including

the user’s contact information, personal
preferences, and mobile device charac-
teristics. Based on the profile, the UA can
identify data formats and interaction
protocols for communicating with the
client that runs on the mobile device.

The UA subscribes to the template
repository where all the process tem-
plates are stored, which in turn notifies
the UA about the availability of each
new process template. Upon receiv-
ing the notification, the UA prepares a
short description outlining the func-
tionalities and potential charges of the
process template and sends it to the
user in the notification message (for
example, SMS). If the user is interested
in the process template, the UA will
contact the template repository to de-
liver an XML document of this process
template, which is going to be stored in
the user’s mobile device upon recep-
tion for later configuration.

The client submits a configured pro-
cess template (i.e., user’s personalized
composite service) to the UA, which is
responsible for executing the service,
collecting service results, and deliver-
ing results to the user. The UA accom-
plishes this by interacting with other
agents in the architecture.

Service Layer. This layer consists
of a collection of services that service
providers develop, deploy, and main-
tain. For example, a university may
provide services like class attendance
reminder, question vote, and consul-

to the execution of a Web service. Com-
pound states enclose one or several
statecharts within them.

Figure 2 is a simplified classAssis-
tant process template that models the
common routine about student class
attendance. Firstly, an attendance re-
minder notifies students about a lec-
ture’s time and place so that the class
will not be missed. During the lecture,
when a student wants to submit ques-
tions via her PDA, she browses the
questions asked by other students and
decides to either vote for a posted ques-
tion (if a similar question was already
asked), or post her question (if no one
has asked yet). The student may ask
several questions during the lecture.
After the class, a consultation booking
might be requested and a feedback on
the lecture is provided by the student.

The client allows users to define their
activities by specifying personal prefer-
ences (for example, temporal/spatial con-
straints, data supply/delivery preferenc-
es) over the tasks of process templates,
thereby defining personalized composite
services. A user can specify temporal and
spatial constraints for each task, which
respectively indicate when and where the
user wants to have a task executed. For
example, a student can specify that the
question asking services (for example,
Question Vote service) can be executed
only during the lecture time and when
she is in the classroom. Meanwhile,
data supply and delivery preferences

tation booking, for its students. These
services are typically proprietary/na-
tive applications (for example, J2EE
or CORBA based applications, legacy
applications), and are exposed as Web
services for dynamic location, compo-
sition, and flexible invocation.

There exist tools for the automatic
generation of WSDL descriptions from
proprietary services. For example, the
Java2WSDL utility in Apache Axis auto-
matically generates WSDL descriptions
from Java class files. The services pub-
lish their descriptions in a UDDI regis-
try. The registration includes the URLs
for communicating with the services
and pointers to their WSDL descrip-
tions. Services communicate (such
as, advertise, discover, and invoke) via
SOAP messages.

Context Layer. The context layer
contains a context agent (CA) that col-
lects and disseminates context infor-
mation. Currently, the CA maintains
three kinds of context, namely user con-
text, device context, and service context.
The user context includes information
related to a user (for example, prefer-
ences, calendar, and location). The
device context includes hardware and
software characteristics of the user’s
devices. While the service context in-
cludes information related to a service.
For example, executionStatus is a ser-
vice context showing the current execu-
tion status of a Web service.

The CA collects context information
from context providers, which can be a
user, a service, or a third party entity.
The CA consists of a set of configurable
context collectors. Each context collec-
tor handles one type of context infor-
mation and encapsulates the details of
interactions with the context provider
for that information (for example, the
context collector pulls the context in-
formation periodically from the con-
text provider).

Orchestration Layer. The orchestra-
tion layer consists of a set of agents
that collaborate among each other for
the robust and context-aware execu-
tion of composite services in wireless
environments.

Orchestration Tuples. The orches-
tration of a composite service is encod-
ed in the form of orchestration tuples.
Orchestration tuples are expressed as
event-condition-action (E[C]/A) rules
specifying the actions that must be per-

Figure 2.

 Attendance
Reminder (AR)

Question
Browse (QB)

Question
Vote (QV)

Question
Post (QP)

Consultation
Booking (CB)

Lecture
Feedback (LF)

tr2: [not classOver(lectureTime)]

tr3: [classOver(lectureTime)
and (not answered)]

tr4: [classOver (lectureTime)
and answered]

Question Asking
trq1 : [listed]

trq2 : [not listed]

tr0

tr1

tr5

tr6

trq0

trq4

trq3

contributed articles

november 2008 | vol. 51 | no. 11 | communications of the acm 133

together with a tuple space.
The event agent (EA) is responsible

for disseminating events. The EA main-
tains the information of events support-
ed by the platform, i.e., for a specific
event, what context attributes are rel-
evant to this event and what condition
should be satisfied to fire the event. For
example, event failed(s) indicates that
an execution failure of service s has oc-
curred. The related context of this event
is executionStatus and the condition,
executionStatus=“failed”, should be
satisfied in order to fire the event.

Orchestration Interactions. Figure 3
(a) is a sequence diagram showing the
process of the orchestration of person-
alized composite services. Firstly, the
DA takes as input the specification of
a personalized composite service from
the UA, generates orchestration tuples
for each task of the personalized com-
posite service, and injects these orches-
tration tuples into the tuple spaces of
the corresponding SAs. Then, SAs parse
the orchestration tuples and retrieve
relevant information (for example,
events, conditions, and actions). The
events (for example, lowBattery) are
registered to the EA, which in turn sub-
scribes relevant conditions (for exam-
ple, batteryRemaining < 15%) to the CA.
The EA fires and distributes events if the
corresponding conditions are matched
(for example, when the current battery

formed when specific events occur and
when the conditions hold. It should
ne noted that process templates devel-
oped in statecharts can be adapted to
other prcess definition languages like
BPEL4WS (http://dev2dev.bea.com/
techtrack/BPEL4WS.jsp). We introduce
three types of orchestration tuples to
coordinate the execution of personal-
ized composite services:

Precondition tuples˲˲ specify the condi-
tions that need to be satisfied before
the execution of a service,

Postprocessing tuples˲˲ specify the ac-
tions that need to be performed after
the execution of a service, and

Exception handling tuples˲˲ specify the
instructions that dynamically react to
run-time exceptions (for example, mo-
bile device disconnection and services
failures).

For example, an exception han-
dling tuple unpresentable(r,d)[true]/
transform(r,TS,d) indicates that if the
service result r can not be displayed in
the users current device d, the result
will be sent to TS, a transformation ser-
vice, for adaptation.

The orchestration tuples of a com-
posite service are statically derived by
analyzing the information encoded in
the statechart of the service (for exam-
ple, control flow and data dependen-
cies, exception handling policies, and
personal preferences).

Orchestration Agents. The orches-
tration layer consists of a set of agents,
facilitating the asynchronous, distrib-
uted, and context-aware execution of
composite services. The agents include
deployment agent, event agent, and ser-
vice agents. The deployment agent (DA)
generates orchestration tuples from
the specification of personalized com-
posite services, which are submitted
from the user agent (UA). The DA then
deploys (uploads) these orchestration
tuples into the tuple spaces of the cor-
responding services.

Service agents (SAs) act as prox-
ies for Web services, monitoring and
coordinating service executions. The
knowledge required by an SA is a set of
orchestration tuples, stored in a tuple
space associated with the SA. The or-
chestration tuples are generated and
deployed by the DA. There is one SA
per service. For each Web service in the
service layer, the service administrator
needs to download and install an SA,

capacity of the device is less than 15% of
its full battery power). Upon receiving
the notifications (i.e., the occurrence of
the events) from the EA, the SAs extract
the corresponding orchestration tuples
from the associated tuple spaces, evalu-
ate the conditions, and perform the
proper actions (for example, service in-
vocation in the diagram).

It should be noted that our current
design is targeted at relatively small
scale domains like university campus-
es, smart workplaces, and hotspots.
To support a larger scale environment,
multiple CAs and EAs need to be de-
ployed. Mechanisms for managing
events and contexts among such agents
are topics of our ongoing research.

Implementation and Evaluation
To test the applicability of our architec-
ture, we implemented a prototype sys-
tem. We developed a process template
builder, which assists template provid-
ers or mobile users in defining and ed-
iting process templates. The template
builder offers a visual editor (an exten-
sion of Sheng et al.11) for describing
statechart diagrams of templates. The
client was implemented using J2ME
Wireless Toolkit 2.b kXML 2c is used to
parse XML documents on mobile de-

b �http://java.sun.com/products/sjwtoolkit.
c �http://kxml.enhydra.org.
d �http://ksoap.objectweb.org.

Figure 3-a

Mobile User
Client

getTemplate()

process template

configure process
template

personalized composite service

Deployment
Agent (DA)

Service
Agent (SA)

Event
Agent (EA)

Context
Agent (CA)

generate
orchestration
tuples

deployTuples()
analyze
orchestration
tuples

subscribeEvents()

subscribeContexts()

contexts

analyze context
[match]notifying()

analyze
orchestration
tuples
[execute action]

service results

Web
Service

invoking()

service results

User
Agent (UA)

service results

contributed articles

134 communications of the acm | november 2008 | vol. 51 | no. 11

vices and kSOAP 2.0d is used by the cli-
ent to handle SOAP messages. Figure
3 (b) shows the screenshots of process
template configuration.

Currently, the functionalities of
agents are realized by a set of pre-built
Java classes. In particular, the class de-
ployAgent (for the deployment agent)
provides method called deploy() that is
responsible for generating orchestra-
tion tuples from composite services.
The input is a personalized composite
service described as an XML document,
while the outputs are orchestration tu-
ples formatted as XML documents as
well. The orchestration tuples are then
uploaded into the tuple spaces of the
corresponding service agents. IBM’s
TSpacese is used for the implementa-
tion of tuple spaces.

To validate our design of the system
architecture, we conducted a usability
study. We presented our system to 18
people. The presentation includes a
powerpoint show of the architecture
overview, a demonstration of the usage
of the system, and classAssistant, the
prototype application built on top of

the architecture. The participants were
then asked to use the system and given
a questionnaire to report their experi-
ence in using the system.

Table 1 shows some of the ques-
tions from the questionnaire and the
participants’ responses. The responses
actually validate and highlight some
important design principles of the ar-
chitecture: users should avoid data
entry as much as possible, the interac-
tions during service execution should
be asynchronous, and the bandwidth
consumption should be minimized.
More experimental results (for exam-
ple, performance study) are not report-
ed here due to space reasons. Readers
are referred to Sheng10 for a detailed
description of the system evaluation.

Related Work
Very little work is being done on Web
services orchestration for the benefit of
mobile users. A middleware named Co-
lomba1 handles the dynamic binding
for mobile applications. This binding
addresses multiple issues such as fre-
quent disconnection, limited supply of
battery power and absence of network
coverage. A personal process-oriented

system for mobile users is presented in
Huang7, which investigates the specifi-
cation and querying of processes that
involve personal tasks and data. The
objective of these approaches is to sup-
port simple applications for mobile us-
ers, rather than providing personalized
specifications and adaptive orchestra-
tions of composite services, fulfilling
complex user activities.

PerCollab3 is a middleware system
that integrates multiple communica-
tion devices within workflow systems.
Relying on a centralized BPEL engine
and a context service, tasks can be
proactively pushed to users. However,
PerCollab does not consider the per-
sonalized specification of business
processes, nor distributed orchestra-
tion of the processes.

The emerging semantic Web efforts
such as OWL-Sf and WSMF (Web Service
Modeling Framework),5 promote the use
of ontologies as a means for reconciling
semantic heterogeneity between Web
resources. Such efforts focus on design-
ing rich and machine understandable
representations of service properties,
capabilities, and behavior, as well as
reasoning mechanisms to select and ag-
gregate services. The issues addressed
in this area are complementary to those
addressed in our work.

Finally, we also note that some
industrial efforts in mobile Web ser-
vices such as IBM’s Web Service Tool-
kit for Mobile Devicesg and Microsoft
and Vodafone’s Mobile Web Service
initiative.h The former provides tools
for developing Web services on mobile
devices while the latter plans to create
new standards to integrate IT and mo-
bile worlds through Web services.

Conclusion
Our system builds upon the building
blocks of Web services, agents, and
publish/subscribe systems and pro-
vides a platform through which ser-
vices can be offered to mobile users.
The work is one step toward simplify-
ing the design and implementation of
process-based mobile applications like
personal daily activities management
and work support in critical work-
places like hospitals. Ongoing work

e �http://www.alphaworks.ibm.com/tech/tspaces.

f �http://www.daml.org/services/owl-s.
g �http://www.alphaworks.ibm.com/tech/wstkmd.
h �http://www.microsoft.com/serviceproviders/resources/

bizresmwsroadmap.mspx.

Figure 3-b-1 Figure 3-b-2

Table 1.

Questions Responses

A B C

Suppose you are invoking a remote service using a PDA and the invocation will
take some time, which action you prefer to take: (A) wait with the handheld on till
receive the result; (B) turn off the handheld and catch the results in another time

6 12 N/A

Suppose you are invoking a service using a PDA and the service needs some
inputs, which strategy is your favourite to supply values for the service inputs:
(A) manually input using stylus; (B) automatically collect the data (e.g., from
user profile) (C) does not matter

1 15 2

Suppose you are receiving the results of a service using a PDA, you would like to
receive: (A) all of them; (B) only important and necessary ones (C) does not matter

6 11 1

contributed articles

november 2008 | vol. 51 | no. 11 | communications of the acm 135

includes extending the architecture to
support large-scale environments, and
building more mobile applications on
top of the architecture to further study
its performance.�

References
	 1.	 Bellavista, P., Corradi, A., Montanari, R., and Stefanelli,

C. Dynamic binding in mobile applications: A
middleware approach. IEEE Internet Computing 7, 2
(Mar/Apr 2003), 34–42.

	 2.	 Caporuscio, M., Carzaniga, A., and Wolf, A.L. Design
and evaluation of a support service for mobile,
wireless publish/subscribe applications. IEEE
Transactions on Software Engineering 29, 12 (Dec.
2003), 1059–1071.

	 3.	 Chakraborty, D., and Lei, H. Extending the reach of
business processes. IEEE Computer 37, 4 (Apr. 2004),
78–80.

	 4.	 Chen, Y.-F. R. and Petrie, C. Ubiquitous mobile
computing. IEEE Internet Computing 7, 2 (2003),
16–17.

	 5.	 Fensel, D. and Bussler, C. The Web service modeling
framework WSMF. Electronic Commerce Research
and Applications, 1, 2 (2002), 113–137.

	 6.	 Harel, D. and Naamad, A. The STATEMATE semantics
of statecharts. ACM Transactions on Software
Engineering and Methodology 5, 4 (Oct. 1996)
293–333.

	 7.	 Hwang, S.-Y. and Chen, Y.-F. Personal workflows:
Modeling and management. In Proc. of the
4th International Conference on Mobile Data
Management, (Melbourne, Australia, Jan. 2003).

	 8.	 Keidl, M. and Kemper, A. Towards context-aware
adaptable web services. In Proceedings of the 13th
International World Wide Web Conference, (New York,
May 2004).

	 9.	 Papazoglou, M. P. and van den Heuvel, W.-J. Service-
oriented architectures: Approaches, technologies, and
research issues. The VLDB Journal 16, 3 (July 2007),
389-415.

10.	 Sheng, Q. Z. Composite Web Services Provisioning in
Dynamic Environments. Ph.D. thesis, The University of
New South Wales, Sydney, Australia, 2006.

11.	 Sheng, Q. Z., Benatallah, B., Dumas, M., and Mak, E.
SELF-SERV: A platform for rapid composition of Web
services in a peer-to-peer environment. In Proc. of
the 28th International Conference on Very Large
Databases, (Hong Kong, China, Aug. 2002).

12.	 Zambonelli, F., Jennings, N.R., and Wooldridge,
M. Developing multiagent systems: The Gaia
methodology. ACM Transactions on Software
Engineering and Methodology, 12, 3, 317–370, (July
2003).

Quan Z. Sheng (qsheng@cs.adelaide.edu.au) is a lecturer
in the School of Computer Science at the University of
Adelaide, Adelaide, Australia.

Boualem Benatallah (boualem@cse.unsw.edu.au) is
a professor in the School of Computer Science and
Engineering at the University of New South Wales, Sydney,
Australia.

Zakaria Maamar (zakaria.maamar@zu.ac.ae) is an
associate professor in the College of Information
Technology at Zayed University, Dubai, U.A.E.

© 2008 ACM 0001-0782/08/1100 $5.00

