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Online human gesture recognition has a wide range of applications in computer vision, especially in human-
computer interaction applications. The recent introduction of cost-effective depth cameras brings a new
trend of research on body-movement gesture recognition. However, there are two major challenges: (i) how to
continuously detect gestures from unsegmented streams, and (ii) how to differentiate different styles of the
same gesture from other types of gestures. In this article, we solve these two problems with a new effective and
efficient feature extraction method—Structured Streaming Skeleton (SSS)—which uses a dynamic matching
approach to construct a feature vector for each frame. Our comprehensive experiments on MSRC-12 Kinect
Gesture, Huawei/3DLife-2013, and MSR-Action3D datasets have demonstrated superior performances than
the state-of-the-art approaches. We also demonstrate model selection based on the proposed SSS feature,
where the classifier of squared loss regression with /s ;1 norm regularization is a recommended classifier for
best performance.
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1. INTRODUCTION

Human body gesture recognition has many valuable applications in computer vision,
such as human-computer interaction, electronic entertainment, video surveillance, pa-
tient monitoring, nursing homes, smart homes, etc. Early work by Johansson [1975]
suggests that movement of the human skeleton is sufficient for distinguishing differ-
ent human gestures. The recent introduction of the cost-effective depth camera and
the related motion capturing technique [Shotton et al. 2011] enable estimation of 3D
joint positions of the human skeleton, which can further generate body motion data.
This phenomenon has brought on a new trend of research on body-movement gesture

This research is partially supported by the Australian Research Council (Grant No. DP130104614) and
Natural Science Foundation of China (Grant No. 61232006).

Corresponding author’s addresses: X. Zhao and X. Li, Room 626, Building 78, UQ, St. Lucia, QLD 4072,
Australia; email: {x.zhao, xueli}@ug.edu.au.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

© 2014 ACM 1551-6857/2014/09-ART22 $15.00

DOI: http://dx.doi.org/10.1145/2648583

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 11, No. 1s, Article 22, Publication date: September 2014.




22:2 X. Zhao et al.

Raise  Raise Raise Slide Slide
arms arms  arms hand hand

TY VT4

\
>

~
~

-

Fig. 1. Scenario of online human gesture recognition from motion datastream. A depth camera is used to
capture the human skeleton datastream. The gesture labels are assigned automatically to each frame by
recognition. Frames without a gesture label are considered as not belonging to any predefined gesture.

recognition [Ellis et al. 2013; Fothergill et al. 2012; Lin et al. 2012; Wang et al. 2012a;
Hussein et al. 2013].

Similarities exist among three concepts: gesture, action, and activity. The boundaries
between them are not very clear. In this article, we give our definitions based on
Aggarwal and Ryoo [2011].

—Gestures are elementary movements of human body parts and are the atomic com-
ponents used to describe meaningful motions of the human body. One example of a
gesture could be “stretching arms” or “raising legs.”

—Actions are single-person activities that may be composed of multiple gestures orga-
nized temporally, such as “walking” and “waving.”

—Activities refer to interactions where two or more persons with/without objects are
involved.

As atomic components, gestures are less complex than actions. Research on gesture
recognition lays the foundation for action recognition. In this article, we do not consider
activity recognition, because objects that could be involved in activities may not be
represented by the human skeleton. A scenario of online human gesture recognition
from a motion datastream is illustrated in Figure 1.

Gesture recognition needs to assign labels to gesture instances. Different gesture
instances should be assigned with different labels, while the same gesture instances
should be assigned with the same label. However, variations may occur to a gesture
that has different appearances or different styles. We call this situation in¢raclass
variations. Recently, Veeraraghavan et al. [2006] considered three sources of intraclass
variations which may affect the performance of gesture recognition, namely, viewpoint,
anthropometry, and execution rate. Viewpoint variation describes the relationship be-
tween the human body and the viewpoint of a camera. Anthropometry variation is
related to the differences between human body sizes and is about human physical
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attributes and does not change with human movements. Execution rate variation is
related to temporal variability caused by the speed of human movement or by dif-
ferent camera frame-rates. Besides these three variations, we also advocate that the
personal style of gestures is the fourth notable intraclass variation which should also
be considered, since different people may perform the same gesture differently.

There are two major challenges in dealing with intraclass variations. The first chal-
lenge is how to continuously recognize gestures from unsegmented streams. Currently,
most methods choose to segment gesture instances from streaming data before the
recognition of gestures [Fothergill et al. 2012; Gong et al. 2012; Wang et al. 2012a;
Hussein et al. 2013]. Unfortunately, those methods suffer from the decision on the
size of the segment when dealing with streaming data. By using either fixed-size or
dynamic-size segments, the segmentation process itself on the streaming data intro-
duces a new avenue of errors due to execution rate variation.

The second challenge is the ability to differentiate intraclass variations from inter-
class variations, because we need to decide whether those differences of gestures are
within the same class or are between different classes. Misclassification errors may
occur if we do not ignore the differences of intraclass variations or not discern the
differences between classes. Online gesture recognition from motion datastream can
be regarded as a problem of subsequence matching with multidimensional time series,
where each dimension represents a specific human-body-part movement. Miiller et al.
[2009] and Sakurai et al. [2007] proposed approaches for segmenting motion datas-
tream and recognizing gestures by comparing the stream data with some prelearned
motion templates. Templates in their approaches are at a gesture level. A template is
a generic gesture instance used to match the datastream for a class of gestures. These
gesture-level motion template approaches have a major weakness in dealing with in-
traclass variations. Since the same gesture may have different instances because of
intraclass variation, the problem of their approaches is twofold: first, intraclass vari-
ations cannot be differentiated if one gesture class is represented by only one single
motion template. Second, if every variation is to be represented by a different motion
template, there must be a large number of motion templates for a single gesture class.
In practice, this is inefficient for dealing with real-time datastreams.

A gesture may involve multiple human body parts, so a gesture is regarded as a com-
bination of movements of human body parts. A movement is regarded as an elementary
motion of one part of the human body, so the granularity of a motion template should
be fine-tuned to be at a human-body-part movement level in order to reduce redun-
dant representation in the template modulation process. Once motion templates are
represented at a human-body-part movement level, different gestures therefore can be
represented by different combinations of motion templates, so the motion templates
with fine-tuned granularity can improve the efficiency of the gesture recognition.

Based on these preceding discussions, we consider having a novel representation
for extracting features of the human skeletons at a human-body-part movement level.
This feature should also be able to represent inherent human motion characteristics
such that the explicit prior segmentation process would be avoided. We call this new
feature the Structured Streaming Skeleton (SSS), where the structure of streaming
skeletons is represented by a combination of human-body-part movements, so an SSS
can be denoted by a vector of cardinal values of attributes that are used to describe the
skeleton in a frame. Each attribute in SSS is defined as a similarity distance between
the current skeleton stream and a prelearned movement.

The two challenges involving the four intraclass variation problems previously men-
tioned can then be dealt with by using the proposed new SSS feature as follows.
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—Viewpoint and Anthropometry Variations. Motion data is generated as normalized
pairwise distances of human body joints. Pairwise joints are regarded as one part
of the human body in this article. Then the distances are normalized by the human
body size. Therefore, the SSS feature is viewpoint invariant and anthropometry
invariant.

—Execution Rate Variation. The execution rate variation problem is solved by using
SSS features, because at each frame, each attribute is defined as the distance be-
tween the best subsequence ending at the current frame and a movement. The best
subsequence is the one which is most similar to this movement among all in the
subsequences ending at the current frame. Different from prior segment approaches
[Fothergill et al. 2012; Gong et al. 2012], the size of the segment can be optimized
automatically during feature extraction. Therefore, the SSS feature is execution rate
invariant.

—Personal Style Variation. To deal with this problem, we use motion templates at
a granularity of human-body-part movements level. Each motion template is con-
structed by a human-body-part movement. Different from the approaches treating
the motion template at a gesture level [Muller et al. 2009; Sakurai et al. 2007],
we treat a template as a single-dimension human-body-part movement. Therefore,
a gesture consists of multiple single-dimensional templates. One advantage is that
different personal styles of gestures can be represented by different combinations
of human-body-part movements. Therefore, the SSS feature can be used to achieve
personal style invariance.

The rest of this article is organized as follows. Section 2 gives an overview of related
work. Section 3 describes our approach in detail. Section 4 describes the experiments
and evaluations. Finally, the conclusion is given in Section 5.

2. RELATED WORK

Recognition of human gestures, actions, and activities has been extensively surveyed in
recent publications [Aggarwal and Ryoo 2011; Chaquet et al. 2013; Poppe 2010; Turaga
et al. 2008]. Most existing approaches [Guha and Ward 2012; Li and Greenspan 2011;
Wang et al. 2012b; Yang et al. 2013b; Zhang and Tao 2012] are about gesture and/or
action recognition from color videos based on visual features, rather than the features
of motion data that describe human-body-part movements. Because human-body-part
movements can lead to better recognition of human gestures as well as actions, some
researchers have developed approaches to first detect human-body-part locations then
recognize human gestures and/or actions later. In most cases, their considerations are
recognizing hand gestures online [Alon et al. 2009; Song et al. 2012] or recognizing
pre-segmented gesture instances offline [Tran et al. 2012; Gupta et al. 2013].

In researching of online gesture and action recognition from motion datastreams,
Fothergill et al. [2012] adopted a fixed-size sliding window to extract features and used
random forest classifiers to achieve online gesture recognition. Unfortunately, their ap-
proaches cannot handle execution rate variation and incorrect segmentation problems
properly. In addition to fixed-size sliding window techniques, some researchers work
on action segmentation from streaming data then recognize the segmented action in-
stances. Zhou et al. [2008] proposed a clustering algorithm for cutting the stream into
action instances. Similarly, Gong et al. [2012] proposed an alignment algorithm for
action segmentation. However, their approaches are all based on structure similarity
between frames and are only suitable for segmenting cyclic actions. Since the structural
similarity between frames of noncyclic gestures are not always obvious, incorrect seg-
mentation errors may occur. Incorrect segmentation will consequently introduce errors
in the classification process. Schwarz et al. [2010] generated the manifold embedding
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from joint positions of one frame into actions. However, the motion information is not
fully considered, which may limit the approach for scaling to more complex actions.

Recently, Wang et al. [2012a] proposed learning one subset of human body joints for
each action class. The subset joints are representative of one action compared to others.
Additionally, they claimed that the relative positions of joints could result in more
discriminative features. Hussein et al. [2013] used the covariance matrix for skeleton
joint locations over time as a discriminative descriptor for gesture recognition. Multiple
covariance matrices over subsequences in a hierarchical fashion are deployed to encode
the relationship between joint movement and time. However, these two approaches are
only applicable to the recognition of pre-segmented instances and cannot be used in
online recognition of unsegmented datastreams.

Template-based methods treat gesture and action recognition as a database query
problem which matches data with templates in the database. Veeraraghavan et al.
[2006] learned an average sequence and related the function space of Dynamic Time
Warping (DTW) [Berndt and Clifford 1994] to represent each class of action. Miiller
et al. [2009] presented a procedure where the unknown motion data is segmented and
recognized by locally comparing it with available templates. The motion templates
simply keep the patterns of actions in the same class, with the variations ignored. Ellis
et al. [2013] explored the trade-off between action recognition accuracy and latency.
They determined key frames from the motion data sequence to derive action templates.
Sakurai et al. [2007] proposed an efficient approach for monitoring streams and for
detecting subsequences that are similar to a given template sequence. However, in these
approaches, one action class is represented by only one template, which is insufficient
for dealing with intraclass variations.

With respect to feature extraction, there are three different ways to obtain features.

—Sliding Window Feature Extraction. A feature is derived from a fixed-size sliding win-
dow [Fothergill et al. 2012]. This feature can be used for online gesture recognition,
but as we have explained in the introduction, this feature is not general enough to
handle intraclass variations. We will show the superior performance of our proposed
SSS feature over feature extractions that are based on a fixed-size sliding window
approach.

—Multi-Window Feature Extraction. A feature is derived from multiple windows [Wang
et al. 2012a; Hussein et al. 2013], but multiple-window features are mainly used to
recognize presegmented gesture instances offline and cannot be directly used for
online gesture recognition. We think the reason being that sliding multiple windows
in a stream increases the number of samples and causes conflicts between samples.

—Template-Based Feature Extraction. A feature is derived via template matching
between predefined templates and the streaming motion data. However, current
template-based methods [Veeraraghavan et al. 2006; Miiller et al. 2009] cannot
transfer each frame into a same-sized vector for classification with machine learning
methods. Our proposed SSS feature extraction is also a template-based method, but
SSS can transfer each frame into a same-sized vector for classification with machine
learning methods. This is the problem we solve in this article.

Li and Perona [2005] proposed a Bag of Visual Words (BoVW) model, which is used
by many researchers for action recognition from color videos such as [Ryoo 2011; Wang
et al. 2012b]. In this article our proposed SSS feature extraction method is different
from their (BoVW) model. Our SSS feature extraction method focuses on online gesture
recognition from the motion datastream. Each attribute of the SSS feature vector
has specifically defined similarity to a movement and is particularly well-suited for
analyzing timeseries. The BoVW model uses histograms as features for recognition of
gestures. In order to count histograms, frames must be segmented first—this condition
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Fig. 2. Framework of our approach in both the learning stage and prediction stage.

precludes the makes BoVW model from handling online gesture recognition well. More
detailed discussions on the advantages of our SSS feature extraction method are given
in the next section.

3. PROPOSED APPROACH

Figure 2 shows the framework of our approach, which consists of two main stages: the
learning and prediction stages. The goal of the learning stage is to construct a dictionary
of templates and a gesture model. In the prediction stage, motion datastreams with
unknown gestures are assigned with labels to each frame with the help of a prelearned
template dictionary and the gesture model. Basically, the learning stage is offline and
the prediction stage is online. We briefly describe these two stages as follows.

At the learning stage, there are four steps.

(1) Motion Data Generation. A training dataset captured by a depth camera consists of
3D joint positions of human skeletons. The training dataset has all gestures man-
ually labeled on all frames. The training dataset is then scanned once. The output
of this scanning is the motion datastream. The motion datastream is expressed
as sequences of normalized numeric distance values of pairwise joints, which are
viewpoint and anthropometry invariant. The motion datastream can be regarded as
multidimensional time series. Each dimension represents a pair of specific human
body joints. The dimensionality of the motion data is determined by the number of
joints that motion-capture software of the depth camera can detect.

(2) Template Dictionary Learning. This step creates a dictionary of templates as a
database of subsequences. We manually segment the training stream into gesture
instances. Then we apply a clustering algorithm to group gesture instances into a
dictionary of motion templates represented as a set of subsequences. Here a tem-
plate is defined as a one-dimensional time series representing distance values of
two joints of human body during the time of a gesture instance. For example, in
Figure 3, the motion data sequence is one instance of the “slide hand” gesture.
The normalized distance sequence between the joints of two hands can be a single
template. As a consequence of clustering, all templates are elementary in the dic-
tionary. We cluster each dimension of instances separately because they represent
movements of different human body parts. For ordinary human gestures, different
human body parts have different movements. For example, the movement patterns
of two feet may not be matched with the movements of two hands, so we cluster the
movements of each human body part separately, the centroids of a small number
of clusters are enough to approximately represent all types of movements of this
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Fig. 3. Example of normalized distances. The pairwise joints are “left hand” and “right hand.” The upper
part illustrates the skeleton sequence of one gesture instance. The lower part shows the normalized distances
from a time series.

human body part. If we cluster movements of all human body parts together, like the
BoVW model, the required number of clusters would be very large, which decreases
the efficiency of online gesture recognition, so our method has advantages over the
BoVM model. In our method, a gesture will be represented by a combination of a
number of templates in the dictionary. This would increase the possibility using
these elementary templates to compose a large number of gestures and reduce
redundancy for storage, therefore improving the efficiency of online processing.

(3) SSS Feature Extraction. Based on the first two steps, a dictionary of templates is
created. Now the training dataset will be scanned again for SSS feature extrac-
tion. The purpose of this step is to convert each frame into one SSS feature vec-
tor. Semantically, an SSS feature vector encodes the motion information in so-far
scanned frames for the current frame. Here, motion information is represented as
pre-learned templates. Each SSS feature vector consists of a number of attributes
represented as distance values. Each value is a minimum DTW distance between
all the scanned subsequences (ending at the current frame) and a template in the
dictionary for the given pair of joints. It should be pointed out that a template can
only be applied to the dimension it belongs to. For example, if one template is about
the joints of two hands, this template could be used to match frame sequences only
on the dimension about the joints of two hands. Dimensionality of an SSS feature
vector is determined by the number of templates in the dictionary. We use Figure 4
to illustrate details of SSS feature extraction that also appeared in Figure 2.

As indicated by Papapetrou et al. [2011], if two sequences are similar to each
other, their distances to template sequence are likely to be closer to each other.
Similarly, if two sequences are not similar to each other, their distances to template
sequence are likely to be farther from each other. Therefore, a distance value in our
SSS feature is more meaningful and discriminative than the histogram feature in
the BoVW model. SSS is specifically well-suited to the analysis of time series.
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Fig. 4. Example of SSS feature extraction.

At the end of this step the labels of gestures originally assigned to the training
data frames by human become SSS feature vectors assigned to each frame and
ready to be used to learn the gesture model.

(4) Model Selection for Gesture Recognition. In this step, SSS features are fed into

a classifier to learn a gesture model for recognition. In general, there are many
different classifiers for different classification problems. The choice of classifier
will affect the recognition performance [Bartlett et al. 2002]. Here, the questions
are which classifier is suitable for SSS feature in online gesture recognition, and
how to measure the performance of online gesture recognition? To answer these
questions, we conduct a model selection process for the performance evaluation of
the proposed SSS features.

Because online recognition requires low latency for processing streaming data,
nonlinear classifiers are not suitable for real-time processing, so we only consider
linear classifiers for model selection. A linear classifier can be represented as a
combination of a regression term and a regularization term. The regression term
is for learning the mapping from features to labels. The regularization term is
for controlling the complexity of classifier to avoid over-fitting. For the regres-
sion term, Hinge loss and Squared loss are classic ones for classification. For
the regularization term, /; norm is a classic one for binary classification. Multi-
class classification can be tackled via one-vs.-all strategy, where the regularization
term is a squared Frobenius norm. ls; norm is relatively new and has an ad-
vantage of feature selection, which can reduce the total number of templates to
improve the efficiency of SSS feature extraction. Therefore, in this article, we con-
sidered three combinations of these elements: Hinge loss plus /; norm (Hinge+L2)
which equals to linear support vector machine [Cortes and Vapnik 1995], Squared
loss plus Iy norm (Squared+L2) which is regularized least square classification
[Rifkin et al. 2003], and Squared loss plus /g ;1 norm (Squared+L21) which can be
optimized by the method in Yang et al. [2013a].
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A criterion is required for evaluating the classifiers for model selection. There are
two types of criteria for online gesture recognition: frame-based criterion [Fothergill
et al. 2012] and instance-based criterion [Bloom et al. 2012]. In frame-based cri-
terion, each frame is treated as a unit for calculating precision and recall. Frame-
based criterion cannot reveal how the recognition actually looks like at each in-
stance. It could be that each instance is highly fragmented in terms of the gestures
recognized. Imagine every other frame is correctly recognized but the frames in
between are wrong. We observed that in real-world applications, the semantics of a
gesture instance can be represented by using only its first frame—the other frames
are not needed. Therefore, in this article, we use more reasonable instance-based
criterion, where each gesture instance is treated as an unit for calculating precision
and recall. Furthermore, we use cross-validation to tune parameters.

At the prediction stage, as illustrated in Figure 2, there are three steps performed in
online prediction. First, the input human skeletons captured from the depth camera are
translated into motion datastream using the method described in the learning stage.
Then, each frame of motion datastream is mapped into an SSS feature vector also
using the method described in the learning stage. Finally, at each frame, prediction
is performed by a linear regression method that assigns each feature vector with a
gesture label based on the learned gesture model.

3.1. Normalized Distances of Pairwise Joints

A certain amount J of joint positions are estimated by the motion capturing technique
from depth videos. Each joint i has three coordinates p;(t) = (x;(¢), y;(¢), z;(¢)) at frame
t. For each pairwise joint i and j, 1 <=1 < j <= J, we calculate their normalized
distances: s;; = ||p; — pjll2/path;;, where path;; is the path between joints i and j in the
human skeleton. As shown in the upper part of Figure 3, 7 = 20 joints are captured
with the Microsoft Kinect system [Shotton et al. 2011], and M =7 x (J — 1)/2 = 190
pairwise joints are generated. We take “left hand” and “right hand” for example. The
dotted line is the Euclidean distance between them. The bold lines indicate the path of
these two joints in the human skeleton. We can see that s;; has no relationship with the
body position, body orientation, and body size, that is, viewpoint and anthropometry
invariant.

We treat the normalized distance of one pairwise joint as one dimension of motion
data. Along the time axis, the distances form a one-dimensional time series, as shown
in the lower part of Figure 3. Therefore, motion datastream is a multidimensional time
series: S(:,t) = {s;;()}, 1 <=1 < j <= J.

3.2. Template Dictionary

From training motion datastream S = [S(;, 1), ..., S(;, N)], where A is the number
of frames in motion datastream S, we manually segment all gesture instances and
learn a template dictionary D. One template is a one-dimension time series of one
instance. For each dimension of motion data, we cluster these instances into G clusters.
In each cluster, the gesture instance with minimum average distance to others on this
dimension is chosen as one template. There are G x M templates in this dictionary.
Therefore, template dictionary D = {df}}, where i and j indicate the pairwise joints and
g indicates the cluster index in this pairwise joints. A spectral clustering algorithm [Ng
et al. 2002], which can be used in non-Euclidean space, is adopted for the clustering.
The k-means clustering algorithm [Hartigan and Wong 1979] is not applicable to non-
Euclidean space, so it is not suitable here. We also tested other clustering algorithms,
such as k-medoids clustering [Kaufman and Rousseeuw 1987] and optics clustering
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[Ankerst et al. 1999]. A spectral clustering algorithm is the most robust. DTW is
adopted as the distance measure for a time series to eliminate execution rate variation.

3.3. New SSS Feature

For recognition, each frame in S is required to be represented by an SSS feature vector.
We compute the distances between the best-fitting subsequences ending at this frame
and template dictionary D as the SSS feature vector.

We use S(;, [£ : £]) to represent all subsequences ending at frame ¢. From the dictionary
D, each template dfj is used to find one best-fitting subsequence S(:, [ffj : t]) among

S(, [ : t]). The distance between the template and the best-fitting subsequence on
related dimension is the following minimum:

0 = sy ([ - 1) ~ ). v
f; = arg min [siy (12 2 21) — df|. @

Here, DTW is still used as the distance measure between two sequences to eliminate
execution rate variation. The stream monitoring technique [Sakurai et al. 2007] can
be used to detect the optimal starting point fg

We further use an SSS feature vector to represent one frame. Each minimum distance
xf”j according to one template digj is one attribute of the SSS feature vector. In this article,
G x M templates in the dlctlonary D can generate a vector with G x M dimensions. We
treat this vector X(:, ¢) = {x ()} as the SSS feature for frame . X = [X(:, 1), ..., X(:;, N)]
is the SSS feature matrix for S.

3.4. Model Selection

Three linear classifiers are independently tested, Hinge+L2, Squared+L2, and

Squared+L21. All three linear classifiers can be optimized via a uniform loss func-

tion,

(W, b) = arg min IIWTX +bel — Y| + A|[W||p, (3)
WeRGxMIXC pheRG*xM)x1

where C is the number of gesture classes, matrix Y = [Y(:, 1), ..., Y(, M), Y(:, t) € R¢

indicates the multiple labels for frame ¢ in stream S. If S(:, t) belongs to the c¢t? gesture

class, Y(c,t) = 1, Y(e,t) = —1, fore # c. If Y( t) does not belong to any C classes of

gestures, Y(:, t) = —1, matrix W, and vector b are the gesture model. A is the parameter

for controling regularlzatlon ey is an A/-dimensional vector of all 1s. The term ||.||z is

a general regression function. The regression function of the Hinge+L2 classifier is a

Hinge loss function,

c N
> max(0, 1 - Y(e, WC, )X, ) + b(e))). (4)
c=1 t=1

The regression function of the Squared+L2 classifier and Squared+L21 classifier is a
squared loss function,

c N
DO (WG o)X, 8) + ble) — Y(e, 1), (5)

c=1 t=1
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Table I. Notations

MUWQR©2§%§
g

Description

number of joints in a human skeleton model

number of joint pairs in a human skeleton model
number of frames of a motion datastream

number of clusters for generating template dictionary
number of valid templates in the template dictionary
number of predefined gestures for recognition

motion datastream

template dictionary

SSS feature matrix

The term ||.||p is a general regularization function. The regularization of the Hinge+L2
classifier and Squared+L2 classifier is a squared Frobenius norm,

GxM C

WG =YY W2 (6)

d=1 c=1
The regularization of the Squared+L21 classifier is a /3 ; norm,

GxM

Wilza= Y | D WA, (7)
d=1 c=1

With the help of Is ; norm regularization, many rows of W are near to 0. We can prune
invalid feature attributes. In this article, the weight of the m® attribute in feature is
measured with [[W(n, 1)||2. We descendingly sort these weights. The first K attributes
whose weight sum is up to 99% of the total are regarded as valid. Others are set to 0,
and the related templates are noted as invalid templates. The Hinge+L2 classifier and
Squared+L2 classifier cannot perform feature selection. Therefore, all templates are
valid.

Hinge loss plus /; norm (Hinge+L2) equals linear support vector machine, where
parameter A is replaced by a slack parameter y. It can be easily proved that y = 1/(21).

3.5. Prediction

In the online prediction stage, given an unknown motion datasteam, at frame ¢, we
extract SSS feature U(:, ¢) only with the valid templates in dictionary D. The attribgtes
related with invalid templates are set to 0 without computation. If max(WTUCG, £)+b) >
B, the row index with maximum value indicates the gesture class; otherwise, this frame
does not belong to any C classes of gestures. Here 8 is a parameter for leverage precision
and recall.

In the online prediction stage, at each frame, the time complexity of generating
motion data is O(M), the time complexity of extracting SSS feature is O(M x K x
A), where A is the average length of template sequence, and the time complexity of
classification is O(C x K).

The notations used in this article are given in Table I.

4. EXPERIMENTS

We chose the MSRC-12 Kinect Gesture dataset [Fothergill et al. 2012] and the
Huawei/3DLife-2013 dataset [Huawei 2013] for selecting model and evaluating our
SSS feature for online gesture recognition. They are public datasets for the research of
online human gesture recognition from motion datastream.
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In addition, we also validated our approach in presegmented action recognition using
the MSR-Action3D dataset [Li et al. 2010], which is a well-known action recognition
dataset for benchmarking with relevant algorithms. However, the data has been al-
ready presegmented for evaluating action instances, so the advantages of our SSS
feature on online prediction cannot be demonstrated. Moreover, we can still use this
dataset for model selection and demonstrating of the advantages of our SSS feature on
the lower level granularity of recognition.

4.1. Results on the MSRC-12 Kinect Gesture Dataset

The MSRC-12 Gesture dataset comprises of 594 sequences, more than 700,000 frames
(approximately 6 hours and 40 minutes) collected from 30 people performing 12 classes
of gestures. In total, there are 6,244 gesture instances. The ending points of all gesture
instances were manually labeled. Twenty human body joints (J = 20) are captured
with the Microsoft Kinect system. The body poses are captured at a sample rate of 30Hz
with an accuracy approximately two centimeters in joint positions. In this dataset, for
various research methods of teaching humans on how to perform different gestures,
the participants were provided with three instruction modalities and their combina-
tions to perform gestures. The three instruction modalities are (i) text descriptions, (ii)
image sequences, and (iii) video demos. There are also two combinations of the three
modalities, that is, images with text and video with text. When participants are given
instructions, different modalities of instructions may cause different responses.

We compare our proposed SSS feature with the sliding-window-based feature
proposed in Fothergill et al. [2012]. These classifiers (Hinge+L2, Squared+L2, and
Squared+L21) are used for comparison.

Following the experiment setting of Fothergill et al. [2012] , we treat the previous 34
frames and ending point as one gesture instance. Thus, the average length of templates
is A = 35 frames. A fixed window of size 20 frames is centered around each ending
point. All the frames inside the window are given the same gesture label as the ending
point, and other frames outside the window are regarded as negative samples. In this
way, we obtain the ground truth label of each frame for evaluation. Each frame is
treated as one sample for training and test.

In this article, we use instance-based criterion to measure the intra-modality gener-
alization performance: training and testing using the same instruction modality. For
each modality, there are about 10 people performing all 12 classes of gesture types.
We choose the first 5 people for training, and other people for prediction. The people
are ranked by their original ID given by Fothergill et al. [2012]. We observed that as
the number of clusters increased, F-scores increased slowly, and the number of valid
templates increased linearly. Therefore, we choose G = 20 to balance the effective-
ness as well as the efficiency. Other parameters of classifiers are tuned in the training
dataset with five fold cross-validation method. For the SSS feature, the slack param-
eter y in the Hinge+L2 classifier was first set as {1072, 10~%, 103}, the optimal value
is stabilized at 10~% by cross-validation; parameter A in the Squared+L2 classifier
was set as {103, 104, 10°}, the optimal value is stabilized at 10%; parameter A in the
Squared+L21 classifier was set as {10!, 102, 10}, the optimal value is stabilized at
102. For the sliding window feature [Fothergill et al. 2012], the slack parameter y in
the Hinge+L2 classifier was set as {104,103, 1072, 10—}, the optimal value is 10~3
or 10~2; parameter A in the Squared+L2 classifier was set as {101, 102, 102, 104}, the
optimal value is is 102 or 103; parameter A in the Squared+L21 classifier was set as
{10°, 10, 102, 103}, the optimal value is 10! or 102. In all experiments, parameter 8 was
setas {—1,—-0.9,-0.8,...,0.8,0.9, 1} for parameter tuning by cross-validation. Finally,
each person has 12 F-scores for 12 gesture types. The reported F-score is an average
over all the people in the prediction dataset and 12 gestures.
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Table Il. Comparison between SSS Feature and Sliding Window Feature on MSRC-12 Gesture Dataset
Using Hinge+L2 Classifier

Modality\Feature | SSS feature | Sliding window feature [Fothergill et al. 2012] | improvement
Text 78.4 65.0 134
Images 73.5 60.8 12.7
Video 61.1 53.3 7.8
Images+Text 82.9 72.1 10.8
Video+Text 83.8 78.1 5.7
Average 75.9 65.8 10.1

Table Ill. Comparison between SSS Feature and Sliding Window Feature on MSRC-12 Gesture Dataset
Using Squared+L2 Classifier

Modality\Feature | SSS feature | Sliding window feature [Fothergill et al. 2012] | improvement
Text 82.3 69.7 12.5
Images 78.4 62.4 16.0
Video 64.8 59.3 5.5
Images+Text 85.7 76.6 9.1
Video+Text 88.1 75.7 12.3
Average 79.9 68.7 11.1

Table IV. Comparison between SSS Feature and Sliding Window Feature on MSRC-12 Gesture Dataset
Using Squared+L21 Classifier

Modality\Feature | SSS feature | Sliding window feature [Fothergill et al. 2012] | improvement
Text 78.4 67.2 11.2
Images 78.9 59.6 19.3
Video 63.8 57.0 6.7
Images+Text 82.7 72.1 10.5
Video+Text 88.8 71.7 17.0
Average 78.5 65.5 12.9

Tables II, ITI, and IV show the results of comparison between the SSS feature and
the sliding window feature by using the Hinge+L2, Squared+L2, and Squared+L21
classifiers, respectively. The values in these tables are expressed as percentages of F-
scores. From these tables, we can see that Squared+L2 classifier obtains better results
(about 4% average higher F-scores) than that of the Hinge+L2 classifier. One expla-
nation is that hinge loss yields a sparse solution [Bradley and Mangasarian 1998]
which is not suitable for the SSS feature. We can also see that both the Squared+L2
and Squared+L21 classifiers obtain similar results (about 1% difference in average
F-scores), but Squared+L21 classifier can reduce about 1/3 of the total templates for
feature extraction, to improving the overall efficiency of online gesture recognition. Be-
sides, using the SSS feature can obtain considerable improvements of F-scores varying
between 5% to 19%. The average improvement is more than 10%. This demonstrates
the superior performance of the SSS feature over the sliding window feature [Fothergill
et al. 2012] in online gesture recognition.

We preform our experiments with 17 860 CPU and 4G RAM and of Matlab hybrid
with parts of C code. With our approach, in the prediction stage, gesture recognition
of one frame costs about less than 3ms with the Squared+L2 classifier, while the time
cost of one frame is less than 2ms with the Squared+L21 classifier.
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Table V. Comparison between SSS Feature and Sliding Window Feature on Huawei/3DLife-2013 Dataset

Classifier\Feature | SSS feature | Sliding window feature [Fothergill et al. 2012] | improvement
Hinge+L2 57.8 48.0 9.8
Squared+L2 59.7 451 14.6
Squared+L21 59.9 42.2 17.7

4.2. Results on Huawei/3DLife-2013 Dataset

The Huawei/3DLife-2013 dataset is specially designed for the ACM Multimedia Grand
Challenge (2013). As suggested from the dataset developer, we use Session 2 in
Dataset 1 for motion-capture-based gesture recognition [Huawei 2013].

This dataset is collected from two synchronized horizontal Kinects with the subject
around 3m away from the two Kinects. Kinect 1 is placed in front of the subject and
Kinect 2 is on the side of the subject. Because the estimated skeletons from Kinect
1 are reasonably accurate but the skeletons from Kinect 2 suffer from serious noises
and missing data, we only use the data captured with Kinect 1 for experiments. In
the dataset, there are 14 people: each of them continually performs 17 gestures. Each
gesture is repeated around 5 times by each subject. These 17 gestures are classified into
3 classes: (i) simple gestures that involve mainly the upper human body (hand waving,
knocking on the door, clapping, throwing, punching, push away with both hands);
(i1) training exercises (jumping jacks, lunges, squats, punching and then kicking, weight
lifting); and (iii) sports-related activities (golf drive, golf chip, golf putt, tennis forehand,
tennis backhand, walking on the treadmill).

However, we do not actually regard “walking” as a gesture in this research. It is a
cyclic action: one walking instance contains more than one cycles and can last more
than 10 seconds. We cannot simply treat one walking instance as one gesture instance.
In this article, we still consider “walking” as a gesture and set it to be a randomly
selected 100 continuous frames from every 200 frames of walking instances.

Kinect 1 records a depth video for each person and saves it in a “.oni” file using the
OpenNI software package. Each depth video has an annotation file. The annotation
contains the name, start time, and end time of each manually-segmented gesture
instance. We take the annotation as ground truth in the evaluation process.

In our approach, depth videos need to be converted into human skeleton sequences.
We use OpenNI 2.1 and NiTE 2.2 software to generate the human skeleton sequence
from each “.oni” file. Different from the MSRC-12 Kinect Gesture dataset, human body
joints (7 = 16) were estimated with NiTE 2.2. Each skeleton sequence starts at the
start time of the first annotated gesture instance and ends at the end time of the last
annotated gesture instance. Since the skeleton software (OpenNI 2.1 and NiTE 2.2)
can not be initialized for the data before frame 1,400 in person 7, these data are deleted
from the experiments. Considering that the number of deleted gesture instances is less
than 2% of the total number of gesture instances, we claim that the experiment results
are not significantly affected by the data deletion.

We use the same experiment setting as the MSRC-12 Kinect Gesture dataset.
Instance-based criterion is used to measure the effectiveness. We choose the first 5
people for training, and other people for prediction. The people are ranked by their
original ID given by [Huawei 2013]. The number of clusters G is also fixed to 20. Other
parameters of classifiers are tuned in the training dataset with five fold cross-validation
method. Each person has 16 F-scores for 16 gesture types. The reported F-score is an
average over all the people in the prediction dataset and 16 gestures.

Table V shows the results of comparisons between the SSS feature and sliding win-
dow feature by using Hinge+L2, Squared+L2, and Squared+L21, respectively. From
this table, we can see that (1) Squared+L2 obtains better results than Hinge+L2;
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Table VI. Comparison on MSR-Action3D Dataset

‘ Method ‘ Accuracy
Recurrent Neural Network [Martens and Sutskever 2011] 42.5
Dynamic Temporal Warping [Miiller et al. 2009] 54.0
Hidden Markov Model [Lv and Nevatia 2006] 63.0
Multiple Instance Learning [Ellis et al. 2013] 65.7
SSS feature with Hinge+L2 classifier 72.5
SSS feature with Squared+L2 classifier 79.2
SSS feature with Squared+L21 classifier 81.7
Actionlet Ensemble [Wang et al. 2012a] 88.2

(2) for the SSS feature, the difference between the average F-scores of Squared+L2 and
Squared+L21 is less than 1%; (3) the average improvement of the SSS feature is about
10% better than that of the Sliding Window feature. These results are consistent with
those of the experiments in the MSRC-12 Kinect Gesture dataset.

The results of the Huawei/3DLife-2013 dataset are lower than the results of the
MSRC-12 Gesture dataset because there are some very similar gestures in the 16
gestures, such as “hand waving” and “throwing”, “golf drive” and “golf chip”, and some
gestures are other gestures’ subsequence, such as “punching” and “punching and then
kicking”.

4.3. Results on MSR-Action3D Dataset

The MSR-Action3D dataset [Li et al. 2010] comprises of 557 presegmented action
instances. There were 10 people performing 20 classes of gestures. Same as with the
MSRC-12 Kinect Gesture dataset, human body joints (7 = 20) were captured with the
Microsoft Kinect system.

Because the instances have been manually segmented, we simplify online extracting
features by computing the distances between the presegmented instance and the tem-
plate dictionary directly. Each instance is treated as one sample. We use Hinge+L2,
Squared+L2, and Squared+L21 for experiments. The number of clusters G is also fixed
to 20. The parameters in classifiers are optimized on the test sets. In comparing all
approaches, the parameters are optimized in the same way. The fairness of the compar-
ison is evidenced by using the same experiment setting (i.e., the method of partitioning
of the training datasets and test datasets and the method of parameter tuning) on the
same standard dataset.

We compare our approaches with state-of-the-art methods on the cross-subject test
setting [Li et al. 2010; Wang et al. 2012a], where the samples of half the people are
used as training data, and the rest are used as testing data. As Table VI shows, our
approaches outperform the other time-series-based methods [Ellis et al. 2013; Lv and
Nevatia 2006; Martens and Sutskever 2011; Miiller et al. 2009], which treat the motion
data as an undivided whole set. The only approach [Wang et al. 2012a] that outperforms
ours uses a subset of joints for classification, which is similar to our approach, but it
focuses on recognition at presegmented document level and cannot be used in online
recognition from unsegmented streams.

The Squared+L21 classifier obtains the highest accuracy among the three tested
classifiers. The confusion matrix of the SSS feature with the Squared+L21 classifier
is illustrated in Figure 5. We can see that for most actions, our approach works well,
while for similar actions such as “hand catch” and “high throw”, “draw X” and “draw
circle”, there are some misclassifications. It can be seen that, for each action, there are
about ten instances performed by five people for training, which may be insufficient to
distinguish these similar gestures.
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Fig. 5. The confusion matrix of our proposed approach for the MSR-Action3D dataset.

5. CONCLUSIONS

Depth cameras are now widely used in applications of human-computer interaction.
There is a growing need to apply depth cameras in human behavior detection, such
as gesture, action, and activity recognition. The effective and efficient recognition of
human gestures in a real-time fashion has a significant impact on the recognition of
human actions.

In a nutshell, our contributions are as follows.

—New SSS Feature. We proposed a novel feature, namely, Structured Streaming Skele-
ton (SSS), for online gesture recognition from motion datastreams to deal with four
types of intraclass variations (i.e., viewpoint, anthropometry, execution rate, and
personal style), thereby effectively and efficiently solving the incorrect segmentation
and inadequate template matching problems.

—None Prior Segmentation for Online Recognition. We detect the size of the segment by
dynamically matching with pre-learned templates. Execution variation is eliminated
and there is no avenue for errors made by prior segmentations.

—Fine-Tuned Granularity of Motion Templates. We create a motion template dictionary
at a granularity of elementary body-part-movement level. We consider the human
body as a combination of many small parts and perform body part analysis separately.
One advantage is that personal styles of gestures can be represented by different
combinations of human-body-part movements.

—High Effectiveness. Because of the discriminative nature of the SSS feature, superior
performance is achieved even with simple classifiers, with an average improvement
of F-scores by 10% compared with the sliding-window-based feature.

—DModel Selection. We conducted experiments for model selection of classifiers with
the SSS feature. Compared to the function of hinge loss regression, squared loss
regression is more suitable for the SSS feature. In our experiments, both /3 norm
regularization and /3 ; norm regularization have achieved almost the same effec-
tiveness. However, with respect to efficiency, we recommend squared loss regression
with /5 1 norm regularization. Its effectiveness can achieve as high as 88% of F-score
measured with instance-based criterion, and its efficiency can achieve as fast as 2ms
per frame on a general desktop machine.
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The proposed SSS feature can be further exploited. Our further research will consider
(i) machine learning methods that can be incorporated with SSS feature extraction for
online gesture recognition; (ii) online gesture recognition with inaccurate skeleton data
to reduce gesture recognition errors that are caused by incomplete skeleton tracking.
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