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ABSTRACT

Knowledge graph embedding (KGE) has shown great potential
in automatic knowledge graph (KG) completion and knowledge-
driven tasks. However, recent KGE models suffer from high training
cost and large storage space, thus limiting their practicality in real-
world applications. To address this challenge, based on the latest
findings in the field of Contrastive Learning, we propose a novel
KGE training framework called Hardness-aware Low-dimensional
Embedding (HaLE). Instead of the traditional Negative Sampling,
we design a new loss function based on query sampling that can
balance two important training targets, Alignment and Uniformity.
Furthermore, we analyze the hardness-aware ability of recent low-
dimensional hyperbolic models and propose a lightweight hardness-
aware activation mechanism, which can help the KGE models focus
on hard instances and speed up convergence. The experimental
results show that in the limited training time, HaLE can effectively
improve the performance and training speed of KGE models on
five commonly-used datasets. After training just a few minutes, the
HaLE-trained models are competitive compared to the state-of-the-
art models in both low- and high-dimensional conditions.
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1 INTRODUCTION

Knowledge Graph (KG) has shown great potential for recording
semantic data from the Web as factual triples in the form of (head
entity, relation, tail entity). Knowledge Graph Embedding (KGE)
can further represent entities and relations in the continuous vector
space, and has been widely utilized in automatic KG completion and
knowledge-driven tasks, such as information retrieval, semantic
matching, and question answering [14, 15, 32, 34]. However, recent
KGE models usually utilize complicated computational structures
and high-dimensional vectors up to 500 or even 1,000 dimensions
[7, 11, 22]. Training such high-dimensional models demands
prohibitive training costs and storage space, yet only achieving
slight performance increase. Meanwhile, large-scale KGs in real-
world industrial applications, usually contain millions or billions
of entities and need to be updated constantly based on real-time
business data [18, 23]. Consequently, current KGE models mostly
still stay in laboratory environments and remain difficult to be
deployed in practical applications [16, 29].

To reduce the training costs, a promising way is to design
new loss functions. As the Negative Sampling loss has been
indicated time-consuming and unstable, Sun et al. [22] proposed a
Self-adversarial Negative Sampling loss, which uses the Softmax-
normalized triple score as the weight of each negative sample
to accelerate model convergence. Besides, recent research efforts
from the community have proposed several non-sampling training
strategies in All-Negative or Non-Negative ways [9, 13]. Unfor-
tunately, these methods still have respective constraints and can
only be applied to some specific KGE models. To reduce the space
complexity, low-dimensional hyperbolic-based KGE models have
drawn attention, such as MuRP, RotH, RefH and AttH [2, 5].
Although they can achieve good performance when using 32 or
64 dimensions, the calculations in the hyperbolic space are much
more complicated than those in the Euclidean space [28].

Two valuable insights from the latest Contrastive Learning
studies inspire us to analyze previous KGE efforts from a new
perspective. First, Wang and Isola [33] identified key properties of
Contrastive Learning, namely Alignment and Uniformity. Training
negative samples to form a uniform vector distribution is beneficial
for learning separable features. According to our analysis, different
KGE training strategies share the same goal. Second, Wang and
Liu [27] discovered that the temperature 7 in the contrastive loss
has a hardness-aware capability to control the strength of penalties
on different negative samples. Similar attempts have been made
in the hyperbolic geometry of recent hyperbolic KGE models and
the self-adversarial loss [22]. These insights motivate us to re-think
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the training target of KGE models and the weight assignment for
different samples.

In this paper, we propose a novel KGE training framework,
Hardness-aware Low-dimensional Embedding (HaLE). To the best
of our knowledge, our work is the first to achieve lightweight KGE
training from a Contrastive Learning perspective. Instead of simply
applying Contrastive Learning methods, we propose two innovative
techniques: the Query Sampling Loss and the Hardness-aware
Activation Mechanism. To balance the two properties, Alignment
and Uniformity, the new loss function maximizes the scores of all
positive instances, while forcing all entity vectors to stay away
from a limited number of sampled query vectors in the vector
space. As the result, the Query Sampling loss can provide stable
gradients with small training costs. Furthermore, we propose
the Hardness-aware Activation mechanism with novel activation
functions, Hanon(+) and Halin(-), to flexibly control the strength of
penalties of easy and difficult instances. Requiring few calculations,
this mechanism has the potential to outperform the temperature
trick and the hyperbolic geometry in hyperbolic-based KGE models.

We conduct extensive experiments on five commonly-used
datasets, including FB15k-237, WN18RR, CoDEx-S/M/L. The results
show that HaLE can significantly improve the training speed
of multiple KGE models. Compared with previous KGE training
strategies, the HaLE-trained models can obtain a higher prediction
accuracy after training several minutes. Their performance is
competitive compared to the state-of-the-art KGE models in both
low- and high-dimensional conditions.

The rest of the paper is organized as follows. We introduce the
background and notations in Section 2. Section 3 details the HaLE
framework and its two major components. Section 4 reports the
experimental studies, and Section 5 further discusses the related
work. Finally, we provide some concluding remarks in Section 6.

2 BACKGROUND

In this section, we will briefly describe the Knowledge Graph
Embedding and the Contrastive Learning techniques. The main
notations that will be used in this paper are summarized in Table 4
in the Appendix A.1.

2.1 Knowledge Graph Embedding

A Knowledge Graph G is composed by a collection of triples
(ep,r,er), in which r € R is the relation between the head and
tail entities ey, e; € E. A KGE model is usually trained by the link
prediction task to represent each entity e € E (or relation r € R)
as a d-dimensional continuous vector. Given a query q = (e, r),
link prediction aims to find the target entity e, € E satisfying that
(e,r, ep) or (ep, r, e) belongs to the knowledge graph G.

To achieve this goal, the KGE model needs to score all
candidate triples via a scoring function. Given a triple (ep, r, ;),
the mainstream scoring function can be defined as f(ep,r,e;) =
Y (®(ep, 1), e;), which involves the following two operations:

e Transform function ®(ep, r) transforms the head vector ey,
using the relation vector r and outputs the query vector q;

o Similarity function ¥(q, e;) measures the similarity between
the tail vector e; and the transformed head vector q.

Taken two typical KGE models, TransE [3] and DistMult [35],
as examples, TransE’s transform function is ®(ep, r) = ey + r and
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its similarity function is equivalent to the L or L, distance, while
the transform function of DistMult is ®(ep,r) = e, - r and its
similarity function is the dot product operation. The similarity
score s produced by the scoring function f(-) is regarded as the
triple score. Most KGE models are trained by minimizing a Negative
Sampling loss, to make the score of the qualified triple higher than
those of negative samples. In addition, recent researchers start to
work on effective low-dimensional hyperbolic models in the KGE
domain, which are detailed in Appendix A.2.

2.2 A Contrastive Learning Perspective

Contrastive Learning has achieved remarkable success in unsu-
pervised representation learning for image and sequential data [6].
Without human supervision, Contrastive Learning methods attempt
to learn the invariant representation of different views of the same
instance by attracting positive pairs and separating negative pairs.
Given a training set of positive pairs Dpos, a common design of the
contrastive loss is formulated as:

exp(f(xi,x;)/7)
i exp(f(xixp) /1) +exp(f (xi,xj) /1) |

where (x;,xj) € Dpos, f(-) is the similarity function, and x” is
the sampled negative instances. The temperature 7 is a hyper-
parameter, which controls the strength of penalties on different
negative samples and provides a hardness-aware capability to
discriminate between easy and difficult samples [27].

Recent research has proved that contrastive loss improves repre-
sentation quality by optimizing two key properties asymptotically
[33]: (1) Alignment: to achieve the training target, two samples
forming a positive pair should be assigned by similar features; and
(2) Uniformity: to preserve maximal information, feature vectors
should be roughly uniformly distributed in the vector space. We
argue that, to learn invariant representations in a self-supervised
way, KGE and Contrastive Learning essentially share the common
properties. Given an existing triple (ep, r, e;), the query q = (ep, 1)
and the tail entity e; can be regarded as a positive pair. The KGE
model assigns the positive triple with an optimal score, which is
equivalent to aligning the query vector q with e; and separating
them with the other entity vectors.

Furthermore, compared with Contrastive Learning working on
images or sequential data, KGE has its own characteristics, which
inspire us to propose two innovative techniques. First, negative
samples for any entity are in a fixed range, i.e., the KG entity set,
such that a more efficient strategy instead of negative sampling can
be utilized to achieve a uniform vector distribution. Second, the
positive and negative samples of the entity are parameter-sharing
and mutually restricted in the vector space. Therefore, training KGE
models should focus on samples that are hard to distinguish and
avoid to overfit easy samples.

Leont = E |-log

3 METHODOLOGY

Based on the above comparative analysis between KGE and
Contrastive Learning, and the newest findings in the two domains,
we propose a novel training strategy for KGE models, namely
Hardness-aware Low-dimensional Embedding (HaLE). Specifically,
we propose a new Query Sampling loss to achieve both Alignment
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and Uniformity, and to overcome the drawbacks of the traditional
Negative Sampling loss, which will be detailed in Sec. 3.1. To
achieve the hardness-aware ability like the temperature mechanism
in Contrastive Learning, we propose a novel Hardness-aware
Activation mechanism in Sec. 3.2. Finally, the HaLE framework
and several HaLE-based KGE models are described in Sec. 3.3.

3.1 Query Sampling Loss

Negative sampling has been proved effective and widely used to
learn KG embedding and word embedding [3, 10]. Only considering
a subset of negative instances, Negative Sampling helps reduce
the time complexity of one training epoch. However, randomly
sampling negative instances for each triple requires additional
training time, especially for large-scale KGs. The uncertainty in
the sampling procedure brings fluctuations into KGE training and
impedes model convergence [30]. To omit Negative Sampling,
recent work proposed two representative non-sampling approaches,
i.e., All-Negative training and Non-Negative training [9, 13]. The
general loss functions of the two approaches are as follows:

exp(f(er ep))

Lallneg(T) = ( E)ET _log( nEe )| (2
o 3 exp(f(e,r.ei))
Lnonneg(T) = E [_f(e’ r, ep)] +9(E), (3

(er.ep) €T

where T is the triple set of G and g(E) is a regularization function.

The two approaches have respective drawbacks. The former
approach uses all entities except the target one as negative
instances. It can provide a stable gradient for each epoch, while
dramatically increasing computational complexity. In the latter
approach, training positive triples only can minimize computation
but tends to sink the model into a trivial optimum. Although
previous work proposed some modifications to mitigate negative
effects, they can only be applied to certain scoring functions and
usually limit the prediction accuracy of KGE models.

Therefore, we argue that the feasible strategy replacing Negative
Sampling should be somewhere between the two extreme ap-
proaches. We first combine the two training strategies to overcome
their flaws. For all training triples in T, we sample a small subset of
triples T to conduct the All-Negative training, while training the
rest triples via the Non-Negative approach. Based on Eq. 2 and Eq.
3, we can re-organize the combined loss function as:

L= Lallneg(T) + Lnonneg(T - T)

= E

exp(f(e.r.ep))
(e,r,ep)ezf" %

[—f(e, r, ep)] + E —log -
S exp(f(e.r.ei)

(er.ep) el

= E
(er.ep) €T

[—f(e, r,ep)] + E

(e,r,ep)ef

log ) exp(f(e.r.ei))

1 < n
- > fler.ep) + s D LSE(f(e,r,E)), ®
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where the number of sampled triples nj = anr and the hyper-
parameter a € [0, 1] determines the sampling proportion. LSE(-)
is the LogSumExp function, and the regularization part in Lnonneg
is omitted.

Drawing on the idea of Contrastive Learning, we can explain
the intuitive sense of the reorganized loss function. From Eq. 4 we
can see that the reorganized loss function contains two modules,
which exactly satisfy two key properties of Contrastive Learning,
Alignment and Uniformity. The first module is to achieve the
Alignment property by maximizing the scores of all positive triples.
In the vector space, this module maximizes the similarity of the
query vector and its target vector in every pair. The second module
minimizes the similarity of each sampled query vector with all
entity vectors in G. As all entity vectors are forced to stay away from
these query vectors, the vector distribution tends to be uniform.
Focusing on the two key properties, we propose a new query
sampling loss for KGE models, which is defined as:

P 14
L= _E Zf(e,r, ep) + - ZLSE(f(e,r,E)), (5)
T

where A is a hyper-parameter to balance the contributions of
two modules. As proved by a recent work [27], learning both
Alignment and Uniformity is a trade-off process. A completely
uniform vector distribution makes alignment impossible, while
aligning all positive pairs perfectly causes the clustered vectors
indistinguishable. Therefore, the hyper-parameter A is necessary
to keep KGE training stable.

A question may be raised on what is the difference between
Negative Sampling and Query Sampling losses. Negative sampling
loss focuses on the relative score order of the positive triple and
negative samples. Only a few entity vectors are involved in each
training batch and thus entity vectors have multifarious and ever-
changing optimization directions. In the Query Sampling loss,
staying away from sampled queries are the common training
target shared by all entity vectors, so most entities have a stable
optimization direction. As the goal of uniformity is clarified, we can
also recognize the root flaws of the two extreme approaches. Non-
Negative training utilizes the embedding regularization to achieve
a global uniformity but ignores the specific query distribution,
while All-Negative training is extremely redundant to separate all
query and entity vectors. Considering above problems, our strategy
samples a small proportion of queries from the query distribution
to achieve a good uniformity property.

3.2 Hardness-aware Activation Mechanism

Although our query sampling loss can keep training stable, it treats
all negative instances equally. As KGE training goes on, a large
percentage of negative instances have been far away from the query
vector, and thus provide less meaningful information. It would be
more efficient if the loss can focus on negative instances that are
difficult to be distinguished.

To solve this issue, the contrastive loss usually employs the
temperature 7. As shown in Eq. 1, the feature similarities are
multiplied by % before going through the Softmax function.
As proved by the recent work [27], this temperature gives the
contrastive loss a hardness-aware ability to control the strength of
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Figure 1: Different activation functions mentioned in this
paper. The y = 2x is equivalent to using temperature. The
values of Hanon(-) and Halin(-) are 3 and 10, respectively. The
upper bound y of two functions is 10. Best viewed in color.

penalties on hard negative samples. However, in the All-Negative
training condition, the number of negative instances could be much
higher. Therefore, the distribution of the Softmax-normalized scores
would be much more uniform, even using a higher temperature.

This problem guides us to review the recent low-dimensional
hyperbolic-based KGE models [2, 5]. We find a key point overlooked
in the past: the nonlinear function in the hyperbolic distance is
beneficial to achieve the hardness-aware ability. As described in
Appendix A.2, there are two nonlinear functions utilized in previous
low-dimensional KGE models, i.e., h(x) = 2Arctanh(x) = In %J_r—f(
and h(x) = xe*. In Fig. 1, we can observe that their derivatives
are always greater than one when x > 0. Besides, they have a
similar trend as the value is relatively low at first and then increases
rapidly. We argue that these nonlinear functions can be regarded
as the activation function of KGE models. Given a KGE model with
¥(q,e) = —||q — ||, the instance with higher L, distance is more
likely to be negative. The nonlinear activation function can further
amplify the distance value of an easy negative instance. Such that,
the penalties of the indistinguishable negative instances would be
strengthened in the loss.

Based on our observations, we design a Hardness-aware
Activation mechanism to replace the hyperbolic geometry. As
shown in Fig. 1, two existing nonlinear functions are upper
unbounded, so they can only achieve a ‘soft constraint’ to
negative instances. Some easy instances that have been successfully
separated are still involved in gradient computing. There is a
significant waste on large-scale KGs and it also negatively affects
the alignment of the other triples. To this end, we attempt to add a
‘hard constraint’ by designing suitable upper-bounded activation
functions. Referring to the existing nonlinear functions, we propose
two novel hardness-aware activation functions, Hanon(-) and
Halin(-), which are formulated as follows:

1
1+ P05

(6)

Hanon(x) =
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2x 0<x<l1

min(Bx—1)+2y)  x>1 @

Halin(x) = {
where f and y are the two hyper-parameters to control the soft and
hard constraints. We set the soft-constraint parameter f according
to the slope of h(x) = xe*. The curves of the two novel functions
are shown in Fig. 1.

The Hanon(-) can be regarded as a variant of the Sigmoid
function but be upper bounded by y. The Halin(-) is a piecewise
linear function. It has different slopes at the two sides of x = 1
and cuts the gradients when the value is more than y. It is clear
that Hanon(-) and Halin(-) have similar slopes to the two previous
functions when x < y. Then our functions use the ‘hard-constraint’
to cut the gradients of the distinguishable instances whose distance
is bigger than y. We further improve the Hardness-aware Activation
by multiplying the similarity score with a relation-specific trainable
parameter. Applied by previous low-dimensional KGE models, this
technology is beneficial to encoding hierarchical relationships and
improves prediction accuracy [28]. Finally, given a query (e, r) and
its target entity e, the triple score based on L, distance via the
Hardness-aware Activation is defined as:

Jraler.ep) = =h(cr - @(e,r) = epll3), ®)

where h(-) denotes the activation function Hanon(-) or Halin(-),
and ¢, is the relation-specific scalar parameter.

Note that, the Hardness-aware Activation mechanism proposed
in this work can be an alternative to the hyperbolic geometry
in low-dimensional KGE models, because the former inherits the
advantages of both trainable curvatures and nonlinear activation.
Besides, our solution is based on Euclidean space operations and
only works in the training process, hence it is more efficient than
hyperbolic KGE models. In Sec. 4, we will report our evaluation
of multiple kinds of Euclidean-based KGE models using the
proposed hardness-aware activation, and compare the performance
of different activation functions.

3.3 The HaLE Framework

To achieve swift and sure KGE training, the HaLE framework
utilizes the Query Sampling loss to keep training stable and
the Hardness-aware Activation mechanism to accelerate model
convergence. To integrate the two key techniques better, we apply
the hardness-aware activation to two parts of our loss function in
an asymmetric way. Specifically, we square the activated scores of
positive instances in the Alignment part. Such that, the positive
instances would get much stricter regularization than negative
ones. The false-negative instances would get bigger gradients than
negative instances, and a positive instance whose Ly distance is
close to zero would make less contribution to the loss. We find that
it can accelerate the model convergence further. Therefore, the final
loss function of the HaLE framework is formulated as follows:

P T
Litare == ) fraler.ep) = DI LSE(fraler. ). )
T

To verify the performance of our HaLE framework, we select
five representative KGE models: TransE [3], DistMult [35], RotatE
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[22], RotE [5], and RotL [28]. These models utilize five different
transform functions to generate the query vector in the Euclidean
space, which are formulated as follows:

TransE :®r(ep,r) = €p, +1, (10)
DistMult :®p(ep,r) =ep - 1, (11
RotatE :®g(ep,r) = Rot(r, ep,), (12

(

(

~ ~

RotE :®g(ep, r) = Rot(r,ep) +17, 13
RotL :®p (ep, r) = Rot(r,ep,) ®q 1/, 14)

~

where Rot(-) denotes the vector rotation operation, r and r’ are two
different relation vectors corresponding to the same relation r. To
make a fair comparison, we use the Ly-distance squared similarity
function ¥(q,e) = —||q — e||§. Although some previous works use
the dot product function with specific regularization items, it has
been proven to be equivalent to L, distance squared [37].

Compared with the previous Negative Sampling, All-Negative,
and Non-Negative approaches, our HaLE framework can achieve
swift and sure KGE training for several reasons:

o The training process in one epoch is greatly accelerated. The
negative sampling for each triple is omitted, and the query
sampling can significantly reduce the All-Negative training
cost.

e HaLE can provide a stable training target. In each step of
parameter optimization, we compute the gradients of all
positive triples and force all entity vectors to stay away from
the same part of queries.

o The total training time is reduced. The new loss can avoid
parameter fluctuation, and the hardness-aware activation
can focus on difficult instances. As a result, the HaLE-trained
model can converge quickly in several epochs.

4 EXPERIMENTS
4.1 Experimental Setup

To verify the performance of HaLE, we focus on the link prediction,
the most typical and challenging task for KG embeddings. Different
from previous KGE research efforts that pursuing a higher
prediction accuracy, we concentrate on the training efficiency of
KGE models, which is critical for them to be applied in practice.

To compare the training efficiency of different strategies, we
employ five representative KGE models as mentioned in Sec. 3.3 and
train them in the specific space and time conditions. For the space
condition, we set the dimension number of the low-dimensional
models as 32 and high-dimensional ones as 256. For the time
condition, we set a maximum training time according to the KG
size of each dataset, as shown in Table 1. Following the previous
work [3], we adopt two kinds of evaluation metrics in the ‘Filter’
mode: (1) MRR, the average inverse rank of the test triples, and (2)
Hits@N, the proportion of correct entities ranked in top N. Higher
MRR and Hits@N mean better performance.

4.1.1 Datasets. Our experimental studies are conducted on five
commonly used datasets. WN18RR [4] is a subset of the English
lexical database WordNet. FB15k237 [24] is extracted from Freebase
including knowledge facts about movies, actors, awards, and sports.
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Table 1: Statistics of the datasets.

Dataset ngr ng #Train #Valid #Test Time
FB15k237 | 237 14,541 272,115 17,535 20,466 1,200s
WN18RR 11 40,943 86,845 3,034 3,134 600s
CoDEx-S 42 2,034 32,888 1,827 1,828 300s
CoDEx-M 51 17,050 185,584 10,310 10,311 1,200s
CoDEx-L 69 77,951 551,193 30,622 30,622 1,200s

Compared with the FB15k dataset, it removes inverse relations
because many test triples can be obtained simply by inverting
triples in the training set. CODEx-S/M/L [17] are three KG datasets
with different scales extracted from Wikidata and Wikipedia. We
only use positive triples in each dataset for a fair comparison. The
statistics of the datasets are given in Table 1. “Train’, ‘Valid’, and
‘Test’ refer to the number of triples in the training, validation and
test sets.

4.1.2 Comparing Methods. We compare different training strate-
gies mentioned in Sec. 3, including Negative Sampling (SamNeg)
[5], Self-Adversarial Negative Sampling (AdvNeg) [22], All-negative
Training (AllNeg) [9] and Non-negative Training (NonNeg) [13].
SamNeg and AdvNeg utilize the binary cross entropy loss, while
AllNeg utilizes the cross-entropy loss to compute all candidate
entities. We implement a general NonNeg strategy which uses
a square loss to maximize positive triple scores and a global
regularization to constrain the distance between each entity vector
and the center vector of entity matrix. In the HaLE framework, we
use the activation function Hanon(-) by default. We also compare
multiple activation functions shown in the Fig. 1.

4.1.3 Implementation Details. We select the hyper-parameters
of our model via grid search according to the metrics on the
validation set. For previous strategies, we select the learning
rate among {0.0005, 0.001, 0.005}, the number of negative samples
among {50, 256, 512}, the batch size among {256,512, 1,024}. For
the HaLE framework, we select the sampling proportion @ among
{0.05,0.1,0.2}, the balancing ratio A among {0.1, 0.3, 0.5, 1.0}, the
hard-constraint parameter y among {5, 10, 20}. All experiments are
performed on Intel Core i7-7700K CPU @ 4.20GHz and NVIDIA
GeForce GTX1070 GPU, and are implemented in Python using the
PyTorch framework.

4.2 Experimental Results

As Negative Sampling is the most commonly used training strategy
in the KGE domain, we first compare the limited-time performance
of different KGE models trained by Negative Sampling and HaLE
(with Hanon). Meanwhile, we provide public results of several
fully-trained KGE models and measure their training time via the
corresponding open-source codes. The 32-dimensional results on
WN18RR and FB15k237 are shown in Table 2, while 256-dimensional
results on three CoDEx datasets are shown in Table 3. Due to space
constraint, the other experimental results including the ablation
experiments and the visualization of entity embeddings can be
found in Appendix A.3 and A 4.

4.2.1 Low-dimensional Performance Comparison. From Table 2,
we have the following observations. Setting the limited training
time as 20 minutes for FB15k237 and ten minutes for WN18RR,
the five different models trained by HaLE significantly outperform
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Table 2: Low-dimensional link prediction results on the WN18RR and FB15k237 datasets. The symbol *“” means the model is
fully-trained, otherwise the model is trained in limited time. ‘Cost’ means training time (minutes). The best score of fully-
trained models underlined and the best score of limited-trained models in Bold.

Type Methods FB15K237 WN18RR
MRR Hits@10 Hits@1 Cost | MRR Hits@10 Hits@1 Cost
Fully-trained MuRP [2]* 323 .501 .235 335 465 544 420 117
Hyperbolic-based RefH [5]* 312 489 224 252 447 518 408 84
Models RotH [5]* 314 497 223 242 | 472 553 428 82
AttH [5]* 324 501 1236 276 | 466 551 419 94
TransE [3] .243 422 154 20 177 417 .045 10
Limited Time DistMult [35] 278 .445 194 20 351 482 .283 10
Negative Sampling  RotatE [22] .223 391 141 20 .346 460 .285 10
Trained RotE [5] 246 424 159 20 355 480 .290 10
RotL [28] .140 266 079 20 295 .368 254 10
TransE [3] 314 492 224 20 212 492 .028 10
.. . DistMult [35] 308 483 222 20 447 533 399 10
Limited Time
HalE Trained RotatE [22] 307 479 .219 20 451 .536 406 10
RotE [5] 313 486 226 20 460 542 416 10
RotL [28] 316 493 228 20 471 .558 424 10

Table 3: High-dimensional link prediction results on the CoDEx datasets. The symbol “*’ means the model is fully-trained,
otherwise the model is trained in limited time. ‘SamNeg-’ means the model is trained by Negative Sampling, and ‘Cost’ means
training time (minutes). The best score of fully-trained models underlined and the best score of limited-trained models in Bold.

Methods CoDEx-S CoDEx-M CoDEx-L

MRR Hits@10 Hits@1 Cost | MRR Hits@10 Hits@1 Cost | MRR Hits@10 Hits@1 Cost
RESCAL [12]* 404 .623 293 10 317 456 .244 34 304 419 242 67
TransE [3]* 354 .634 219 9 .303 454 223 77 .187 317 116 34
ComplEx [25]* 465 646 372 6 337 476 262 87 294 400 237 50
ConvE [7]* 444 .635 343 9 318 464 .239 139 .303 420 .240 688
TuckER [1]* 444 .638 339 39 328 458 .259 152 .309 .430 .244 440
SamNeg-TransE [3] 301 544 177 5 178 327 .107 20 144 .260 .086 20
SamNeg-DistMult [35] .360 .589 .246 5 .255 .395 .182 20 .228 .353 164 20
SamNeg-RotatE [22] 327 .546 214 5 182 327 .110 20 .159 281 .099 20
SamNeg-RotE [5] 328 .549 214 5 .183 .330 112 20 155 .270 .097 20
SamNeg-RotL [28] 313 534 .205 5 162 259 .106 20 .055 113 .026 20
HaLE-TransE [3] .353 .620 223 5 313 467 .230 20 .300 436 .226 20
HaLE-DistMult [35] 1403 629 .289 5 314 462 .236 20 .299 427 .230 20
HaLE-RotatE [22] .407 .635 .289 5 324 474 244 20 .302 435 229 20
HaLE-RotE [5] .409 .639 291 5 326 475 .246 20 .308 438 237 20
HaLE-RotL [28] 408 .639 292 5 324 474 244 20 .308 438 .238 20

the ones trained by Negative Sampling (SamNeg) on both datasets.
The MRR and Hits@10 of all models have an average 5% increase.
The results indicate the effectiveness of the HaLE framework. In
the five models, the HaLE-trained RotL model achieves the best
performance in all metrics on two datasets, HaLE-RotE is the second.
It proves the effectiveness of the rotation-translation form in the
transform function. In addition, we find that the SamNeg-trained
RotL model is weaker than others, because the effect of the flexible
addition operation relies on the nonlinear activation, which does
not exist in the normal Ly-distance similarity function. Compared
with fully-trained hyperbolic-based models, the simplest TransE
model achieves competitive performance on FB15k237 after being
trained in less than 20 minutes by HaLE. The HaLE-trained RotL
model obtains the state-of-the-art MRR and Hits@10 on WN18RR,

which has no hyperbolic geometry and only costs less than 10
minutes. The results indicate that HaLE can improve the Euclidean-
base models in low-dimensional conditions, only spending around
one tenth of the training time of the hyperbolic-based models.

4.2.2 High-dimensional Performance Comparison. In the high-
dimensional condition, HaLE shows a significant advantage over
Negative Sampling. In the limited training time, HaLE can accelerate
model convergence while SamNeg-trained models fail due to
the unstable gradients. This difference is more significant in
the large-scale KGs. On the CoDEx-L dataset, the performance
of TransE trained by HaLE is almost SamNeg-trained TransE.
Table 3 also lists the results of five fully-trained KGE models
using more than 256 dimensions, which are detailed-tuned by
a powerful hyperparameter optimization method [17]. From the
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table, we can see that the HaLE-trained models show strong
competitiveness. Especially on CoDEx-M, the limited-time trained
HaLE-TransE model (trained in 20 minutes) outperforms that of
the 512-dimensional fully-trained TransE model (trained for more
than one hour, 77 minutes). Although the Hits@1 of the optimal
HaLE-RotL model is still lower than those benchmarks on CoDEx-L,
HaLE-RotL achieves great Hits@10 results using less training time
and fewer parameters. Training in a limited time, HaLE-trained
models already obtain similar performance to the state-of-the-art
models on five datasets. These results prove the efficiency of our
HaLE framework on keeping high prediction accuracy.

4.2.3  Efficiency Comparison for Query Sampling. To verify the
training efficiency of HaLE, we select the 32-dimensional RotE
model and compare Query Sampling loss with four previous
training strategies as mentioned in Sec. 4.1.2. The performance
changes of the validation set as training proceeds are shown in the
three upper line charts in Fig. 2. It is clear that our HaLE achieves
remarkable efficiency on the three datasets comparing with the
previous strategies. Besides, there are some common observations
in the three results. Except NonNeg, SamNeg (Negative Sampling)
is the worst one whose Hits@10 slowly increases in the first
50 seconds, indicating the negative effect of unstable gradients.
Assigning different weights to negative instances, AdvNeg has
a much faster convergence speed than SamNeg. Outperforming
SamNeg and AdvNeg, the AllNeg strategy has good performance
on two large datasets FB15k237 and CoDEx-M. As the WN18RR
is relatively sparse, AllNeg is slightly inefficient to train all
negative instances using a uniform gradient. These results prove
the effectiveness of the All-Negative training and hardness-aware
ability. Without negative instances, the NonNeg strategy is the
only unstable one. Keeping increasing in the first 80 seconds,
the Hits@10 of NonNeg starts decreasing, because its negative
constraint is not powerful enough to avoid over-fitting. Our HaLE
achieves the fastest convergence speed on the three datasets.
Especially on WN18RR, HaLE achieves more than 0.5 Hits@10
in the first 30 seconds, which is already better than the final results
of the others, indicating that HaLE can achieve a swift and sure KGE
training, and has considerable potential in practical applications.

4.2.4  Efficiency Comparison for Hardness-aware Activation. To
verify the hardness-aware activation mechanism and our novel
activation functions, we compare the performance of different
activation functions in the HaLE framework. The results are
shown in the three lower line charts in Fig. 2. We can find similar
observations on the three datasets. At first, utilized in hyperbolic
models, the Arctanh-based function is obviously weaker than others.
As its definition range is (-1, 1), it relies on the normalization
effect of hyperbolic geometry. In the two linear functions, the
y = 2x function is simulating the temperature control in Contrastive
Learning and our Halin(-) can be regarded as an extended version
of the former with soft- and hard-constraints. It is clear that the
Hits@10 of y = 2x increases faster in the first few rounds but gets
a lower final Hits@10. Then we can see that the performance of
Hanon(+), Halin(-) and y = xe* are very close. On the CoDEx-M
and WN18RR datasets, our Hanon function performs the best. It
is because Hanon(-) has an additional hard-constraint property to
limit the outputted maximum. The y = xe” function used in the
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original RotL model is slightly better than Hanon(-) in FB15k237.
The linear function Halin(-) achieves similar performance with the
two nonlinear ones, proving that the soft- and hard-constraints are
the key properties of the hardness-aware activation.

5 RELATED WORK

Recently, knowledge graph completion via KGE has been an active
research topic [31]. Dozens of KGE models have been proposed,
which can be divided into three categories from the perspective
of the scoring function: (1) geometric distance based models,
including TransE [3], TransD [8], RotatE [22], QuatE [36]; (2)
tensor factorization based models, including RESCAL [12], DistMult
[35], ComplEx [25], TuckER [1]; and (3) deep learning based
models, including ConvE [7], ConvKB [11], RGCN [20], SACN
[21], CompGCN [26]. All current KGE models suffer from the same
issues of low speed and high cost in the training phase. The problem
become much more serious when processing large-scale KGs with
millions or billions of entities. Recently, several researchers have
worked on this issue via different technical channels.

Reducing Parameters. Limiting the vector dimensions as 32 or 64,
several low-dimensional KGE models are proposed to achieve
competitive performance with less trainable parameters. MuRP
[2] is the first KGE model based on hyperbolic vector space, and
outperforms previous models in the low-dimensional condition. It
embeds KG triples in the Poincaré ball model using the M6bius
matrix-vector multiplication and M6bius addition operations. To
further capture logical patterns in KGs, Chami et al. [5] propose
a series of hyperbolic KGE models, including RotH, RefH, and
AttH. These models utilize vector rotation or reflection operations
to replace the multiplication operation between the head entity
and relation vectors. Based on the RotH model, Wang et al. [28]
propose two Euclidean-based lightweight models, RotL and Rot2L.
Eliminating complex hyperbolic operations, the two models have
lower computational complexity and faster convergence speed.

Replacing Negative Sampling. Most current KGE models are trained
via Negative Sampling, which considers only a subset of negative
instances to reduce the time complexity of each training epoch.
However, Negative Sampling usually extends the convergence
time of KGE models because of additional sampling calculations
and unsteady training gradients. To solve this issue, Li et al. [9]
propose an efficient All-Negative training framework and reduce
the complexity of All-Negative calculations by dis-entangling
the interactions between entities. However, this framework can
only be applied to KGE models using a square-based loss. Its
accuracy is lower than models trained by the Negative Sampling
loss, especially in the low-dimensional condition. Peng et al. [13]
employ segmented embeddings for parallel processing, and propose
a Non-Negative strategy utilizing two vector constraints to replace
Negative Sampling. However, these techniques cause a decrease in
accuracy and force the model to use higher-dimensional vectors to
represent each entity (e.g., 2,000 dimensions in [13]). Besides, this
framework is based on Orthogonal Procrustes Analysis, and cannot
be applied to existing KGE models directly.

Accelerating Model Convergence. Some recent research efforts
design new loss functions to accelerate the convergence of KGE
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Figure 2: The Hits@ 10 of 32-dimensional RotE-based model as training proceeds on three datasets. The upper charts compare
different loss functions, while the lower charts compare different activation functions. Best viewed in color.

models. Sun et al. [22] propose a self-adversarial negative sampling
technique for efficiently and effectively training the RotatE model. It
can be regarded as an improved binary cross-entropy loss, treating

the normalized triple score as the weight of each negative sample.

Another way is adding soft label loss based on the knowledge
distillation technique. DistilE [38] utilizes an additional soft-label
loss based on the knowledge distillation technique. A pre-trained
high-dimensional KGE model generates soft labels for each training

sample and accelerates the convergence of the small student model.

MulDE [29] is a multi-teacher knowledge distillation framework for
KGE models. Instead of a high-dimensional model, MulDE employs
multiple low-dimensional models as teachers jointly supervising the
student model via a novel iterative distillation strategy. Although
the knowledge distillation framework can train a student KGE
model quickly, it still requires the pre-training of teacher models
and cannot really reduce training cost.

In this paper, we focus on the lightweight training of KGE
models, which holds great potential for realizing a lifelong
iterative process of many important Web applications such as Web
search and recommendations. KGE can provide semantically-rich
representations for entities, which can enhance the information

extraction models to extract new knowledge triples from the Web.

As HaLE effectively reduces the training time, KGE models can be
rapidly updated to support iterative processing.

6 CONCLUSION

Recent knowledge graph embedding (KGE) models excessively
pursue prediction accuracy but ignore the training efficiency. In
this paper, we propose a novel Hardness-aware Low-dimensional
Embedding (HaLE) framework to achieve a swift and sure KGE
training. Motivated by the newest findings in the Contrastive

Learning domain, we propose two key techniques: Query Sampling
Loss and Hardness-aware Activation. We describe the connections
of the two techniques with previous KGE achievements and prove
their effectiveness by comparing with four previous training
strategies in the link prediction task. The experimental results show
that HaLE can achieve both higher prediction accuracy and faster
convergence speed in limited training time.

These positive results encourage us to explore further research
activities in the future. Instead of using artificially designed
activation functions, we will apply the Neural Architecture
Search technology to find more powerful activation functions
automatically. Facing large-scale KGs, All-Negative training is still
a burden. We aim to filter out some negative instances before
measuring scores based on the hard-constraint mechanism. Finally,
we will apply HaLE to other time-consuming KGE models such as
ConvE [7] and SACN [21], and more KG tasks such as KG alignment
and triple classification, to further verify the performance of the
proposed framework.
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A APPENDIX

A.1 Summary of Notations

The main notations used in this paper and their descriptions are
summarized in Table 4.

Table 4: Summary of the notations in this paper.

Symbol | Description
G A knowledge graph (KG)
T The set of existing triples in a KG

E,R The set of entities (E) or relations (R) in a KG

nt,ng,ng | The item number in a specific set
er An entity (e) or a relation (r) in a KG
q = (e,r) | A query containing an entity and a relation
ep The target entity of a query
er Embedding vector of the entity e or the relation r
q Embedding vector of the query q
d Dimension of the embedding vectors

f(en,r,e:) | The scoring function of a KGE model
D(ep,r)
¥(q, er)
h(s) The activation function for triple scores

The transform function of a KGE model

The similarity function of a KGE model

A.2 Hyperbolic KGE Models

Recently, researchers have proposed effective low-dimensional KGE
models based on hyperbolic geometry, such as MuRP, RotH, RefH
and AttH [2, 5]. These hyperbolic KGE models initialize the entity
embedding vectors in the d-dimensional Poincaré ball [19] with
negative curvature -c (¢ > 0): Bf ={xeRe: |x|]? < %}, where
|| - || denotes the L norm. The transform functions employed
are similar to previous Euclidean-based models, but apply the
Mobius addition and Mébius matrix-vector multiplication in the
hyperbolic space. The similarity function is the key component of
hyperbolic models. They utilize the hyperbolic distance to measure
the similarity among entity vectors, which is defined as:

2
Yhyp(Q ep) = —ﬁArctanh(\/Ell -q@cepl)’, (15)

where Arctanh(x) = 1 In %“; and &, is the Mobius addition
operation. To eliminate the complicated calculations in hyperbolic
space, Wang et al. [28] analyzed the effect of hyperbolic geometry
and proposed a lightweight Euclidean-based model RotL, whose

similarity function is defined as:

(16)

Yeuc(q.ep) = —¢ ( al(_qq+ :;,) H)

where « is a relation-specific trainable parameter, and the Arctanh
function is replaced by a simpler nonlinear function ¢(x) = xe*.
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A.3 Ablation Experimental Results

We make a series of ablation experiments to evaluate different
modules in HaLE. Specifically, we compare the performance of
two training strategies after using our hardness-aware activation
mechanism. In Table 5, ‘Activation’ and ‘RelRatio’ refer to the
activation function and the trainable relation-specific parameters,
while ‘PosSquare’ refers to using the square of positive scores.
‘HA + SamNeg’ and ‘HA + AllNeg’ represent applying hardness-
aware activation to the SamNeg and AllNeg training strategies,
respectively. The results prove the effectiveness of the three
major modules in hardness-aware activation, and indicate that this
mechanism can also increase the performance of Negative Sampling
and All-Negative training strategies.

Table 5: The results of ablation experiments on the 32d HaLE-
RotL model.

Dataset  Methods MRR Hits@10 Hits@1
HaLE-RotL 0.309 0.454 0.231
w/o Activation 0.289 0.436 0.212
w/o PosSquare  0.241 0.351 0.185
CodexM O RelRatio  0.293 0438 0214
HA + SamNeg  0.297 0.443 0.219
HA + AllNeg 0.262 0.415 0.182
HaLE-RotL 0.316 0.493 0.228
w/o Activation 0.294 0.456 0.212
w/o PosSquare 0.268 0.405 0.202
FB15k237 w/o RelRatio 0.295 0.460 0.212
HA + SamNeg  0.314 0.490 0.225
HA + AllNeg 0.287 0.454 0.204
HaLE-RotL 0.471 0.558 0.424
w/o Activation 0.426 0.520 0.376
w/o PosSquare  0.469 0.558 0.420
WNI8RR w/o RelRatio 0.454 0.548 0.404
HA + SamNeg  0.457 0.553 0.394
HA + AllNeg 0.449 0.540 0.387

A.4 Visualization of Entity Embeddings
Distribution

We also visualize the vector distribution of entity embeddings using
the t-SNE dimensionality reduction method. In Fig. 3, we compare
the entity distributions of the best MRR checkpoint of multiple
training strategies and find that model performance is related to
the cluster formation in the entity distribution. On the WN18RR
dataset, NonNeg and ALLNeg have a higher proportion of entities
that are evenly distributed, indicating that they cannot effectively
distinguish these entities. On CoDEx-M and FB15k237, NonNeg
has fewer clusters than the other strategies, which explains why it
gets relatively weak performance. On the contrary, there are more
clusters and clearer boundaries between different clusters in HaLE’s
entity distributions, indicating that HaLE can better separate entity
embedding vectors.
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Figure 3: The visualization of entity embeddings of KGE models trained by different strategies. The vector distributions are
generated by t-SNE.
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