Modeling Object Flows from Distributed and
Federated RFID Data Streams for Efficient
Tracking and Tracing

Yanbo Wu, Quan Z. Sheng, Member, IEEE, Hong Shen, and Sherali Zeadally

Abstract—In the emerging environment of the Internet of Things (loT), through the connection of billions of radio frequency
identification (RFID) tags and sensors to the Internet, applications will generate an unprecedented number of transactions and
amount of data that require novel approaches in RFID data stream processing and management. Unfortunately, it is difficult to
maintain a distributed model without a shared directory or structured index. In this paper, we propose a fully distributed model
for federated RFID data streams. This model combines two techniques namely, Tilted Time Frame and Histogram to represent
the patterns of object flows. Our model is efficient in space and can be stored in main memory. The model is built on top of an
unstructured P2P overlay. To reduce the overhead of distributed data acquisition, we further propose several algorithms that use
a statistically minimum number of network calls to maintain the model. The scalability and efficiency of the proposed model are

demonstrated through an extensive set of experiments.

Index Terms—Radio frequency identification, RFID data streams, Internet of Things, object flow pattern, scalability.

1 INTRODUCTION

Recent advances in wireless sensors, radio frequency iden-
tification (RFID) technologies, and Web services have led
to the emergence of the “Internet of Things” (IoT), a
global network where everyday objects such as buildings,
sidewalks, and commodities are identifiable, readable, ad-
dressable, and even controllable via the Internet [12], [18],
[23]. Such a ubiquitous network offers the capability of
integrating the information from both the physical world
and the virtual one, which not only affects the way how
we live, but also creates tremendous business opportuni-
ties such as efficient supply chains, independent living of
elderly persons, and improved environmental monitoring.
For example, in supply chain management, RFID tags
are affixed to individual product items, and companies
install RFID readers at various locations on their premises
to capture tag reading events. As the tagged items are
transported across companies, trails of tag reading events
are left behind. Products’” movements can thus be precisely
recorded and tracked.

The most important feature underpinning these oppor-
tunities is traceability, the ability to find the current and
historical states of RFID-tagged objects [24]. For instance,
we might want to find the source where a bottle of problem-
atic medicine comes from. In addition, it is also helpful for
the managers to understand the patterns of product flows
(e.g., “how often does hospital A order medicine B from

o Y. Wu is with Beijing Jiaotong University.

E-mail: ybwu@bjtu.edu.cn
o (.7 Sheng and H. Shen are with the University of Adelaide.
o S. Zeadally is with the University of the District of Columbia.

company C?”) in order to make appropriate decisions on
stock management.

Through the connection of billions of tags and sensors
to the Internet, applications will generate an unprecedented
number of transactions and amounts of data that require
novel approaches in RFID data stream processing and
management [6], [16], [23]. Many models and techniques
have been proposed recently [9], [13], [22], [23]. Unfortu-
nately, most of them require a centralized processing unit
(e.g., data warehouse) that has severe drawbacks such as
scalability.

IBM’s Theseos [1] is one of the first few architectures
which addressed this challenge by enabling traceability ap-
plications to process complex queries across organizations
in a completely distributed setting. It relies on a distributed
data model for object movements by introducing two at-
tributes, namely sentTo and receivedFrom to maintain the
information on the movement path of an object. With this
information, it is possible to minimize the number of nodes
to be visited without flooding queries to all nodes in the
network. Unfortunately, to obtain this information, Theseos
requires a high synchronization with other enterprise data
(e.g., billing or accounting information). This is impractical
for many applications in IoT where such enterprise data
may not be available. In a very recent work [26], [25], Wu
et al. propose a generic approach to solve this problem.
The approach is built on top of the DHT (Distributed Hash
Table) overlay network [3]. In particular, an object and
its latest status are indexed at its gateway node in the
P2P network. Every time when the object moves from a
source node to a destination node, the gateway node updates
the object’s status at the source and the destination nodes
on its movement, thereby establishing the information on

the movement path of the object. This approach however
requires extra storage for indices, and is expensive in
bandwidth usage.

Instead of maintaining the exact movements of objects,
we propose in this paper a probabilistic model that main-
tains the object flow patterns. An object flow pattern is
a function of time, which describes the volume/frequency
of object movements at a specific time. Our goal is to
extract and model the patterns of object flows from high-
volume, highly dynamic RFID data streams in autonomous
network environments such as IoT. With these patterns,
the efficiency of distributed data processing and mining
can be significantly improved. The requirements of large-
scale applications such as frequent data updates, row level
security, and data archiving can be nicely satisfied. It
should be noted that these are challenging tasks because
the movement of an object is implicit. It is impossible to
acquire such information without querying other nodes in
the network. Ideally, the model should be established with a
limited number of network calls without flooding the whole
network. Our contributions are summarized as follows:

e We propose a new model called Tilted tIme Series
of Histograms (TISH) that combines two techniques,
namely Histogram and Tilted Time Frame [10]. Es-
sentially, TISH is a synopsis of the object flow. It
represents the patterns of object flow between two
nodes for a long history using limited memory. TISH
does not require any kind of indices. It is highly
efficient in storage and bandwidth.

o We develop a Peer-to-Peer (P2P) architecture and a
set of algorithms to establish and maintain the TISH
model. To avoid long delays and extra bandwidth
usage caused by network queries, we further develop
an algorithm to choose the neighbors which are most
possible to have the quested information as the tar-
get of query rewriting to avoid unnecessary network
traffic. To avoid data migration when the underlying
P2P layer changes (nodes leave or join), we introduce
a simple but effective data structure for maintaining
network topology. Based on the TISH model and the
P2P architecture, our proposed algorithm on process-
ing item-level tracking and tracing queries, statistically
keeps the number of network calls to a minimum.

o We validate our approach through extensive experi-
ments on large datasets. Our results demonstrate the
efficiency and scalability of the proposed model, the
architecture and the algorithms.

The rest of this paper is organized as follows. We
formally define the problems in Section 2. In Section 3,
we introduce the architecture of a distributed RFID system
which is built based on our proposed model. In Section 4
and Section 5, we describe the TISH model, and its
related maintenance algorithms. Experimental results are
presented in Section 6 and the related works are discussed
in Section 7. Finally, Section 8 provides some concluding
remarks.

2 PROBLEM DEFINITION

An RFID network is formed by a set of nodes N:
n1,MN92,...,Ny. A node is a place under consideration for
tracking and other interactions between objects and the
networked system. For example, in a supply chain manage-
ment system, each participating party (e.g., manufacturer,
distribution center, and retailer) can be treated as a node.
Objects move along these nodes in the network. In this
paper, we define that a connection exists from node n;
to n; in the network as “there exist objects moved from
n; to m;”, where n; and n; are the source node and the
destination node of the connection, respectively. An active
connection is defined as the connection where “there exist
objects moving in the current time window (cycle)”. Each
node may have zero, one or many inbound or outbound
connections.

Each object has one and only one original node where
it is first discovered in the network. For example, in an
RFID-enabled supply chain network, the original node
of an object in its movement path is normally the node
where the object is manufactured. When an object o is
scanned at a node n; at time ¢, it leaves a record of
(0,n;,tx) at n;. Since RFID readers continuously scan
the object, a stream of tuples for the same object are
generated with increasing timestamps. Without loss of
information', we simplify the stream at each individual
node to a single record of (o,n;,ts,te), where ts and
te represents the time when object o is first and last
seen at node n;, respectively. The basic schema for an
RFID record is (Object, Node, Start, End). It is worth
noting that, this is different than that of other trajectory
data, such as GPS records, which is normally represented
as (Object, Time, Coordinates). The major difference is
that the values in space dimension in RFID networks are
discrete.

Since in our approach, RFID data is kept in the place
where it is collected and each node only governs its own
data, i.e., for the record set R at node n;, Vr € R, r.Node
= n;. The Node column can be omitted in the raw schema,
i.e., the schema of data stored at each node is simplified to
(Object, Start, End).

Tracking and tracing are two fundamental queries in
traceability applications in IoT, which are defined as fol-
lows. The difference between tracking and tracing is that
tracking finds latest status of an object, while tracing finds
part of or the full history of an object. They are defined
with SQL language as follows.

Definition 1 (7Tracking). Given an object o, tracking o
means:

SELECT r.Node, r.End FROM Record r

WHERE r.Object = o AND r.Start =

(SELECT MAX(Start) FROM Record WHERE Object =
0); O

Definition 2 (Tracing). Given an object o, and a time range
tstart and tend tracing o means:

1. It should be noted that tracing queries are not sensitive to the internal
states of an object at a particular node.

Architecture of a PeerTrack Node

l Query Processor }—’lQuery Rewriler‘—'l P2P Engine l°
—

— —
RFID Data TISH Data NelghLbig:'hood

Modeler
l T l PeerTrack P2P Overlay

l RFID Data Pre-Processor }—‘>l Sampler l

Legend

— Data Path

l RFID Readers l — Internal Communication

< External Communication

Fig. 1: PeerTrack Node Architecture

SELECT r.Node, r.Start, rEnd FROM Record r
WHERE r.Object = 0 ORDER BY r.Start
AND r.Start >= tstart AND r.Start <= tend; O

The tracking queries aim to find the most recent location
of the given object 0. “Most recent” is defined as the record
with the latest observation timestamp (r.Start). Tracing
queries are interested in the full lifetime history of the given
object, or the history in a particular time range.

Our goal is to build a distributed model which can be
used as a middleware in a federated system. It does not
require any centralized server for coordination, nor full
access to data at other partners for its establishment and
maintenance. The model is expected to be able to represent
the pattern defined above for any time-and-node pair, and to
be used to expedite distributed tracing and tracking query
processing.

3 ARCHITECTURE

PeerTrack? is a federated system focusing on distributed
RFID data processing and management. In PeerTrack, data
is kept where it is collected and each node only governs its
own data. Model establishment and query processing are
done in a unstructured Peer-to-Peer (P2P) fashion.

The architecture of a PeerTrack node is depicted in
the left part of Figure 1. The Neighborhood List contains
the nodes to (or from) whom the data flow patterns are
maintained by the local model. The neighborhood list
consists of two sets of nodes: the source, and the destination
nodes of n;. For each source (resp., destination) node n,
we maintain the pattern of object flow from (resp., to) n; to
(resp., from) n; using the Tilted tlme Series of Histogram
(TISH) model. The details of the TISH model and its
maintenance will be described in Section 4 and Section 5.

The TISH model is updated repeatedly for every event
cycle by the Modeler. The modeler takes a small random
sampled data, which is generated by the Sampler, out of the
large volume of RFID data as input. It analyzes the sample
by querying the neighbors in the Neighborhood List, which
is also maintained by the Modeler.

The Query Processor is responsible for answering
queries from either local or remote users. If the query

2. http://cs.adelaide.edu.au/peertrack

cannot be answered by the RFID data stored locally, the
Query Processor exploits the information from the TISH
model to find candidate nodes so that the query can be
rewritten to query the corresponding RFID data stored at
these nodes. The rewritten queries are then sent to other
nodes through the P2P Engine, which is responsible for
communicating with other nodes. With the P2P Engine,
the nodes form an unstructured overlay.

In particular, when a tracing or tracking query is issued
to the local PeerTrack node, for example, “where has object
o been?”, the query processor analyzes the query and
recognizes it as a tracing query. It first contacts the local
RFID database (RFID Data in Figure 1) to see whether
object o has been observed locally. When it is, the query
processor asks TISH model about the object flow patterns
at the time when o is observed and the query rewriter
will rewrite the query to nodes (neighbors) that are ranked
top in the patterns. The rewritten queries will be sent to
neighbors via the P2P engine. Since we have the IP of
neighbors stored locally, the P2P engine will communicate
with the neighbors directly, without going through the P2P
overlay. The rewritten queries will be answered by related
nodes and the result will be sent back. The query processor
then aggregates the results and returns the trace of o to the
querier.

This model is built by exploiting the fact that movements
of objects are likely to be continuous and bulky in both time
and space, so a connection which is active in the previous
window is likely to be active in the current window. Based
on this observation, when looking for the source node of
an object, it is more efficient to first query the source nodes
in previously active connections, which can be obtained by
searching the neighbors. It is worth mentioning that the
unstructured P2P query is much more expensive. We only
use it when an object is from a node which is not in the
neighborhood list.

This architecture adapts well with the characteristics
discussed in Section 1 of the supplemental material:

o Frequent Updates. We sample the input and use only a
small portion of incoming data to maintain the model.
Thus the system scales well with frequent updates.
Also, using the tilted time frame model, we can store
a long history of object flow patterns in the main
memory.

e Row Level Security Requirement. Since data is never
stored at central servers, each node can have its own
security schema. Each node owns the data physically
and fully controls who can access which portion of its
data. This model is strictly private, because there is no
super user who can access data from every node.

e Archiving. Partners can archive their data whenever
they deem appropriate, with flexible strategies. The
archiving process is fast, because the records are stored
in the order of time. To archive the records before a
particular date, we only need to find the first record
that is younger than the given criteria using a binary
search, and move all the pages before it to the archive
media.

e Mining Efficiency. The model maintained at each node
contains the patterns for the object flow. It can be used
as a starting point for online aggregation, materialized
data cube and data visualization. While the TISH
model at each node is limited to the local and recent
neighbors, it is easy to gather the information from
distributed nodes for higher level knowledge discov-
ery, via P2P queries. It should be noted that distributed
mining is one of our future research direction.

4 THE TISH MODEL
4.1 Basic ldea

In RFID applications, the object flow among nodes is
determined by business actions and follows certain patterns.
For example, a supplier sends products to a supermarket
on a regular basis, such as once a week or once a month.
Different products may (usually) have different patterns,
so do the same products from different suppliers. If the
patterns are known, we can use them to find out which
supplier is most likely to be a source node from which a
given object comes.

The problem of modeling these patterns can be catego-
rized as time-series data mining [10]. A popular method
is regression analysis in modeling time-series data and
finding trends. However, we do not use this method because
regression analysis often requires reading data for multiple
times, which is not possible with RFID streams.

Our model is based on two important techniques in data
mining: Logarithmic Tilted Time Frame Model (LTTF) and
Histogram. As illustrated in Figure 2, the first (right most)
slot represents the data for the time range of 7j, while
the *" slot s; represents a range of 2 x 7o. Each time
unit (slot) in LTTF occupies the same amount of memory,
but the most recent time slot provides the statistics with
the finest granularity, while the older ones are with coarser
granularities.

1000 600

800 500

| «
600 H 00
300
a00 f{ |
200
200 100

EECI EEC2 EEG3 EECA”

LY e 1Y

QDT @-DT 631, sm, 15T, T, 3, T, \U

EECI EEC2 EECB EECA-"

si s

Fig. 2: TISH Model

We combine the two techniques and propose a new
structure, namely Tilted tlme Series of Histograms (TISH).
By combining the two techniques, it is possible to model the
dynamics of RFID streams in both time and spatial dimen-
sions. Tilted time series capture the changes of streams at
different times, while histograms measure the distributions
of streams from different nodes.

The basic idea of our model is that within each slot
G.e., [(28 — 1) * To, (2871 — 1) % Ty)) in the tilted time
frame model, histograms are used to summarize the object
flow pattern for each business neighbor for the period of

Symbol | Description

We The width of an event cycle

i The *" slot in the tilted time frame

b; The i*" neighbor

hij The histogram for b; in slot s;

fi The frequency of object flow for neighbor b,
in a new event cycle

Wg The maximum number of Exponential Event
Cycles (EECs) in the slots. It is a constant.

m The size of the reservoir sample

n The number of business neighbors

l The number of slots in the model

Fig. 3: Symbols

time represented by the slot. The height of each bar in
the histogram represents the volume of object flow from/to
a specific node. Using this model, we can calculate the
probability of an object being from/to a specific neighbor
at a given time, based on the statistics.

The symbols used in the following discussion are sum-
marized in Figure 3.

We use source (resp., destination) LTTF to record histo-
ries for the source (resp., destination) nodes. The time series
are split into Event Cycles (also known as the Sliding Win-
dows) of fixed time interval. All the slots manage a number
of (at most w;) units, which we name as Exponential Event
Cycles (EEC), because the unit in the 7, slot (s;) manages
the compressed data for 2 event cycles (an example of a
slot can be found in Section 2 of supplemental material).
The most recent slot sy maintains the uncompressed event
cycles, while the others maintain compressed ones. We
denote the ji, EEC in the slot s; as FFEC;;. It is easily
inferred that 7y = w; * w, and the time covered by slot s;
is T; = 28 % Ty = 2% % w, * w.. How to determine w, and
w, can be found in Section 5 of the supplemental material.

4.2 Update for the Current Slot

At node n;, we only have the local information of the
object sent to n;, such as arrival time and departure time.
To get the information about the object’s moving path,
it is necessary to query its neighbors. In the worst case,
the underlying unstructured P2P overlay is used to locate
the object. Because P2P queries are more expensive than
direct communications, we need to avoid such a case as
much as possible. In addition, due to the large volumes
of RFID data in the stream, we cannot afford building
the model using all the data. Instead, we use a sample
of the original data in each event cycle for the stream.
The reservoir sampling algorithm [21] makes only one pass
over the data set without knowing its size beforehand. So
it is well suited for data streaming sampling. Its output is
a uniform sample of the given data set.

After the data, which are collected during an event cycle,
have been preprocessed and sampled, the sample is sent to
the modeler for local update. We use the P2P tracking and
tracing algorithm which we will introduce in Section 5. We

Algorithm 1 : Update the Model: update

Algorithm 3: Trace an Object: trace

Input: Neighbor set B = {b1,b2,...,bn}
Corresponding frequency set F = { f1, fa, ...
Output: The refined model M

7fn}

Input: The object to trace o
The query initiating node n
Output: A list of nodes that o has been, sorted by time

1: for b; in B

2: Gets its histogram ho; < so[b;]

3: if hg; is nil

4: Hy; + new array with size ws, so[b;] < hos
5: end if

6: hoi[so.size + 1] = f;

7: end for

8:

S0.8ize < sg.size + 1
9: if sg is full

10: merge(sg, M)

11: clear sg

12: end if

Fig. 4: Algorithm to Update the LTTF Model

call the information of source and destination nodes for all
the objects in the sample as Flow Synopsis. This synopsis
is then added to the most recent slot (sg). If the slot is
full, it is moved to the slot before it (s1). Otherwise, s; is
summarized and merged into s, and then sg is compressed
and stored in s7. If s9 is also full, the summarization and
merging process repeats until we find a non-full slot, or we
reach the end of the LTTF. In the latter case, a new slot
is created and appended to the tail. Note that s; is only
merged when it is full thus not all the boundaries in LTTF
are updated. This does not introduce any problem because
s; is still the summary for the time frame of [(2° — 1) *
To, (2¢71 — 1) * Tg) backwards from now.

The algorithm for updating the model is described in
Figure 4. First we add the synopsis from the new event
cycle to the slot (line 1-7). If a new neighbor joins, a new
entry is inserted into the hash table (line 4). If an existing
neighbor did not send anything, it is set to zero (this is not
shown in the figure).

If the new event cycle fills the most recent slot sq, all
slots s; are merged if necessary (the merge function in line
10, which is introduced in Section 3 of the supplemental
material). s is then cleared to be ready for the coming
event cycles (line 11).

5 P2P TRACKING AND TRACING

The TISH model and its maintenance have been introduced
in Section 4. In this section, we answer the unresolved
question “how the model finds the source and destination
node of an object?” by introducing the P2P tracking and
tracing algorithm.

5.1

With a centralized setting, answering tracing queries is
easy. However due to privacy and performance issues, it is
impractical to use in real applications. In a fully distributed,
federated environment, our model avoids using Discovery-
Service-like index or flooding the whole network. The idea
is to utilize the history maintained in the model to rewrite
the query to the node which has the most possibility to be
the source of the requested object. The tracing algorithm is

Tracing and Tracking Objects

locate any node that has had o using P2P overlay
tstart < select Start from Record where Id=o
if tstare 1S nil, return
s < the index of slot which covers ts¢qrt
B « the set the neighbors in slot s and adjacent slots
/I adjacent slots : c1 to the recent and cg to the distant
P < an array of size B
for each neighbor b; in B
Pli] < p1(bi, s) // Equation 1
end for
. sort(P, B) /l sort B in descending order according to P values
: sequentially ask all the nodes in 3 that whether it is source or
destination node of o
12: upon receiving the query, b; repeats 2—11 on itself if it had o
otherwise, return a negative result.
13: b; then sends message to n confirming the appearance of o
with extra information including arrival/leaving timestamps,
and application-specific data

DR

N

—_ O

Fig. 5: Algorithm to Trace an Object

defined in Figure 5. The tracking algorithm is almost the
same except the direction is reversed to tracing, and instead
of retrieving all the nodes on the object’s moving path, only
the latest one is retrieved.

The key idea is to query the neighbors about the object(s)
in the order of the probability calculated according to
Equation 1 where p;(b;, s) is the probability of the given
object coming from neighbor b;, s is the slot covering the
given time ¢, n is number of neighbors, c¢; and co are two
constants that we use to control the range of past and future
data under consideration, respectively. It should be noted
that using more history data (i.e., larger c¢; and cy) does
not increase the accuracy. This is because the flow patterns
are unknown and may frequently vary, and as a result using
more history data may add more bias.

maz(s+ca,l) 1 Sons, hijlk]
Ei:min(s—chO) (2li—s] * Zlekzl}:iljhi,l (k])

Zmam(s+02,l) 2‘7;78‘

i=min(s—ciy,0)

p1(bj,s) =

)]

It is easy to get s from the requested time ¢, because

s—1 s
Sp.Stze+ wg * Z 2l <t < S0.8tz€ + Wy * Z 9i—1 2)
i=1 i=1
Thus,

— 8p.8tz€

s = [log, ! +1] 3

The calculation of p; only involves a very small portion
of the data, thus it is efficient. We will also prove with
extensive experiments in Section 6 that it is accurate.

As shown in Figure 5, the neighbors are sorted (line
10) by the probabilities calculated using Equation 1. Then
the query is redirected to the neighbor with the highest
probability (line 11). If the neighbor does not return the
positive result, the second possible neighbor is queried, and
so on. Note the query contains the timestamp returned from

previous queries, and the neighbor only returns positive
result if the timestamp is earlier than the one in the query.
Otherwise, an infinite loop may happen if the object visited
a node more than once.

5.2 Building the Flow Synopsis

After the data within an event cycle is sampled, we need
to ask the neighbors to get the source and destination
nodes. Instead of flooding the network, the history of object
flow (i.e., the histogram) is used to find the most possible
neighbors who may be the source nodes. Assuming that the
object flow pattern changes smoothly, we choose the recent
slots in the model to compute the probability of a neighbor
being the source node for the objects. Instead of only
using the most recent slot, we introduce a zipf-weighted
method to compute the probability with several recent slots.
This mechanism is introduced to smooth the data flow in
case that there are some peak moments for a neighbor.
Equation 4 shows how the probability is computed. It is
easy to see that po(b;) is a variant of p;(b;,s) that we
introduced in Section 5.1.

1 ~ 1 ey D5 (]

SRCAPEES i L

Where ¢ is a configurable constant (similar to cg),
representing the number of slots under consideration, and n
is the number of business neighbors. The factor Y ;_, 2% is
for normalization. Y ;" >~} h;[k] calculates the total
number of objects for a slot, while >_° h; ;[k| is the
number of objects from b;. The factor % assigns weights
to different slots. The most recent slot has the highest
weight of 1, and the weight decrease exponentially. In
implementation, the sum of frequencies for all nodes in
a slot (3,2, D12, hiu[k]) can be calculated and cached.

Essentially, flow synopsis building is a simplified version

of tracing. The differences between the two are:

p2(bs) =

1=0

1) Flow synopsis building happens on a node which
must have the objects, whereas tracing does not have
this advantage so it has to invoke the underlying P2P
layer to first locate a node having had the object being
traced.

2) Flow synopsis building happens when objects have
arrived at a new node. So there is no future infor-
mation. When calculating the probability, there are
no future slots. In contrast, when answering tracing
queries, future data has to be included.

3) There is no time or slot parameter for po, because
po is used to calculate the probability of a neighbor
being the source node for objects in the most recent
slot, i.e., the implicit time parameter is “now”.

With Equation 4, the neighbors can be sorted by proba-
bility po. We can first try to contact the neighbor with the
highest probability. If there are objects without source node
after this query, the neighbor ranked the second is queried.
The process repeats until we find the source nodes for all
objects in the sample, or we have tried all the neighbors.

Algorithm 4 : Building Flow Synopsis
Input: A set of sample objects O = {01,02,...,0m}
A set of neighbors B = {b1,b2,...,bn}
Number of objects in the unsampled event cycle: =

Output: The updated sender LTTF model
: P < an array of size n
for each neighbor b; in B

Pli] < p2(b;) // Equation 4
sort(P,B) // sort B in descending order according to P
F < a map from b; to its frequency
for each neighbor b; in B

result set R < query(b;, O)

F(b;) < R.size/m xx

O+~ O-R
10 ifO=9,
11: end for
12: if O # @
13: for each object 0; in O
14: b < P2POwverlay.locate(o;)
15: if b exists in M, F(b) < F(b) + x/m
16: else 7(b) = «/m; B.append(b)
17: end for
18: end if
19: update(B, F)

LRI W

break

Fig. 6: Algorithm to Gather the Source Node Information

For the latter case, if there are still objects without source
node, we will have to rely on the P2P overlay to locate the
object.

Figure 6 shows the details of the algorithm to gather
the source node information for the TISH model. First the
probabilities P for all the neighbors are calculated and the
neighborhood list is sorted according to the probabilities
(line 1-4). Then we query the neighbors for the list of ob-
jects with unknown sources, in descending order of sorted
probabilities (line 6-11). After querying the neighbors, if
there are still objects with unknown sources, we have to use
underlying P2P overlay to find the sources of the objects
(line 12-18). Finally, the neighbors and the corresponding
frequencies are used to update the TISH model (line 19).

In real applications, nodes may leave the network without
notifying neighbors. This may cause some problems. We
discuss in detail on how to deal with these problems in
Section 4 of the supplemental material.

6 EXPERIMENTAL EVALUATION

We conducted extensive experiments to evaluate the per-
formance of the proposed approach®. This section focuses
on reporting six experimental results i) to demonstrate the
accuracy of modeling the object flow, ii) to evaluate the
performance of the model maintenance, and iii) to prove the
scalability of the system built on top of the TISH model.
Additional experiments can be found in Section 7 of the
supplemental material.

6.1

Experiments were conducted on a Core 2 Quad 2.40GHz
machine with 4GB RAM. We simulated a network with
1,000 nodes. This network is built with the following

Experimental Setup

3. The performance of our approach has been analyzed theoretically in
Section 6 of the supplemental material.

Parameter | Default Value
Fanout 10
Number of Slots 10

Value of V, ¢ and w, | 1000, 2, 10
Size of Sample (m) 50

Fig. 7: Default Settings

characteristics: i) the network overlay is a connected uni-
directional graph; ii) there are no hot or cold spots in the
network; and iii) the fanout of the nodes follows normal
distribution with a given average (see Figure 7) and variance
(0.01). The first characteristic guarantees that every node is
involved in the experiments, so there are no outliers. The
last two help to keep the variance of calculating averages
low. The edges in the graph represent a business connection,
along which objects move.

All nodes in the network have V objects of their own
at the beginning of the experiments. Each connection is
associated with a time-varying pattern from a pre-defined
pattern set (see Table 8). All the nodes send objects to
neighbors with the amount determined by the associated
pattern. These patterns vary in the volume of object flow
for time ¢ (i.e., g(¢)) where V is a constant coefficient
and random() returns a number which is within (0, 1].
If there are less objects than g¢(¢), the node generates
enough objects to make up for the objects. Parameters a
and b in the patterns are random numbers between 0 and
1 (inclusive). They are chosen before the experiments and
remain constant during the experiments.

For each epoch, a node randomly chooses half of its
connections to send objects. The connections with/without
objects moving on inside an epoch are called active con-
nectionslidle connections, respectively.

An RFID object generator has been implemented to
generate RFID objects for each pattern. The default settings
for the experiments are listed in Figure 7.

Pattern Name | Definition (¢(t))

Constant a *V (a is chosen randomly)

Random V x random()

Segmentary | axV,if 2xseg <t <2xseg+1
bxV,if 2xseg+1<t<(241)*seg
seg is 100 Event Cycles
a, b are chosen randomly

Sinusoidal |V sin(t)]

Fig. 8: Patterns

6.2 The Accuracy of Modeling

This experiment evaluated the accuracy of TISH. Since
the TISH model keeps more information on recent data,
we expect that the accuracy decreases for the distant data.
However, the accuracy loss should not be significant. The
error for the TISH model in a given time frame is defined as

the difference between the real and the modeled distribution
of objects’ source nodes. To accurately represent this, we
first calculated the average of § (described in Section 6 of
the supplemental material) as & for all neighbors at each
node. We then calculated the error of the model as the
average of 0 for all nodes in the system.

We ran the simulation using the default settings in
Figure 7 for 1000 event cycles. During each cycle (called an
epoch), several objects were sent from one node to another
according to the pattern associated with this connection, if
it is active. The objects are randomly chosen from local
objects, including the ones initially assigned to a node and
those sent by its neighbors. The experiments were done for
each pattern separately (i.e., all connections are associated
with the same pattern) and all patterns together (i.e., each
connection is associated with a randomly chosen pattern).
In this experiment, after the 1000 event cycles finished, we
calculated the error ¢, for each epoch.

The result is shown in Figure 9 and Figure 10. The time
axis represents the epochs from the most recent (1st) to the
most distant (1000th).

Figure 9 shows the error of the TISH model in experi-
ments that only a single pattern is chosen for all nodes in
the network*. We note that the error is very low. Although
it increases for distant epochs, the increasing rate is not
high. In theory, “Constant Pattern” should not generate
any error because the distribution of objects are never
changed. In practice, the sampling process and idle epochs
add randomness to the system. For “Sinusoidal Pattern”,
although the volume changes, the distribution does not. So
the orders of B and B’ are not changed. This explains why
it shows almost exactly same results with the “Constant
Pattern”. “Segmentary Pattern” shows an periodic pattern
where the error increases every 100 epochs. This is caused
by the change of patterns described in Figure 8. However,
after the change finished, the error quickly decreases to
almost the same with “Constant Pattern”.

The impact of randomness on the accuracy of the TISH
model is important. We ran the simulation with “Random
Pattern” (all connections are associated with “Random
Pattern”), reusing the settings in the experiments without
“Random Pattern”. We also ran the simulations for the
scenarios of “Mixed” (each node randomly picked a pattern
from Figure 8 individually) and “Mixed Without Random”
(each node randomly picked a pattern from Figure 8
without “Random Pattern’). For “Mixed” or “Mixed With-
out Random”, connections are associated with different
patterns. Figure 10 also includes results for ‘“Random
Pattern”, “Mixed Without Random” and “Mixed”. The
“Mixed Without Random” experiment shows that even
when the nodes in the network choose different patterns
for different connections, the TISH model is still able
to describe them accurately. Compared to the “Constant
Pattern”, the extra error for the “Mixed Without Random”
experiment is caused by the mixing “Segmentary Pattern”

4. “Random Pattern” is not included, as “Random” is actually not a
pattern at all.

Accuracy of the TISH Model for Different Patterns

0 400 500 1000

0
time (from recent to distant)

Fig. 9: Accuracy of the Model for Different Patterns

Accuracy of the TISH Model

error

Fig. 10: Accuracy of the Model with Mixed and Random
Pattern

and “Sinusoidal Pattern”. Since the change in “Sinusoidal
Pattern” is continuous, at some point (when sin(t) = a or
sin(t) = b), the order of B is changed.

“Random Pattern” generates a high error because it is not
a pattern and is unpredictable. Mixing it with other patterns
also increases the average error.

6.3 Network Traffic Cost

The main performance bottleneck in our model is caused
by the procedure of querying neighbors for new incoming
objects. It is also possible that when the new patterns are
being established, more network calls are used due to the
use of the underlying P2P overlay. However, as discussed in
Section 5, our model is sensitive to these kinds of network
changes and adapts quickly with the changes.

In this experiment, we verified the adaptation of the
model by counting the number of network calls at different
time points. The system setting is the same as the “Mixed
without Random”. Figure 11 shows the result. We can see
that during the time of system bootstrap, the network traffic
is higher. This is because at that time there was no history
information and all the objects were found by P2P calls.
However, after the TISH model has been established, only
a few network calls are used and the number of network
calls stays stable.

6.4 Query Processing Cost

In this experiment, we executed 10,000 trace queries on an
established model (object movements were stopped after

Total Network Calls vs. Time
200000 T T T T

150000 -
100000 f;

50000 |

number ot network calls

-,

L T

0 200 40 600 800 1000

o
epoch

. 11: Number of Network Calls vs. Time

3!
4o

Distribution of Number of Network Calls

number of queries

34 67

23 45 56
average number of network calls

Fig. 12: Distribution of Number of Network Calls for Query
Processing

1,000 epochs) to see how efficient the query processing is,
using the “Mixed without Random” setting. All traces were
initiated from a node on the moving path of the queried
object. We calculated the average number of network calls
for the discovery of each path segment, by dividing the
total number of network calls used for each query by the
length of the moving path for the object being queried.

The distribution of the average number of network calls
used for each path segment is shown in Figure 12. We note
that most queries used 1 to 2 network calls on average
for each path segment. The average number of network
calls used for each path segment for all the queries is 1.27.
We can therefore conclude that the model is efficient in
supporting tracing queries.

6.5 The Scalability

In this experiment, we want to see how scalable our
TISH model is against i) variation on volumes of object
flows and ii) variation on network topologies. We exploited
the number of network queries used for maintaining the
model as the measurement of scalability. We compare TISH
with our implementation of EPCglobal architecture® under
the same experimental settings. EPCglobal developed a
Discovery Service (DS) standard which is used to trace
individual items. To enable the traceability, partners have
to register all the objects to the service.

Data Volume: In this test, we examined the impact of the
data volume on the performance of the model by compar-
ing the total size of network traffic with the EPCglobal

5. http://www.epcglobalinc.org

TISH vs. EPCglobal on Data Volume

180000

TISH —-=-
EPCglobal
160000 |-

140000 -
120000 -
100000 -
80000 -

60000 |-

network trattic (kb)

40000 -

20000 -

100 200 300, 400, 500 600 700, 800 QD;) 1000
number of objects sent each epoch

(a) Scalability against Data Volume

TISH vs. EPCglobal on Fan-out

180000

" TISH -~
EPCglobal
160000 |-

140000 o
120000 -
100000 -
80000 -

60000 |

network traffic (kb)
B

40000 |- e
a -

o I
20000 - o T
A il

10 20 3‘0 ‘4‘0 éo éo 7‘0 x;o 90
fan-out (number of outgoing flows at each node)

(b) Scalability against Network Topology

Fig. 13: Network Traffic Cost and Scalability

architecture implementation. We controlled the volume of
object flows by varying the value of V (Figure 7) from 100
to 1000. The result is shown in Figure 13a. As we can see,
in the case of the TISH model, the network traffic is fairly
constant compared to the cost of EPCglobal architecture
which increases quickly with the number of objects sent in
each epoch. This is because the TISH model samples the
input and only queries the objects in the sampled set. Nodes
in the EPCglobal architecture need to send information
about each object to the Discovery Service.

Network Topology: In this test, we investigated the perfor-
mance of our model on different network topologies. Using
default settings, we varied the maximum fanout to change
the connectivity of the network. The maximum fanout
varies from 5 to 90. Figure 13b shows that the cost increases
for both the TISH model and the EPCglobal architecture
when the fanout increases. However, the TISH model
increases much slower than the EPCglobal architecture.
More fan-outs cause more business neighbors at each node,
and according to our experiment settings, more objects are
sent and received at each node. However, the cost of the
TISH model increases slowly because it samples the input
and chooses the most possible neighbors first to query. In
contrast, the EPCglobal architecture sends the information
about all the objects to the DS.

7 RELATED WORK

In [6] and [8], the fundamental problems in RFID data
management and query processing are discussed. One of
the important topics lies in how to develop an efficient
model to infer the implicit business knowledge from large
volumes and distributed RFID data streams. In this section,
we review the major techniques that are most closely related
to our proposed approach.

EPCglobal® is an organization focused on developing
standards to support RFID in information rich trading
networks. It has developed a Discovery Service standard
which is used to trace individual items. To enable the
traceability, partners have to register all the objects to
the service. This architecture is not fully distributed and
scalable.

6. http://www.epcglobalinc.org

The authors of [5] extend their work on SPIRE [15]
to adapt to large-scale RFID networks. The location and
containment relationships are inferred in a distributed way.
[1] proposes a pure distributed RFID data model. Two
attributes sentTo and receivedFrom are associated with
each object. The distributed path is formed by records in
correlated nodes. However, this work does not solve the
problem on how to acquire these attributes. Sheng et al.
solve this problem by using a DHT-based architecture [17].
This work requires every item to be indexed in the network
which makes the approach costly. This same effort is further
extended in [26] by introducing a model which indexes
the objects in a structured P2P network and algorithms to
maintain the model. However, this model supports item-
level and aggregation traceability queries at the cost of
indexing spaces.

Query processing in a P2P environment is essentially
searching for the proper resource to answer the query. The
general P2P architectures, such as [14], [4] and [19], can be
applied. However, RFID records have implicit knowledge
about the distribution of objects, which can direct the
search in a more efficient fashion than the general methods.
In [11], Jinoh et al. propose the notation of accessibility to
capture both availability and performance as a measurement
in node selection. However, this work is still too generic
to consider the data itself as a reference. Most existing
Content-Aware P2P systems, such as [7] and [20], focus on
efficient replication of the data to increase its availability
based on the content of data. They are not feasible in
processing RFID data streams because the partners require
sovereignty of the data. In addition, compared to texts
or multimedia resources, replicating RFID data is often
unnecessary since only a very small portion of them is
going to be queried. In a very recent work in [2], the authors
propose a framework for RFID-based inter-organizational
cooperation. This work includes a cooperative, complex
event processing method, which is based on event noti-
fication services.

8 CONCLUSION

Recent advances in technologies such as radio-frequency
identification (RFID) make automatic tracking and tracing
possible in a wide range of applications. Unfortunately,

realizing traceability applications in large-scale, distributed
environments such as the emerging Internet of Things (IoT)
presents significant challenges due to their unique charac-
teristics such as large volume of data and sovereignty of the
participants. In this paper, we have introduced a distributed
model for sovereign RFID data streams by combining
the techniques of Titled Time Frame and Histogram. We
developed distributed algorithms to establish and maintain
the model. Our proposed model and algorithms are scal-
able and efficient. We demonstrated the usefulness of this
model in processing tracking and tracing queries. Extensive
experimental results showed the viability, efficiency, and
scalability of our proposed techniques.

Ongoing work includes further performance evaluation
with real data from a large-scale supply chain management
system. In this paper, we assume that the preprocessed
RFID data is clean and complete. In reality, this is hardly
true. The noisy, incomplete data introduces uncertainties
into the model. This is another challenging research prob-
lem for our future work.

ACKNOWLEDGMENT

Yanbo Wu’s work has been supported by AFSI Scholar-
ship from the University of Adelaide and Google Top-Up
PhD Scholarship from Google. Quan Z. Sheng’s work has
been partially supported by Australian Research Council
(ARC) Discovery Grant DP0878917 and Linkage Project
LP100200114. This research was partially supported by
National Science Foundation of China under its General
Projects funding #61170232, Fundamental Research Funds
for the Central Universities #2012JBZ017, National Key
Laboratory Research Funds RCS2011ZT009. The authors
would like to thank the anonymous reviewers for their
valuable feedback on this work.

REFERENCES

[1] R. Agrawal, A. Cheung, K. Kailing, and S. Schonauer. Towards
Traceability Across Sovereign, Distributed RFID Databases. In
Proceedings of the 10th Intl. Database Engineering and Applications
Symposium (IDEAS’06), Delhi, India, December 2006.

[2] L. A. Amaral and F. Hessel. Cooperative CEP-based RFID
Framework: A Notification Approach for Sharing Complex Business
Events Among Organizations. In Proceedings of the 5th IEEE
International Conference on RFID (RFID’11), Orlando, Florida,
April 2011.

[3] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica.
Looking up Data in P2P Systems. Communications of the ACM,
46(2):43-48, 2003.

[4] J.D. K. Ben Y. Zhao and A. D. Joseph. Tapestry: An Infrastructure
for Fault-tolerant Wide-area Location and Routing. Technical report,
Berkeley, CA, USA, 2001.

[S] Z. Cao, C. Sutton, Y. Diao, and P. Shenoy. Distributed Inference
and Query Processing for RFID Tracking and Monitoring. VLDB
Endowment, 4, February 2011.

[6] S.S. Chawathe, V. Krishnamurthy, S. Ramachandran, and S. Sarma.
Managing RFID Data. In Proceedings of the 30th International
Conference on Very Large Data Bases (VLDB’04), Toronto, Canada,
September 2004.

[7] H. Chen, H. Jin, X. Luo, Y. Liu, T. Gu, K. Chen, and L. Ni. Bloom-
Cast: Efficient and Effective Full-Text Retrieval in Unstructured P2P
Networks. IEEE Transactions on Parallel and Distributed Systems,
23(2):232-241, 2012.

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

R. Derakhshan, M. Orlowska, and X. Li. RFID Data Management:
Challenges and Opportunities. In Proceedings of the Ist IEEE
International Conference on RFID (RFID’07), Vienna, Austria,
March 2007.

H. Gonzalez, J. Han, X. Li, and D. Klabjan. Warehousing and
Analyzing Massive RFID Data Sets. In Proceedings of the 22nd
International Conference on Data Engineering (ICDE’06), Atlanta,
Georgia, USA, April 2006.

J. Han and M. Kamber. Data Mining: Concepts and Techniques.
Elsevier, 2006.

J. Kim, A. Chandra, and J. Weissman. Using Data Accessibility
for Resource Selection in Large-Scale Distributed Systems. IEEE
Transactions on Parallel and Distributed Systems, 20(6):788 — 801,
June 2009.

N. Koshizuka and K. Sakamura. Ubiquitous ID: Standards for
Ubiquitous Computing and the Internet of Things. IEEE Pervasive
Computing, 9(4):98-101, 2010.

C.-H. Lee and C.-W. Chung. Efficient Storage Scheme and Query
Processing for Supply Chain Management Using RFID. In Proceed-
ings of the 2008 ACM International Conference on Management of
Data (SIGMOD’08), Vancouver, Canada, 2008.

Y. Liu, L. Xiao, and L. Ni. Building a Scalable Bipartite P2P Overlay
Network. IEEE Transactions on Parallel and Distributed Systems,
18(9):1296-1306, 2007.

Y. Nie, R. Cocci, Z. Cao, Y. Diao, and P. Shenoy. SPIRE: Efficient
Data Interpretation and Compression over RFID Streams. [EEE
Transactions on Knowledge and Data Engineering, 24(1):141-155,
2012.

Q. Z. Sheng, X. Li, and S. Zeadally. Enabling Next-Generation RFID
Applications: Solutions and Challenges. IEEE Computer, 41(9):21-
28, September 2008.

Q. Z. Sheng, Y. Wu, and D. Ranasinghe. Enabling Scalable RFID
Traceability Networks. In Proceedings of the 24th International
Conference on Advanced Information Networking and Applications
(AINA’10), Perth, Australia, April 2010.

Q. Z. Sheng, S. Zeadally, Z. Luo, J.-Y. Chung, and Z. Maamar.
Ubiquitous RFID: Where are We? Information Systems Frontier,
12(5):485-490, 2010.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A Scalable Peer-to-Peer Lookup Service for Internet Appli-
cations. In Proceedings of the 2001 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communi-
cations, New York, NY, USA, 2001.

J. M. Tirado, D. Higuero, F. Isaila, J. Carretero, and A. Iamnitchi.
Affinity P2P: A Self-organizing Content-based Locality-aware Col-
laborative Peer-to-peer Network. Computer Networks, 54(12):2056
— 2070, 2010.

J. S. Vitter. Random Sampling with a Reservoir. ACM Transactions
on Mathematical Software, 11(1):37-57, 1985.

F. Wang, S. Liu, and P. Liu. A Temporal RFID Data Model
for Querying Physical Objects. Pervasive and Mobile Computing,
6(3):382-397, 2010.

E. Welbourne, L. Battle, G. Cole, K. Gould, K. Rector, S. Raymer,
M. Balazinska, and G. Borriello. Building the Internet of Things
Using RFID: The RFID Ecosystem Experience. I[EEE Internet
Computing, 13(3):48-55, May/June 2009.

Y. Wu, D. Ranasinghe, Q. Z. Sheng, S. Zeadally, and J. Yu.
RFID Traceability Networks: A Survey. Distributed and Parallel
Databases, 29(5):397-443, 2011.

Y. Wu, Q. Z. Sheng, and D. Ranasinghe. Facilitating Efficient Object
Tracking in Large-Scale Traceability Networks. The Computer
Journal (Oxford), 54(12):2053-2071, 2011.

Y. Wu, Q. Z. Sheng, and D. Ranasinghe. Peer-to-Peer Objects
Tracking in the Internet of Things. In Proceedings of the 40th
International Conference on Parallel Processing (ICPP’11), Taipei,
Taiwan, 2011.

Yanbo Wu received the PhD degree in com-
puter science from the University of Adelaide,
Australia. He is a lecturer in the School of
Computer Science and Information Technol-
ogy at Beijing Jiaotong University, China. His
research interests include Internet of Things,
distributed database and mobile computing.
He has published papers in various peer-
reviewed journals, including Distributed and
Parallel Databases and The Computer Jour-
nal (Oxford). He is the recipient of Google
PhD Top-Up Grant in 2011.

Quan Z. Sheng received the PhD degree
in computer science from the University of
New South Wales, Sydney, Australia. He is
a senior lecturer in the School of Computer
Science at the University of Adelaide. His
research interests include service-oriented
architectures, web of things, distributed com-
puting, and pervasive computing. He was the
recipient of the 2011 Chris Wallace Award for
Outstanding Research Contribution and the
2003 Microsoft Research Fellowship. He is
the author of more than 100 publications. He is a member of the
IEEE and the ACM.

Hong Shen is Professor (Chair) of Com-
puter Science in the University of Adelaide,
Australia. He was Professor and Chair of
the Computer Networks Laboratory in Japan
Advanced Institute of Science and Technol-
ogy during 2001-2006, and Chair of Com-
pute Science at Griffith University, Australia,
where he taught 9 years since 1992. He
has published more than 300 papers includ-
ing over 100 papers in international journals
such as a variety of IEEE and ACM transac-
tions, on parallel and distributed computing, networks, algorithms,
data mining and privacy preserving computing. He received many
honours/awards and served on the editorial boards of numerous
journals.

Sherali Zeadally received his Bachelor de-
gree in Computer Science from the Univer-
sity of Cambridge, England, and the Doc-
toral degree in Computer Science from Uni-
versity of Buckingham, England, in 1996.
He is currently an Associate Professor at
the University of the District of Columbia.
He currently serves on the Editorial Boards
of 15 peer-reviewed international journals.
He has served as a Guest Editor for over
a dozen special issues of various peer-
reviewed scholarly journals. He is a Fellow of the British Computer
Society and a Fellow of the Institution of Engineering Technology,
UK. His research interests include computer networks including
wired and wireless networks, network/system/cyber security, mobile
computing, ubiquitous computing, RFID, multimedia, and perfor-
mance evaluation of systems and networks.

