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Abstract

Link prediction based on knowledge graph embed-
dings (KGE) has recently drawn a considerable
momentum. However, existing KGE models suf-
fer from insufficient accuracy and hardly evaluate
the confidence probability of each predicted triple.
To fill this critical gap, we propose a novel confi-
dence measurement method based on causal inter-
vention, called Neighborhood Intervention Consis-
tency (NIC). Unlike previous confidence measure-
ment methods that focus on the optimal score in a
prediction, NIC actively intervenes in the input en-
tity vector to measure the robustness of the predic-
tion result. The experimental results on ten popu-
lar KGE models show that our NIC method can ef-
fectively estimate the confidence score of each pre-
dicted triple. The top 10% triples with high NIC
confidence can achieve 30% higher accuracy in the
state-of-the-art KGE models.

1 Introduction

Knowledge graphs (KGs), which record real-world factual
triples in the form of (head entity, relation, tail entity), have
been widely applied in various Al domains [Lin ef al., 2020;
Zhao et al., 2020]. To achieve automatic KG completion,
link prediction based on the knowledge graph embedding
(KGE) technologies have recently drawn considerable atten-
tion [Zhang et al., 2020; Ruffinelli et al., 2020]. Given an
entity and a relation (we call it an e-r query), a typical KGE
model scores all candidate entities and selects the entity with
the optimal score to compose a new triple. However, the new
predicted triples cannot be added into KGs directly because
of the insufficient accuracy and unreliable confidence mea-
surement [Safavi et al., 2020].

Researchers are recently devoted to improving the confi-
dence measurement of KGE models using probability cal-
ibration methods [Platt, 1999; Guo et al., 2017]. Tabacof
and Costabello [Tabacof and Costabello, 2020] find that KGE
models are not well-calibrated, and the probability estimates
for triple classification are unreliable. Safavi et al. [Safavi
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Figure 1: Reliability diagrams of the RotH model [Chami ef al.,
2020] before and after calibration on the FB15k237 dataset, in
which predicted triples are grouped into 10 bins according to their
confidence scores. Triple accuracy refers to the average accuracy
of triples in the same confidence level, while triple proportion (in
marigold) is a percentage of the total triple quantity. The confidence
score is the optimal score via a Sigmoid function.

et al., 2020] demonstrate that calibration techniques can sig-
nificantly reduce the calibration error of KGE models in the
relation prediction task. These research efforts mainly work
on classification tasks in the KGE domain, only predicting in
a few categories. However, link prediction is a more chal-
lenging “learning to rank™ problem, aiming to find the target
entity from tens of thousands of candidate entities.

There are two main problems restricting the effectiveness
of the probabilistic calibration methods for reliable link pre-
diction in the KGE domain:

* Unsuitable confidence measurement. Previous measur-
ing methods focus on the optimal score or compare it
with other scores in the score sequence. However, as
shown in Fig. 1(a), high optimal scores lead to high con-
fidence but cannot achieve the same level accuracy. This
is due to the fact that the score of each candidate only
indicates its relative order among candidates in one pre-
diction.

» Unreliable calibration metrics. Expected Calibration
Error (ECE) [Niculescu-Mizil and Caruana, 2005] is
commonly utilized to evaluate the calibration effect, but
is not suitable for link prediction. Although ECE is
greatly reduced after calibration in Fig. 1(b), most of
the triples are compressed into the low confidence level,
making it very hard to extract high-accuracy triples.



In this paper, we propose a novel confidence measure-
ment method based on causal intervention, called Neighbor-
hood Intervention Consistency (NIC). Different from previ-
ous methods focusing on the optimal scores, we evaluate
the confidence score by verifying the robustness of predic-
tion results. Benefiting from a causal inference analysis,
we propose a NIC framework actively intervening the scor-
ing process of KGE models. Specifically, we generate a se-
ries of neighborhood vectors for an input entity by adjusting
the entity vector’s value in different dimensions and observ-
ing whether the output sequences of the model changes or
matches the original one. On this basis, we design several
types of neighborhood intervention values and a dimension
selection strategy for high-dimensional KGE models.

Furthermore, our link prediction experiments exploit new
evaluation metrics to verify whether the predicted triples are
valuable for KG completion, including the top 10% accu-
racy and confidence variance. Ten popular KGE models are
selected for the evaluation, including six high-dimensional
models and four low-dimensional ones. The experimental
results show that NIC outperforms previous confidence mea-
surement methods before and after calibration. The calibrated
NIC score can effectively overcome the drawback of low
confidence variance of the previous methods. Besides, the
top 10% triples with high NIC confidence can achieve 30%
higher accuracy in the state-of-the-art KGE models. Finally,
we verify the optimal choices of the intervention value and
prove that the dimension selection strategy can effectively
balance the computational efficiency and prediction accuracy
for high-dimensional KGE models.

2 Background

2.1 Knowledge Graph Embeddings

Let E and R denote the set of entities and relations, a knowl-
edge graph (KG) G is a collection of factual triples (h, r,t),
where h,t € F and r € R. |E| and |R| refer to the number
of entities and relations in G, respectively. Knowledge Graph
Embeddings aim to represent each entity e € E (or relation
r € R) as a d-dimensional continuous vector, and learn a
scoring function f : £ x R x E — R to score each triple.
Most KGE models are trained by minimizing a negative sam-
pling loss, to make the score of the qualified triple higher than
those of negative samples [Wang er al., 2017].

Link Prediction. Generalized link prediction tasks include
entity prediction and relation prediction. In this paper, we
focus on the more challenging entity prediction task. Given
an e-r query (e,r), the typical link prediction aims to find
the target entity m € F satisfying that (e, r,m) or (m,r,e)
belongs to knowledge graph G. As illustrated in Fig. 2(a),
a KGE model needs to score all candidate triples and output
a sorted score sequence. In the sequence, the entity with the
optimal score is selected as m to construct the new triple.

Typical KGE Models. Various KGE models have been pro-
posed, such as i) translation-based TransE [Bordes er al.,
2013] and RotatE [Sun et al., 2019]; ii) factorization-based
DistMult [Yang et al., 2015], ComplEx [Trouillon et al.,
2016] and TuckER [Balazevic et al., 2019]; and iii) CNN-

Table 1: The score functions of 10 different KGE models, where
v > 0 is the margin value, o denotes the element-wise Hadmard
product, * denotes the convolution operator, X denotes the tensor
product, €® denotes a complex-number vector. N is the number of
fact triples 7', and Nr- is the number of negative samples T”. Dp;
is the hyperbolic distance, @ is Mdbius addition operation, Rot()
and Ref () refer to the specific transformation operation.

Model Score Function Model Score Function
TransE [h+r — t TransH Dpyp(h@r,t)
DistMult ~ h7diag(M,)t DistH Dpyp(hor,t)
ComplEx  Re(h®Tdiag(MZS)t®) RotH Diyp(Rot(r)h, t)
ConvE fvee(f([h;F] * w)) W)t RefH Dpyp(Ref(r)h,t)
RotatE |hor® —t] TuckER W xhxrxt

based ConvE [Dettmers et al., 2018] and ConvKB [Nguyen
et al., 2017]. The major difference among them is the scoring
function, because the negative sampling strategy or the loss
function is generally universal.

Based on the hyperbolic space, Chami et al. [Chami ef al.,
2020] recently propose two KGE models, RotH and RefH,
which perform well in low-dimensional KGE situations. To
ensure the breadth of the low-dimensional KGE evaluation,
we further extend two hyperbolic-based variants, TransH and
DistH, inspired by TransE and DistMult. Table 1 displays the
scoring functions of the ten KGE models used in this paper.

2.2 Probability Calibration

The calibration of KGE models focuses on predicting confi-
dence scores representing the actual correctness probabilities
of predicted triples. Under an ideal situation, if the model pre-
dicts that a triple is true with a 0.9 confidence score, it should
be correct 90% of the time. Model calibration requires reli-
able confidence measurement and effective calibration meth-
ods to fix the calibration errors.

Confidence Measurement Methods. In the KGE domain,
two confidence measurement methods, SigmoidMax (SIG)
and TopKSoftmax (TOP), have been applied in very recent
literature [Tabacof and Costabello, 2020; Safavi et al., 2020].
Given the sorted score sequence .S of a prediction, the two
methods measure the confidence score by:

Psig(S) = 1/(1 + e~mee(9) (1)
K

Prop(S) = maz (e /(3 %)) @)
=1

Both of them are computed by the single sequence .S and fo-
cus on the optimal score.

Calibration Methods. There are also two typical calibration
methods. Platt scaling [Platt, 1999] inputs prediction scores
into a logistic regression, and learns scalar weights to output a
confidence score for each sample. Isotonic regression [Guo et
al., 2017] is a non-parametric calibration method, which fits
a non-decreasing piece-wise constant function to the model
output. Both methods can effectively improve calibration, but
depend on reliable confidence measurement.

3 Neighborhood Intervention Consistency

We discuss a novel confidence measurement method, Neigh-
borhood Intervention Consistency (NIC), in this section.
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Figure 2: (a) An illustration of link prediction process. (b) Causal
graph of a KGE model with an intervention. In the causal graph, the
direct links denote the causalities between the two nodes: cause —
effect. (¢) An illustration of the main NIC framework (d = 4).

First, a causal graph is utilized to reveal the fundamental mo-
tivation of this method in Sec. 3.1, and then we introduce the
basic framework of NIC in Sec. 3.2. After that, we detail two
key technical components, neighborhood intervention and di-
mension selection, in Sec. 3.3 and 3.4, respectively.

3.1 Motivation and Causal Inference

For link prediction, a confidence score should reflect the pos-
sibility of whether the predicted triple is the optimal choice in
the prediction. We argue that a high confidence contains two
meanings: i) significance: the optimal score should obviously
outperform the others; and ii) robustness: a disturbance of the
input data should not affect the prediction results.

The two confidence measurement methods mentioned in
Sec. 2.2 aim to measure the significance from the output score
sequence. However, they fail in the link prediction task be-
cause the patterns among different scores vary unstably in dif-
ferent sequences. Therefore, we focus on the second aspect,
the robustness of score sequences. Inspired by the causal-
ity theory [Pearl and Mackenzie, 2018], rather than observ-
ing the association among different scores in the single se-
quence, our approach actively intervenes the scoring process
by using multiple similar input vectors, and then judges the
consistency of the output sequences.

To intervene in the scoring process, the causes affect-
ing the generation of score sequences should be analyzed.
Given a trained KGE model M and multiple e-r queries
Q = {(ei,7)|e; € E,r € R} with the same relation r, we
formulate the causalities in the KGE model with a Structural
Causal Model (SCM) [Pearl, 2000]. As illustrated in Fig.
2(b), the entity vector e are the exogenous variables contain-
ing d dimensions, and each dimensional value as a variable
takes part in the whole inference process. After the calcula-
tions in M, the transformed entity vector e’ are the endoge-
nous variables of e and also the direct cause of the score se-
quence S. Note that, one variable in the transformed vector

€’ is determined by not only that of the same dimension in e,
but also the other dimensional variables.

Benefiting from the causal graph, we can pinpoint the roles
of different parts in the KGE model. To intervene in the score
sequence, we use the causal intervention: P(S|e,do(e;).
This process modifies one of the dimensions in the input en-
tity vector and so as to exclude the effect of this variable on
the score sequence. For d-dimensional embeddings, we can
generate d different neighborhood input vectors by modifying
each dimensional variable, and formally we have:

1
=327
i=0
It should be noted that we intervene the input vector e rather
than the direct cause €’, because before modifying an endoge-

nous variable in €’, its exogenous variable has also affected
the other dimensions of €’.

3.2 The NIC Framework

Inspired by the causal intervention process, we propose the
new confidence measurement which aims to evaluate the ro-
bustness of score sequences. The NIC framework is illus-
trated in Fig. 2(c) and contains three main steps:

P(S|dole) (e:)) 3)

Step 1. Neighborhood Intervention. To achieve causal in-
tervention, we first modify each dimensional values of the in-
put entity vector e in turn and generate d different neighbor-
hood vectors. Specifically, the neighborhood vectors N, €
R%*4 is computed by:

N.=(1-1) xe+1; xv(e), “)

where I; € R?*4 is an identity matrix, and v(e) is a function
that outputs an intervention value used to replace the original
value in e. We utilize multiple kinds of intervention values
for different entity vectors, which will be detailed in Sec. 3.3.

Step 2. Sequence Generation. In this step, we first gather
the original score sequence by inputting the original entity
vector e into the KGE model. As the size of entity set is huge,
we extract the top K scores S and the corresponding entities
{e; € E|0 < i < K} from the sorted sequence. Then,
using the narrowed entity set and the neighborhood vectors
N, (instead of e) as inputs, we can gather neighborhood score
sequences SV = {SNi|0 < i < d} from the model. The
relative ranking of the K candidate entities in each sequence,
is denoted by o(S™i) = Argsort(SNi), which contains the
sorted candidate indexes in length K.

Step 3. Computing Consistency. The ranking o(S") of
each neighborhood sequence is expected to be consistent with
o(.S) of the original sequence, especially the part with higher
scores. For this, we define the consistency value ¢ between

the original sequence S and each SV7, i.e.,
J

<(8,8%) =Y "a(8);(1 — Sgn(le(S);

j=0

—o(S™);D), ¥

where o (-) and Sgn(-) refer to the Softmax function and the
Sign function, respectively. The consistency value ¢ = 1
when the two sequences having the same candidate index in



the top J positions. Otherwise, a mismatching at the higher
position would cause a larger decrease to s. Therefore, ¢ can
indicates the robustness of prediction results before and after
intervention. The hyperparamter J determines the number of
candidates when measuring consistency, it is usually lower
than K to ensure the candidate rankings having enough dif-
ferentiation.

Finally, given the consistency value of each neighborhood
sequence, the NIC score p,,;. is defined by:

d
prie(S) = = D2 (s(5,5™). ©
1=0

The value domain of py,;.(S) is [0, 1], such that it can be used
to measure the confidence score in KGE models.

3.3 Neighborhood Intervention

In the first step of the NIC framework, the ¢-th neighborhood
vector is generated by modifying the i-th dimensional value
of the original entity vector. There are still issues on how to
define the intervention value v to replace the original value.
The most straightforward way is setting v = 0 for all entity
vectors, such that the ¢-th dimension of the ¢-th neighborhood
vector is equal to zero. However, we find that its performance
is not ideal in our empirical studies.

Therefore, we further propose several intervention values
by considering the statistical specificity of different entity
vectors. Given the entity embedding vector e, there are
four kinds of intervention values, including zero, mean, max-
imum, and minimum, i.e., {0,avg(e), maz(e), min(e)}.
There are more choices of intervention values, but we argue
that the above four are representative. In Sec. 4, we will
compare the effectiveness of different intervention values.

The intervention value cannot be selected randomly, be-
cause the NIC score should maintain uniqueness for the same
input. In addition, as the first attempt of neighborhood in-
tervention, this paper focuses on intervening one dimension
in each neighborhood vector. It might be feasible to modify
multiple values in the entity vector to generate more neigh-
borhood vectors, which will be our future investigation.

3.4 Dimension Selection

We consider the computational complexity of NIC. Mea-
suring the consistency by intervening each dimension costs
much less than the original prediction, as long as setting a
small value for the hyperparameter K. But the time com-
plexity of NIC is still linearly dependent on the embedding
dimension size d. Facing a high-dimensional KGE model
(with more than 200 dimensions), NIC using all neighbor-
hood vectors would cause high calculation cost.

Therefore, we design a dimension selection strategy to ac-
celerate the NIC calculation. Based on a hypothesis that a
dimension with lower variance hardly reflects the difference
among entities, we measure the variance of each dimension.
Then, we select a limited number of high-variance dimen-
sions, which contribute more in the d-dimensional vector.

Specifically, given the entity embedding matrix E €
RIEIX4 of a trained KGE model, E; ; refers to the j-th dimen-
sion of the i-th entity and the weight w; of the j-th dimension

is defined as:
|E|

1
wj = |E| Z(Ei,j — avg(E. ;))” @
i=0

Benefiting from the d-dimensional weight vector w =
[wg, w1, ..., wq], we can maintain the top D dimensions with
the highest weights and set others to zero. In Sec. 4, we will
verify the effectiveness of the dimension selection strategy
for high-dimensional KGE models.

4 Experiments

4.1 Experimental Setup

Our experimental studies are conducted on two widely used
datasets, WN18RR [Bordes et al., 2014] and FB15k237
[Toutanova and Chen, 2015]. The statistics of the datasets
are given in Table 2. With Train, Valid, and Test, we refer to
the number of triples in the training, validation and test sets.

Table 2: Statistics of the datasets.

Dataset |R| |E| #Train  #Valid #Test
FB15k237 | 237 14,541 272,115 17,535 20,466
WN18RR 11 40,943 86, 845 3,034 3,134

Ten KGE models (see Table 1) are trained by following
their original settings with the binary cross-entropy loss. For
the six high-dimensional KGE models, such as TransE and
TuckER, we set their embedding dimensions as 200, while
the four low-dimensional models’ embedding dimension is
32. We select the hyper-parameters in the NIC framework via
grid search. Specifically, we empirically select the number
of remeasured entities K among {3, 5,10, 100} and the po-
sition number J for computing sequence consistency among
{1,3,5,10}. All experiments are performed on Intel Core i7-
7700K CPU @ 4.20GHz and NVIDIA GeForce GTX1080 Ti
GPU, and implemented in Python using the PyTorch frame-
work.

4.2 Evaluation Metrics

Considering ECE (Expected Calibration Error) [Niculescu-
Mizil and Caruana, 2005] cannot adequately reflect the cali-
bration effects in the link prediction task, we introduce three
additional new evaluation metrics:

e CVar: the variance of confidence scores of all triples,

* T10%MRR: the average inverse rank of the top 10%
high-confidence triples, and

* T10%ACC: the average accuracy (equal to Hits@1) of
the top 10% high-confidence triples.

The CVar metric makes up for the drawback of ECE. The
lower ECE and higher CVar jointly indicate that the con-
fidence score can match the correctness probability better.
T10%MRR and T10%ACC are designed for the demand of
practical KG completion. Instead of manually screening
the roughly-predicted triples, KG builders expect the high-
confidence triples having high enough accuracy. Therefore,
higher TI0%MRR and T10%ACC scores indicate a better
model performance for link prediction.



Table 3: Model calibration results for the link prediction task on the FB15k237 and WN18RR datasets. The best score among three measure-

ment methods is in Bold and the best ACC among models is underlined.

FB15K237 WNI18RR
Methods Dim ECE| T10%ACCT ACCt ECE| T10%ACC?T ACCH
SIG TOP NIC | SIG TOP NIC SIG TOP NIC | SIG TOP NIC
TransE 078 .015  .009 | 457 695 .714 152 259 .003  .003 | 278 125 123 .012
DistMult 010 .007 .009 | .758 .813 .842 202 074 .022 .018 | 528 715 .720 372
ComplEx 200d 011 .008 .008 | .790 .840 .866 202 055 .019 .016 | .737 956 .968 .395
ConvE 013 .007 .006 | .805 .842 .870 237 011  .011 .013 | 591 486 .620 400
RotatE 043 025 .021 | 544 665 714 241 012 017 016 | 985 975 991 428
TuckER 015 .006 .008 | .854 .863  .888 .266 031 .028 .027 | .700 .601  .827 443
RotH 025 .029 .012 | .761 817 .838 223 017 .018 .016 | .875 902 918 428
RefH 32d .020 .019 .013 | .801 .854 .869 219 012 .016 .020 | 928 .868 .948 414
TransH .040 .030 .021 | .663 705 .798 217 014 015 .012 | 244 109 .252 .081
DistH 035 .027 .021 | 662 .697 .703 202 021 .015 .012 | 704 760 .796 .399
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Figure 3: Reliability diagrams of the RotH model using different confidence measurement and calibration methods on two datasets.

4.3 Experimental Results

We first verify our NIC performance compared with exist-
ing confidence measurement methods, SigmoidMax (SIG)
and TopKSoftmax (TOP), utilizing ten different KGE models
on two datasets. NIC by default uses the intervention value
“maximum’” and no dimension weights. Given a trained KGE
model and test triples, three confidence measurement meth-
ods are utilized respectively and then calibrated by two cali-
bration methods, Platt scaling and Isotonic regression. To the
best of our knowledge, this is the most comprehensive exper-
imental study for the calibration of the link prediction task.
We analyze the results in details in the rest of this section.

Comparison of the Ten Models. Table 3 shows the ECE
and T10%ACC results of the ten KGE models after calibrated
by isotonic regression. In terms of the ECE metric, all three
confidence measurement methods can achieve low ECE val-
ues after calibration. NIC surpasses the other two methods
on most of models, especially the 32-dimensional models.
Comparing T10%ACC and the original accuracy ACC, all
three methods can help distinguish high-accuracy triples. Our

NIC outperforms the other two methods and significantly im-
proves by more than 30% in some of the KGE models. Be-
sides, TuckER and RotatE with 200 dimensions achieves the
best ACC on two datasets, respectively. The RefH model
outperforms the other low-dimensional models and achieves
much higher TI0%ACC.

In summary, fitting both low- and high-dimensional con-
ditions, NIC can maintain the high-confidence triples hav-
ing much higher accuracy. When only the most accurate
triples are required in practical applications, we can use low-
dimensional models with NIC measurements to achieve high-
efficient link prediction.

Comparison in One Model. We then concentrate on the
confidence calibration in a single model, to better compare
three confidence measurement methods using two calibration
methods. Following the previous work, reliability diagrams
bin all predicted triples by confidence scores into ten equally-
sized regions of [0,1]. To reflect the number distribution, we
further add triple proportion to each confidence bin. The re-
liability diagrams for the RotH model using different confi-



Table 4: ECE and T10%MRR of four uncalibrated models us-
ing NIC with different intervention values on the FB15k237 and
WNI18RR datasets. The best scores are in Bold.

Methods FB15K237 WN18RR
Max Min Zero Mean| Max Min Zero Mean
RotH 063 065 .130 .131 | .038 .039 .057 .058
(L'j RefH 049 052 119 120 | .043 041 .085 .086
= TransH | 077 .078 145 147 | 457 455 541 542
DistH 095 .087 .181 .182 | .086 .085 .133  .133
v RotH 787 778 782 780 | 915 901 904  .904
o RefH 830 840 844 .846 | 943 935 951 951
E TransH | 740 727 735 718 | .026 .030 .029 .029
DistH 642 657 646 .646 | 804 799 788  .788

dence measurement methods before and after calibration are
shown in Fig. 3(a) for FB15K237 and Fig. 3(b) for WN18RR.
For other models, we observe the similar patterns.

The left three diagrams in each group illustrate the con-
fidence distribution before calibration. On the two datasets,
the average accuracy of SIG and TOP has obvious differences
from the corresponding confidence level, while the accuracy
of NIC is relatively close to the confidence level before cal-
ibration. It indicates that the conventional method used in
other calibration tasks, is not suitable for confidence measure-
ment in link prediction.

Comparing two calibration methods, Isotonic regression
achieves lower ECE and higher CVar in most of experiments.
After calibrated, the ECE scores of SIG and TOP significantly
decrease but the confidence variances are relatively smaller
than NIC’s, especially on FB15k237. In contrast, NIC en-
ables a precise alignment of confidence and accuracy after the
calibration. Besides, NIC keeps a more divergent confidence
distribution with the confidence variance more than 0.06 on
FB15k237 and 0.11 on WN18RR.

4.4 Verification of Two Components

We deeply verify the effectiveness of two NIC components:

Neighborhood Intervention. We compare TI0%MRR and
ECE of NIC using four intervention values, i.e., zero, mean,
maximum, and minimum. The results are shown in Table 4.
For the four low-dimensional KGE models, using the maxi-
mum or minimum values achieve the best ECE in most mod-
els, and the zero and mean values perform slightly worse. Es-
pecially on FB15k237, their results are more than 50% lower
than that of maximum and minimum. The similar trend can
be found in the TI0%MRR results, the maximum and mini-
mum intervention precedes the others on RotH, TransH and
DistH. The reason might be that the maximum and minimum
values can provide better differentiation, while the others can-
not change the original value significantly.

Dimension Selection. We select the RotH model with 256
dimensions to verify the effectiveness of dimension selec-
tion. Fig. 4 shows the T10%ACC and T10%MRR results on
FB15K237. We can see that the T10%ACC of Weight(all) are
slightly better than that of the original NIC (i.e., NIC-Max).
As the improvement is not obvious, weighted summing is
not needed when using all neighborhood vectors. However,
the dimensional weight is valuable to reduce the number
of neighborhood vectors for efficiency. When using only
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Figure 4: T10%ACC and T10%MRR of the RotH model using
different dimension selection strategies on FB15K237. Weight(N)
refers to using the neighborhood vectors whose dimension weight
ranks in top N, Weight(all) means weighted summing all neighbor-
hood vectors and NIC-Max is the original NIC method equally treat-
ing each vector.

32 neighborhood vectors, Weight(32) achieves slightly lower
prediction accuracy than NIC-Max, but still outperforms sig-
nificantly the other two methods (TopkSoftmax and Sigmoid-
Max). With the increase of the dimensions, T10%ACC and
T10%MRR gradually grow until reaching around 160 dimen-
sions and then remain stable. It is feasible to select part of
neighborhood vectors to take care of both accuracy and effi-
ciency at the same time. Especially for the high-dimensional
KGE models, the dimension selection strategy can signifi-
cantly improve the computational efficiency of our proposed
confidence measurement method.

5 Conclusion

Recent knowledge graph embedding (KGE) models can be
rarely applied in the KG completion tasks in practice due to
low prediction accuracy and unreliable confidence measure-
ment. In this paper, we present a novel confidence measure-
ment framework, namely Neighborhood Intervention Con-
sistency (NIC). Based on the causal intervention, NIC ac-
tively intervenes the input entity vector to measure the pre-
diction robustness. The experimental results show that our
NIC method can effectively estimate the prediction accu-
racy while keeping an acceptable variance. Furthermore,
NIC achieves 30% higher accuracy for the top 10% highest-
confidence triples in the state-of-the-art KGE models. In the
future, we will further improve our method by intervening
multiple dimensions in one neighborhood vector, and by tak-
ing both statistical significance and prediction robustness into
the consideration.
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