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Abstract—Graph-based fraud detection has attracted increas-
ing attention in recent years, reflecting its growing potential in
mitigating sophisticated fraudulent activities. The main objective
of graph-based fraud detection is to discern between fraud-
sters and normal entities within graphs. As fraudsters adopt
increasingly sophisticated camouflage tactics, combating them
has become an urgent task. Despite the complex interactions
within real-world networks involving high-order relations, ex-
isting graph-based fraud detection methods often neglect non-
pairwise relationships among entities in graphs. Thus, we empha-
size the significance of investigating beyond pairwise relationships
for building an effective fraud detection model. In this paper,
we propose constructing a hypergraph from the original input
graph to encapsulate comprehensive high-order relations and
present TROPICAL, a novel TRansfOrmer-based hyPergraph
LearnIng for detecting CAmouflaged maLicious actors in online
social networks. TROPICAL learns representations by processing
different hyperedge groups and incorporates positional encodings
into the aggregated information to enhance their distinctiveness.
Subsequently, the model feeds the learned aggregated sequential
information into the transformer encoder, achieving rich rep-
resentations for effective camouflaged fraudster detection. The
superiority of TROPICAL is demonstrated through experiments
conducted on two real-world datasets, compared against the state-
of-the-art fraud detection models. The source codes and datasets
of our work are available at https://github.com/VenusHaghighi/
TROPICAL.

Index Terms—Hypergraph Learning, Camouflage, Fraudster
Detection

I. INTRODUCTION

The proliferation of the Internet and online services has led
to a substantial increase in fraudulent activities. Fraudsters
have become more crafty, often causing destructive impacts
and making the identification process more challenging [1].
Recently, graph-based fraud detection approaches [2], specif-
ically graph neural network (GNN)-based ones [3], [4], have
attracted enormous attention in academia and industry due
to their ability to capture rich behavioral information among
entities within graph-structured data. However, existing graph-
based approaches overlook the high-order relationships among
entities, focusing solely on pairwise connections, which is
insufficient for fully inferring the correlations among entities.

There are two major challenges in current GNN-based
fraud detection models [5], [6]. Firstly, they are vulnerable to

the camouflage behavior of fraudsters, wherein the fraudsters
deliberately establish many connections to normal entities
[7]. For instance, spammers often use benign accounts to
post their spam reviews or add links to well-liked items
in a product review system. This behavior alleviates the
fraudsters’ suspiciousness and eventually bypasses detection
systems. Particularly, in the aggregation process of GNNs,
low-pass filtering is employed to retain the commonality of
node features in the same neighborhoods. Such aggregation
strategy leads to the assimilation of neighboring nodes, making
their representations more similar even if they belong to
different class labels, i.e., fraudulent or benign. Consequently,
distinguishing malicious nodes becomes challenging, which
significantly hinders the performance of fraud detection [8].
Secondly, in addition to pairwise interactions, nodes within
graphs often demonstrate complex higher-order interactions
and dependencies. Existing fraud detection methods largely
overlook these non-pairwise dependencies among entities in
graphs. Incorporating these high-order dependencies into the
graph representation learning process is crucial to attaining
more comprehensive and accurate node representations.

In response to the challenges posed by camouflaged fraud-
sters within fraud graphs, several enhanced GNN-based fraud
detection models have been proposed [9], [10], [11], [12],
[13], [14], which mainly focus on improving the aggregation
procedure of GNN models by either employing the sampling
strategies or by enhancing the filtering process during the
aggregation phase. The sampling techniques aim to fulfill
the homophily assumption, a fundamental aspect in designing
GNN models, ensuring that representations of connected nodes
are proximate to each other in the embedding space [6].
Consequently, nodes with dissimilar features are excluded
from the aggregation process. The second group of approaches
have discovered that the existence of anomalies leads to a
‘right-shift’ phenomenon in the spectral energy distribution,
where less concentration is on low frequencies and more on
high frequencies [11]. Hence, these approaches propose to
extract different frequencies of information, including both
low-frequency and high-frequency information, during the ag-
gregation process to achieve discriminative embeddings [15].

Despite their success in detecting fraudulent entities, these



proposed models fail to accurately characterize high-order
interactions, thereby constraining their ability to capture and
learn from complex and intricate relationships presented in
fraud graphs. We delve into this problem and argue that
learning from such high-order relationships is crucial but
under-explored. To bridge this gap, we intend to answer the
following two questions in this paper:

o How can we construct a hypergraph from the original
input graph to effectively encode high-order data cor-
relations and maximize the information for identifying
fraudsters?

o How can we comprehensively learn from the constructed
hypergraph to effectively detect camouflaged fraudsters?

To answer the first question, we employ a two-fold approach
to capture the structural and semantic relationships and pat-
terns, both local and global, among entities in graphs. We
begin by utilizing local structures to capture the immediate
interactions. Next, we extend our focus to the global level, ex-
amining the broader structure and semantic patterns to uncover
fraudulent relationships. Thus, a n-hop-based neighborhood
and k-nearest neighbors strategies are applied to generate
different hyperedge groups from the original simple graph.
To address the second question, we propose TROPICAL, a
novel TRansfOrmer-based hyPergraph learnlng framework for
detecting CAmouflaged maLicious actors. TROPICAL aims to
learn from the constructed hypergraph, generating low dimen-
sional sequential input embedding information. Subsequently,
we employ a transformer encoder to produce more com-
prehensive final representations from sequential embedding
information. In a nutshell, the main contributions of our work
are summarized as follows:

« To effectively encode high-order information for fraudster
detection, we employ a two-fold strategy for hypergraph
construction via capturing both local and global structural
and semantic information among entities in graphs.

o We develop a novel transformer-based hypergraph learn-
ing framework TROPICAL for fraudster detection, which
learns from the constructed hypergraph, captures high-
order relations among entities, and generates rich repre-
sentations for effective camouflaged fraudster detection.

o We extensively evaluate TROPICAL on two real-world
fraud datasets to validate its performance. The experi-
mental results demonstrate that TROPICAL outperforms
the state-of-the-art methods.

The rest of the paper is organized as follows. Section II
briefly introduces the relevant work in the literature. Section III
describes our problem and its related definitions, and Section
IV discusses the motivation of our research. The technical
details of our new proposed framework and the experimental
results are presented in Section V and Section VI, respectively.
Finally, Section VII offers some concluding remarks.

II. RELATED WORK

In this section, we give an overview of the relevant research
on hypergraph neural networks and further discuss the work
on graph-based fraud detection.

A. Hypergraph Neural Networks

The success of various graph neural network (GNN) models
[3] across different tasks, such as node classification, has
demonstrated their capability in revealing structural relation-
ships within graph-structured data [4]. However, GNN models
primarily focus on pairwise connections for generating node
representations, limiting their ability to effectively represent
complex high-order relations that extend beyond pairwise
associations. To bridge this gap, hypergraph learning has
recently emerged as a promising technique to capture and
model intricate high-order relations among entities in graph
data, finding a vast range of applications in multiple domains,
such as genetic medicine [16] and social recommendation [17].
Hypergraph Neural Network (HGNN) [18] is the first work
that extends GNNs to hypergraphs by designing a hyperedge
convolution operation. HGNN* [19] is the extended version
of HGNN to handle and learn multi-type data correlations
by directly concatenating the hypergraphs constructed from
each single individual modality. HyperGCN [20] introduces a
novel way of training a GCN on hypergraphs based on tools
from spectral theory. HyperSAGE [21] presents an inductive
learning framework to propagate information through hyper-
graphs efficiently. Hypergraph neural networks have found a
vast range of applications in multiple domains, such as genetic
medicine [16] and social recommendation [17]. Nevertheless,
its application in the domain of fraud detection remains limited
and relatively unexplored. To the best of our knowledge,
this is the first work that leverages hypergraph learning for
identifying camouflaged malicious actors or fraudsters within
online social networks.

B. Graph-based Fraud Detection

Considering the camouflage behavior of fraudsters in net-
works, there is a growing interest in designing GNN-based
models that exhibit robustness against these camouflaged
fraudulent activities. Two general approaches exist to en-
hance GNN-based fraud detection models against camouflaged
fraudsters. The first approach modifies the neighborhood struc-
ture within the aggregation process of GNN. GraphConsis
[12] is the first work that explores the graph inconsisten-
cies problem derived by camouflaged fraudsters. To boost
the aggregation process in GNN models, GraphConsis filters
dissimilar neighbors for a given central node based on a
pre-defined threshold. CARE-GNN [10] is another study that
adopts reinforcement learning to adjust a threshold and refine
the graph structure before the aggregation process. PC-GNN
[22] designs a label-balanced sampling technique for node and
edge selection in sub-graph training. Following this, it employs
a sampler to over-sampling neighbors for the minority class
while under-sampling neighbors for the majority class.

The second approach focuses on improving the aggregation
process of GNN models by devising an adaptive aggregation
strategy. FRAUDRE [13] proposes a GNN-based fraud detec-
tion model that is dual-resistant to graph inconsistencies and
the imbalanced nature imposed by fraudsters. H>-FDetector
[23] introduces a new information aggregation strategy to



make the homophilic (resp., heterophilic) connections prop-
agate similar (resp., different) information. BWGNN [11]
introduces a novel graph neural network architecture based on
the band-pass Hammond’s graph wavelet theory, enhancing
the distinction of anomalies within graphs. COFRAUD [9]
is a correlation-aware fraud detection model, that explores
the correlation among multi-relation interactions within fraud
graphs and introduces a fraud detection model based on two
statistical metrics, i.e., alienation and marginalization.

Despite the promising success attained by the previous stud-
ies, they largely overlook non-pairwise relationships among
nodes within graphs. Hence, there is an urgent need to learn
the high-order relations among nodes, aiming to generate more
comprehensive representations. Our study stands as a pioneer-
ing effort, exploring and leveraging rich non-pairwise struc-
tural and semantic information among nodes within graphs to
construct a more effective fraud detection model.

III. PRELIMINARIES
A. Definitions

Multi-relation Graph. Given a multi-relational graph, which
can be denoted as G = {V, X, {E,|E_,}, Y}, where V is the
set of nodes {vy,vs, ..., v }, and each node is associated with
a d-dimensional feature vector z; € R*. X = {z1,22, ey T }
is feature vector of all nodes. E = {E1, Es, ..., £, } is the edge
set under R relations. y; € Y is a binary label for a subset
of labeled nodes, where y; = 0 indicates benign nodes and in
contrast y; = 1 corresponds to fraudulent ones.

Relation-specific Subgraph. We create distinct subgraphs
for each relation type within the multi-relation graph. Each
of these subgraphs, denoted by G, |i_;, contains nodes and
relations of only one type.

Hypergraph. In contrast to a simple graph, an edge within
a hypergraph connects multiple nodes rather than just two
nodes. A hypergraph is defined as G = (V, €, X), where V
and X are the node set and the corresponding node attributes,
respectively. The edge degree and node degree matrices of G
are indicated as D, and D,,. G can be denoted by an incidence
matrix H = |V| x|€|, where h(v, e) = 1 if the node v belongs
to hyperedge e, otherwise h(v,e) = 0.

B. Problem Statement

Graph-based Fraud Detection. Given a multi-relational
graph G, distinguishing fraudsters from normal nodes with
the maximum accuracy is the main objective of the graph-
based fraud detector. Fraud detection is defined as a binary
node classification task as follows:

f:V—={0,1},
max Z 1[f (vs) = yil, 6]
v; VU

where f is the learnable function that predicts the labels of
nodes, and 1[.] is the indicator function that is 1 if the condition
is true and 0 otherwise. Only the labels of a subset of nodes
are known. A fraud detector is trained based on the known
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Fig. 1: a) The density of fraudsters vs. the number of hops
for different relations of the Amazon dataset. b) The density
of fraudsters for various K values of nearest neighbors for
the Amazon dataset. The plots illustrate that higher-order
connections among fraudsters can be generated based on
certain values of n and K, which has the potential to reveal
the behavioral patterns of fraudulent activities effectively.

labels, v € V1, and then the suspiciousness of unlabeled nodes,
v € Vy, can be predicted.

IV. MOTIVATION

To study the behavior patterns of fraudsters from the
relation-specific subgraph structure, we leverage graph statis-
tics on a real-world public dataset Amazon [24], which
includes three types of relations: 1) U-P-U, 2) U-S-U, and
3) U-V-U (see Section VI-A). First, we utilize the following
formula to measure the density of fraudsters from the structural
spaces of relation-specific subgraphs.

Z [{vjlvj € Nhop, (vi),y; = 1}

v;€EVE&y;=1 |Nh0pn (U1)|

pn(vi,n) = 2

Here p,(v;,n) represents the density of fraudsters
(structure-based) within the n-hop neighborhood of fraudulent
node v;, and Npep, (v;) denotes the set of nodes in the n-
hop neighborhood of node v;. We aim to reveal the relational
patterns of fraudsters by expanding the n-hop neighborhood.
As illustrated in Fig. 1 (a), the density of fraudsters increases
as the m-hop neighborhood expands in different relation-
specific subgraphs of the Amazon dataset. This indicates that
fraudsters tend to establish connections with other distant
fraudsters primarily within their 3-hop and 4-hop neighbor-
hoods in different relation-specific subgraphs, but not beyond



that. Therefore, inspired by this observation, we aim to extend
our analysis beyond immediate or pairwise interactions. By
creating non-pairwise relations among fraudsters (based on
n-hop neighborhoods information), we can achieve a higher-
order understanding of fraudsters’ relational behaviors. The
inclusion of more fraudsters in higher-order neighborhoods can
lead to less heterophily neighborhood structure. This approach
enables the generation of a more comprehensive representation
paradigm for identifying fraudsters within fraud graphs.

Second, we analyze the density of fraudsters from the
feature spaces on the Amazon fraud graph by utilizing a
metric to measure the density of fraudsters based on K nearest
neighbors as follows:

>

v; EVE&y;=1

{vjlvj € Ninn, (vi),y; =1}

pr(vi, k) = | Ninng (Vi) 7

3)

where Ngpn, (v;) represents the set of nodes in the k nearest
neighbors of a fraudulent node v;. As shown in Fig. 1 (b), we
calculate the density of fraudsters for different values of k.
It can be observed that py(v;, k) increases for certain values
of k, indicating that extending beyond pairwise relationships
by identifying k nearest neighbors can effectively link more
fraudsters. Consequently, this approach can be highly benefi-
cial for generating more comprehensive node representations.

V. METHODOLOGY

In this section, we will first give a brief overview of
the whole framework of TROPICAL and then describe the
technical details of each component.

A. Framework Overview

As depicted in Fig. 2, TROPICAL consists of several main
components. Specifically, the hypergraph generation mod-
ule constructs different hyperedge groups from the original
multi-relational input graph based on n-hop neighborhood
and k-nearest neighbors information. The hyperedge groups
aggregation module aggregates different constructed hyper-
edge groups’ information to generate rich sequential input
features. The positional encodings module incorporates po-
sitional encodings into the sequential input features, making
it more distinct, and the transformer encoder module learns
the representations for our model. Finally, the classification
module distinguishes normal and fraudulent nodes based on
the learned model representations.

B. Hypergraph Generation Module

Hypergraph construction is the initial step in hypergraph
learning. To capture rich high-order relations among entities,
we employ a two-fold strategy to construct different groups
of hyperedges from the original multi-relational input graph.
The first focuses on leveraging data correlation with the graph
structure and the second involves utilizing the feature space
of nodes to generate hyperedge groups.

Hyperedge group using n-hop neighbors (£.p, ). The n-
hop neighborhood information is utilized for hyperedge group
generation from the data with graph structure. &j,p, finds

the related hyper vertices for a central node v through the
n-hop reachable positions in the graph structure. Hence, the
n-hop neighborhood of a vertex v; is defined as: Ny, (v;) =
{vj|AY; # 0,v; € N(vi)}, where N(v;) is the neighbor set
of v;, and A™ is the n'" adjacency matrix of input graph G.
The hyperedge group &op, can be formulated as:

Enhopn, = {Nhop,, (vi)|v; € V}. 4)

Enop,, extends the search radius to the n-hop neighborhood
within the graph structure, leading to groups of vertices for
the hyperedges to provide more comprehensive correlation
information. We also consider &y, to preserve the ego
network and low-order correlation of a given central node in
the original graph structure as basic needed information.

Hyperedge group using features (£, ). Considering the
feature for each vertex, the second group of hyperedges, i.e.,
Eknny» is generated by finding K nearest neighbors of that
vertex within the feature space. Given a central node wv;, its
K -nearest neighbors in the feature space are connected by a
hyperedge. Exnn, is formulated as follows:

gknnk = {Nknnk (Ui>|’U1‘ S V} (5)

This group of hyperedges aims at exploring the correlation
among entities within their features.

Combination of hyperedge groups. Different groups of
hyperedges are generated utilizing the above strategies. We
need to further combine them to generate the ultimate hyper-
graph. Using the incidence matrices corresponding for each
constructed hyperedge denoted as Hyop, , Hpop,,» and Hyp,,
we can concatenate them directly to form the incidence matrix
for the final hypergraph G as follows:

Hg = Hhozn ‘ |Hh0pn | |Hknnk‘ (6)

C. Hyperedge Groups Aggregation Module

The neighborhood aggregation function of traditional GNN
models such as GCN [25], GraphSAGE [26], and GAT [27]
primarily collects information from local neighbors, limiting
their ability to capture and generalize distant information
across graphs. Such an aggregation strategy fails to identify
fraudsters who perform camouflage in fraud graphs. Motivated
to solve the above limitation, we devise a hyperedge groups
aggregation strategy to access distant neighbors and capture
rich high-order information within fraud graphs.

Hyperedge Group Aggregation for &, . We devise a
Discriminator Aggregation strategy for constructed &pop,, to
highlight the distinct information of nodes from different
classes. Its primary objective is to generate discriminative
embeddings by increasing the distance between fraudulent and
normal nodes, enabling our model to effectively distinguish
between normal and fraudulent entities. Given a target node,
v; belongs to a hyperedge. We categorize hypernodes with
similar feature space into one group and those with dissimilar
features into another group. This allows performing separate
aggregation within each group. We employ Cosine similarity
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Fig. 2: The overview of the TROPICAL framework. TROPICAL takes a multi-relational graph as input. Firstly, the hypergraph
generation module constructs different groups of hyperedges for each relation-specific subgraph. Secondly, the hyperedge
groups aggregation module aggregates information from different constructed hyperedge groups to generate rich sequential
input features. Thirdly, the positional encodings module incorporates positional encodings into the sequential input features.
Finally, the transformer encoder module learns the representations and the classification module aims at predicting the class

of target node vy by minimizing the error of the loss function.

as a pivotal metric for measuring the similarities between
feature vectors of nodes in n-dimensional space as follows:
Z;.25
Toall gl % € Mooe: (01D
where v; is a neighbor of target node v; and belongs to
hyperedge Npop,, (v;). ; and x; are feature vectors associated
to nodes v; and v;, respectively.

Concretely, for a target node v; and its n-hop neighbors
under relation r, the nodes are divided into P groups as
V ={V*, V=}. VT and V™ include similar and dissimilar
hypernodes, respectively.

sim(v;,v;) = {

R ®)

where Hg, named as Group Encoding, is the sequence of P =
2 discriminative embeddings generated by [hT]" and [h™]" as
follows:

2
n 1
[h+] = Fagg = W Z L,
ueV+ti=1
o ©)
[h™]* = F,,, V] Z Ty
eV iz

where F,;, can be any permutation invariance aggregation
function such as sum or mean. We adopt the mean function
as Fogg.

We adopt the process of Hyperedge Group Aggregation
(HGA) for &), . Hence, for each target node v;, we perform

HGA for each individually generated Epop, and Ey,p, under

relation 7 to produce its final representation as follows:
H, = [h; ® h}], (10)

where @ is the concatenation operation, and Hy, is the Hop
Encoding of target node v; under relation r.

Hyperedge Group Aggregation for &, . Given a target
node v;, its Feature Encoding for &y, can be constructed as

follows:
Y e

ueNknnk (vi)

H, = Y

Moreover, to apply self-attention on the target node, we
combine the raw feature vector of the target node v;, i.e., x;,
with Hg to generate final Feature Encoding as follows:

hi = U(.ﬁiWi),
Hf = [hl] D HS7

(12)
13)

where h; is the linear feature projection of target node v;, and
o is the linear activation function.

Sequential Input Feature Generator. We combine all the
encodings to generate the final input feature sequence as
follows:

H = H, ¢ Hy. (14)

The length of the input feature sequence is S = R X
(P x N)+ 1+ 1, where R is the number of relations in



the multi-relational input graph, P is the number of classes
for group aggregation, N is the number of hops we adopt
for Epop, . It should be noted that the first one (i.e., 1) in the
formula accounts for feature aggregation based on iy, , and
the second one is for self-attention aggregation of the target
node.

D. Positional Encoding Module

To make the structural, relational, and feature information
more distinct in the generated sequential input data, H,
four positional encodings are added, which include: i) hop
positional encoding (Ej(.)), ii) relation positional encoding
(E,(.)), iii) group positional encoding (E,(.)), and iv) fea-
ture positional encoding (E¢(.)). We first perform the linear
transformation of sequential input data as follows:

Z = o(p(H)),

where function ¢ : RS*xd _s RS*dn 4 is the activation
function, and dj, is the final dimension of encoding.

Then, we add hop positional encoding to make the en-
coder aware of the multi-hop structural information. Further-
more, incorporating relation positional encoding empowers the
model to differentiate between various relations within the
fraud graph. In addition, employing group positional encoding
becomes imperative to differentiate between the aggregation
outputs of different groups of nodes. Moreover, we adopt fea-
ture positional encoding to make k-nearest neighbor features
and central node features more distinguished.

The details of the positional encoding module can be
found in Fig. 2. We employ learnable embeddings of different
positional encodings as a lookup matrix. Each lookup matrix
holds the learnable embeddings for different indices. When
an index ¢ is provided to the embedding layer, it retrieves the
corresponding row F(i) from the embedding matrix. Upon
incorporating positional encodings, the final sequential input
data takes the following form for target node v;:

Z' = [(Hpr, + Er())||--[|(Hp,r,, + Er(n))]

® [Hs + Ef(1)] @ [h + Ef(0)]

Hop positional encoding for relation r; can be incorporated
to Eq. 16 as follows:

Hy ., = (b}, + En(1)) & (h?

g,ri g7y

15)

(16)

+ En(2))] + Ep(i). (17)

Moreover, group positional encoding can be added to Eq.
17 as follows:

her, = [((h" + E,(1),h™ + E,(2)]}, + En(1))
® ((h" + Ey(1),h™ + E¢(2)]7, + En(2))] + Ep (1),

E. Transformer Encoder

(18)

We employ a transformer-based encoder to learn represen-
tations from the final sequential input data, Z’, generating in
Section V-D. Inspired by [28] and [29], in a transformer en-
coder, the multi-head attention modules are utilized to perform
deep interactions among vectors. The updating process of z;
for position 4 in input data, Z’, for layer [ + 1 is as follows:

zﬁ“ = Function(heady, ..., heady W', (19)

where Function is the concatenation function, z,? =z, h

is the number of attention heads, and W' is a projection to
match the dimensions between adjacent layers. Each attention
head is defined as:
heady, = Attention(Q™'2., Km’lz;-, Vm’lzé-),
=2 wig(V™'z),

JjeSs

w; ; = softmax (

(20
Qm’lz,ﬁ.Km’lzé
Vi ’

where Q"!, K™! V™l are the learnable weights of the
hh attention head, and w; ; is the attention scores using dot
products followed by softmax.

F. Classification Module

In TROPICAL, we adopt a weighted cross entropy loss
function to train our model:

Log ==Y [yyiog(ps) + (1 — ya)log(1 — py)],
v, EV

2L

where v is the training weight, which indicates the ratio of
fraud labels to normal labels, and y; is the label of node
v;. Eventually, we use the softmax function to compute the
abnormal probability as:

p; = softmax(z;), (22)

where p; is the probability of the last layer embedding of target
node v;.

G. Computational Complexity

In TROPICAL, we compute n-hop neighborhoods of nodes
in a graph as O(|V|c"d), where c is the average degree of
the graph and |V| is the number of nodes in the graph. We
also compute k-nearest neighbors of nodes with O(|v|kd),
where d is the embedding dimension. We consider the di-
mension of query, key, and values as dg=dx=dy=d for the
transformer encoder module. Therefore, the complexity of the
self-attention layer is O(S%d + Sd?), where S is the length
of the sequential input feature. The overall complexity of
TROPICAL is O(|V|c"d + |v|kd + eh(S?*d + Sd?)), where
h is the number of attention layers and e is the number of
training epochs.

VI. EXPERIMENTS
A. Experimental Setup

Datasets. Our experiments involve two real-world datasets:
Amazon [24], derived from musical instrument comments
on Amazon.com, and YelpChi [30], consisting of spam
reviews related to restaurants and hotels. In Amazon, three
relationships are explored: U-P-U (users reviewing at least one
common product), U-S-U (users sharing at least one same
star rating within a week), and U-V-U (users exhibiting top
5% mutual review similarities). YelpChi also includes three
relationships: R-U-R (reviews posted by the same user), R-S-R
(reviews under the same product with matching star ratings),



TABLE I: The statistical details of the datasets.

Dataset | #Nodes (Fraud%) ‘ #Features ‘ Class ‘ #Class ‘ Relation ‘ #Edges ‘ Hgige(GT) ‘ HE (G
. R-U-R 98,630 0.10 0.09
Positive 6,677 ’
. ’ R-T-R 1,147,232 0.95 0.82
YelpChi | 45,954 (14.53%) 32 L
Negative | 39,277 R-S-R 6,805,486 0.95 0.81
All (homo) | 8,051,348 0.93 0.81
Positive 821 U-P-U 351,216 0.81 0.83
. U-S-U 7,132,958 0.96 0.94
Amazon | 11,944 (6.87%) » | Nete | 7818 T UvU 2073474 097 0.95
’ All (homo) | 9,557,648 0.95 0.92

and R-T-R (reviews under the same product posted in the same
month). All (homo) includes all types of relations. We analyze
the camouflage behavior of fraudsters by adopting two metrics
for measuring the local and global heterophily rates of a given
multi-relational graph G. Global heterophily rate, H, eCilge(Gr),
calculates the proportion of edges that link two nodes from
different class labels, i.e., fraudulent and benign nodes, under
relation 7. HS, (G,) is defined as follows:

_ Heijlei; € Er,yi # 95}

HG
|E|

edge (GT)

(23)
We calculate the global metric of H eque(Gr) for both
YelpChi and Amazon datasets to prove the existence
of camouflage behavior among fraudsters. A high-score of
Hgige(G,.) (— 1) implies that fraudsters largely succeed to
camouflage themselves. We also utilize another metric, i.e.,
local heterophily value for a given fraudulent node v; of graph
G under relation r, which is defined as follows:

{vjlv; € No,,yi # yi}l

1
HL  (G,) = — 24
node( ) |V| Z du,- ( )
v; €EVE&y;=1 v
HE . (G,) calculates the average number of heterophilic con-

nections in local neighborhoods of fraudulent nodes in graph
G. Table I collects the statistical information of these two
datasets. According to HZ , (G,), we observe that fraudulent
nodes create over 80% of heterophilic connections in the
datasets, except the R-U-R relation of YelpChi. As a result,
camouflage is a prevalent action among fraudsters in fraud

graphs.

Baselines. We categorize the state-of-the-art models for overall
comparison. First, we select traditional GNN models including
GCN [25], GAT [27], and GraphSAGE [26]. FAGCN [15]
is an enhanced version of traditional GNN models designed
for low homophily settings. Second, hypergraph neural net-
work models such as HGNN [18] and HyperGCN [20] are
utilized to perform binary node classification on hypergraphs.
The third category focuses on the state-of-the-art GNN-based
fraud detection models for comparison. These fraud detection
models include GraphConsis [12], CARE-GNN [10], PC-GNN
[22], FRAUDRE [13], H?-FDetector [23], BWGNN [11], and
COFRAUD [9]. It is worth mentioning that we follow these
papers to choose hyperparameters for the regeneration of
results.

Evaluation Metrics. We adopt AUC and Macro-F1 as eval-
uation metrics to evaluate all models. AUC is the probability
that the model ranks a randomly selected positive sample
(fraudulent node) higher than a randomly selected negative
sample (benign node). Macro-F1 is the unweighted mean of
the Fl-score that indicates the performance of the model
particularly when imbalanced data are present.

Implementation Details. We implement our model using
Pytorch [31]. We also implement the baseline models and
regenerate their results in our environment based on the codes
provided by the authors. All models are run on Python 3.9.13,
1 NVIDIA Tesla P100 GPU, and 480GB RAM. For our model,
we select Adam as the optimizer. The learning rate and weight
decay are set to 0.001 and 0.0001. The number of transformer
encoder layers is set to 2 and 3 for Amazon and Yelpchi,
respectively. Moreover, the number of attention heads is set to
4, and the dropout rate is set to 0.1.

B. Performance Comparison

We compare the performance of TROPICAL with the base-
line methods. The results in Table IV show that TROPICAL
outperforms all other GNN models. It is worth noting that
GCN, GAT, GraphSAGE, and FAGCN are designed for single
relation input graphs, while others exploit and run for multi-
relational fraud graphs. We observe that directly applying
traditional GNN models for fraud detection fails to achieve
promising results. Traditional GNN models act as low-pass
filters during the aggregation process, which works poorly for
low homophily problems such as fraud detection.

While FAGCN demonstrates better performance compared
to traditional GNN models by incorporating both high-
frequency and low-frequency channels in the aggregation
procedure, there remains room for further improvement. We
employ HGNN and HyperGCN to perform learning on con-
structed hypergraphs from original graphs for Amazon and
YelpChi. Both HGNN and HyperGCN models outperform
traditional GNN models, indicating the significance of learning
on high-order graph structures. GraphConsis, CARE-GNN,
and PC-GNN achieve promising results in low homophily
settings by filtering dissimilar neighbors from the aggregation
process. FRAUDRE, H2-FDetector, COFRAUD, and BWGNN
improve the aggregation operation by incorporating high-
frequency information and stacking multiple modules, yet
their effectiveness is limited to pair-wise relationships. Our



TABLE II: Performance comparison under different percentages of training data.

YelpChi Amazon
Category Methods
10% 40% 10% 40%
AUC Macro-F1 AUC Macro-F1 AUC Macro-F1 AUC Macro-F1
GCN 0.5080 0.4608 0.5338 0.4608 0.7736 0.4751 0.7791 0.4751
GAT 0.5013 0.4608 0.4993 0.4608 0.7743 0.4751 0.7785 0.4751
GNN Models
GraphSAGE 0.5639 0.4608 0.5812 0.4608 0.6968 0.4751 0.7134 0.4751
FAGCN 0.7430 0.5589 0.7683 0.5601 0.8621 0.8176 0.8705 0.8236
HGNN 0.7554 0.6509 0.7654 0.6669 0.8356 0.7189 0.8438 0.7196
HyperGNN Models
HyperGCN 0.7657 0.6998 0.7883 0.7028 0.8241 0.7250 0.8358 0.7344
GraphConsis 0.6401 0.6113 0.6156 0.6289 0.8205 0.7546 0.8515 0.7765
CARE-GNN 0.7234 0.5867 0.7356 0.6081 0.8816 0.8821 0.8736 0.8836
PC-GNN 0.7804 0.6591 0.7943 0.6721 0.9231 0.8177 0.9305 0.8621
. FRAUDRE 0.7147 0.5958 0.7393 0.6165 0.8921 0.9098 0.8998 0.9102
Fraud Detection Models
H2-FDetector  0.8312 0.6904 0.8467 0.6988 0.9288 0.8312 0.9519 0.8396
BWGNN 0.8488 0.7167 0.8889 0.7598 0.9363 0.8372 0.9624 0.9126
COFRAUD 0.8314 0.7065 0.8869 0.7702 0.9258 0.8932 0.9503 0.9096
TROPICAL 0.8925 0.7567 0.9026 0.7764 0.9456 0.9164 0.9526 0.9264

proposed model, TROPICAL, surpasses GNN-based fraud de-
tection models in YelpChi. For Amazon, TROPICAL achieves
better results in terms of Macro-F1 and demonstrates a com-
parable performance to BWGNN in terms of AUC. The results
show that TROPICAL is capable to extract and learn rich
high-order information among entities, thereby successfully
overcoming the camouflage issue.

C. Parameter Analysis

Impact of embedding sizes and several transformer en-
coder layers. We investigate the sensitivity and performance
of TROPICAL under different values of hyperparameters. We
adjust the embedding sizes of all learnable embeddings from
16, 32, 64, and 128 to explore the degree of TROPICAL
sensitivity. Moreover, we set different numbers of transformer
encoder layers for TROPICAL. The results shown in Fig. 3
indicate that TROPICAL maintains acceptable stability with
regard to different hyperparameters for both YelpChi and
Amazon datasets. We also observe that deploying two layers
and three layers of transformer encoder for Amazon and
YelpChi, respectively, yields superior results.

Impact of parameters n and %k for generating &,
and &y, . The hyperparameters n and k are crucial in the
hypergraph generation module, serving as a preprocessing
step for the entire framework. Fig. 4 presents the AUC and
Macro-F1 scores of TROPICAL for both fraud datasets. Both
parameters n and k are varied from 2 to 7 to investigate
which combination leads to better AUC and Macro-F1. We
observe that for YelpChi, the combination n = 3 and k = 4
leads to better outcomes, while for Amazon, the combination
n = 4 and k£ = 5 produces better results. The proposed

TROPICAL therefore adopts these specific values for the
hypergraph generation module in YelpChi and Amazon.

D. Ablation Study

We conduct a set of ablation studies to demonstrate the
effectiveness of each individual component in TROPICAL.
There are six variants: 1) w/o GE: omits the Group Encoding
strategy, and instead, aggregates all nodes corresponding to
a specific hop as a single group using a mean function; 2)
w/o HE: excludes n-hop encoding information; therefore, we
exclusively utilize 1-hop neighborhood information in the Hop
Encoding process; 3) w/o FE: eliminates k-nearest neighbors
Feature Encoding in the input sequence so we only consider
the central node feature in the Feature Encoding process;
4) w/o PE: removes the Positional Encoding module so we
employ sequential data without any positional encoding as
the input of the transformer module; 5) w/o TE: replaces
the Transformer Encoder module with other encoders such as
LSTM module, and finally 6) TROPICAL: the primary version
that stacks all the components together.

As shown in Fig. 5, TROPICAL performs better compared
to other variants, indicating that each component plays an
important role in the model. The training ratio is set as 0.4. In
both datasets, w/o TE exhibits the worst results, which indi-
cates the importance of the transformer encoder. We observe a
significant drop by 6.43% and 5.87% in terms of AUC for the
w/o TE variant in both YelpChi and Amazon, respectively.
Moreover, the performance drops by 5.21% and 4.87% for
w/o TE in terms of Macro-F1 for YelpChi and Amazon,
respectively. TROPICAL incorporates multi-head attention in
the transformer encoder to adaptively reweigh group vectors,
enhancing the capture of semantic information.
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Fig. 3: Parameter Analysis. The performance of TROPICAL
on different embedding sizes (Row 1), and different numbers
of transformer encoder layers (Row 2).
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Fig. 4: Parameter Analysis. The performance of TROPICAL
for different values of parameters k£ (Row 1) and n (Row 2).

Furthermore, the results from the ablation study prove
that Hop Encoding and Feature Encoding are effective in
capturing distant and non-pairwise information within fraud
graphs. For YelpChi, Hop Encoding contributes 10.76%
and 5.43% improvements in AUC and Macro-F1, respectively.
The w/o FE variant demonstrates the effectiveness of Feature
Encoding, as the AUC decreases by 6.93% and 4.12% for the
YelpChi and Amazon datasets, respectively. Additionally,
the performance of w/o PE drops by 3.08% and 4.19% in
AUC for the Amazon and YelpChi datasets, indicating the
capability of the Positional Encoding module to enhance the
distinctiveness of the generated input features, leading to better
final results.

We further evaluate the effectiveness of different encoding
modules, including Group Encoding (GE), Hop Encoding
(HE), and Feature Encoding (FE), by incorporating various
combinations of these encoding modules into TROPICAL.
Table III shows that TROPICAL achieves the best performance
with all the encoding modules (Row 1). The variant without
the complete set of encoding modules (i.e., the last row)
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Fig. 5: The ablation analysis of the TROPICAL approach.

TABLE III: The ablation analysis to verify the effectiveness
of different encoding modules in TROPICAL.

Encoding Module AUC F1
YelpChi  Amazon  YelpChi  Amazon
Hg, Hy, He 0.9026 0.9526 0.7764 0.9264
Hg, Hp 0.8333 09114 0.7365 0.8914
Hg, He 0.7941 0.9080 0.7308 0.8847
Hp, He 0.8412 0.9236 0.7454 0.8890
Hg 0.7612 0.8894 0.7105 0.8629
Hp 0.7768 0.8801 0.7036 0.8569
He 0.7815 0.8962 0.7110 0.8654
0.7516 0.8469 0.6883 0.7248

performs worse compared to other variants, demonstrating the
effectiveness of all learnable encoding modules in TROPICAL.

E. Time Efficiency

This experiment focuses on time efficiency and we compare
TROPICAL with four state-of-the-art fraud detection mod-
els, CARE-GNN [10], FRAUDRE [13], BWGNN [11], and
COFRAUD [9]. We calculate the average training time per
epoch while adjusting the training ratio from 10% to 40%.
Furthermore, we set the embedding size of the hidden layer
to 16 and 64 for all methods on the Amazon and YelpChi
datasets, respectively. As depicted in Table IV, TROPICAL
runs significantly faster than CARE-GNN and FRAUDRE on
both datasets. Compared to the recent high-performing models,
i.e., BWGNN and COFRAUD, TROPICAL demonstrates a
comparable running efficiency, while achieving better perfor-
mance (see Section VI-B).



TABLE IV: Training time cost of TROPICAL and the state-
of-the-art fraud detection models in seconds.

Training Percentage

YelpChi

10% 20% 30%  40%
FRAUDRE 11.02 1453 17.85 1847
CARE-GNN 343 493 6.71 8.26
BWGNN 2.75 3.16 3.37 3.39
COFRAUD 2.83 3.01 3.27 3.29
TROPICAL 316 412 459 517
Amazon Training Percentage

10% 20% 30%  40%
FRAUDRE 5.03 9.62 1281 15.34
CARE-GNN  0.58 0.76  0.81 0.89
BWGNN 0.31 036  0.37 0.39
COFRAUD 029  0.28 026  0.21
TROPICAL 0.45 056  0.61 0.68

VII. CONCLUSION AND FUTURE WORK

In this study, we have introduced TROPICAL, an innovative
hypergraph learning model based on transformers that is
designed to identify camouflaged fraudsters within complex
fraud graphs. TROPICAL comprises several key components
that form a robust framework for effectively capturing cam-
ouflaged malicious actors in fraud graphs. This research intro-
duces a fresh perspective to fraud detection, highlighting the
importance of exploring beyond pairwise relationships to con-
struct a more potent fraud detection model. Our extensive ex-
periments on two real-world datasets, YelpChi and Amazon,
demonstrate the superior performance of TROPICAL. Our
future work will focus on integrating more efficient group
encoding and positional encoding strategies into the TROP-
ICAL framework. We will also explore the promising avenue
of enhancing the hypergraph generation module through the
utilization of random walk algorithms.
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