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Multi-document summarization (MDS) is an effective tool for information aggregation that generates an informative and
concise summary from a cluster of topic-related documents. Our survey, the first of its kind, systematically overviews the
recent deep learning based MDS models. We propose a novel taxonomy to summarize the design strategies of neural networks
and conduct a comprehensive summary of the state-of-the-art. We highlight the differences between various objective
functions that are rarely discussed in the existing literature. Finally, we propose several future directions pertaining to this
new and exciting field.
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1 INTRODUCTION

In this era of rapidly advancing technology, the exponential increase of data availability makes analyzing and
understanding text files a tedious, labor-intensive, and time-consuming task [65, 120]. The need to process
this abundance of text data rapidly and efficiently calls for new, effective text summarization techniques. Text
summarization is a key natural language processing (NLP) task that automatically converts a text, or a collection
of texts within the same topic, into a concise summary that contains key semantic information which can be
beneficial for many downstream applications such as creating news digests, search engine, and report generation
[127].

Text can be summarized from one or several documents, resulting in single document summarization (SDS)
and multi-document summarization (MDS). While simpler to perform, SDS may not produce comprehensive
summaries because it does not make good use of related, or more recent, documents. Conversely, MDS generates
more comprehensive and accurate summaries from documents written at different times, covering different
perspectives, but is accordingly more complicated as it tries to resolve potentially diverse and redundant in-
formation [151]. In"addition, incredibly lengthy input documents often lead to model degradation [74]. It is
challenging for models to retain the most critical contents of complex input sequences while generating a coherent,
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non-redundant, factually consistent, and grammatically readable summary. Therefore, MDS requires models to
have stronger capabilities for analyzing the input documents, identifying and merging consistent information.

MDS enjoys a wide range of real-world applications, including summarization of news [44], scientific publi-
cations [172], emails [23, 176], product reviews [50], medical documents [1], lecture feedback [102], software
project activities [3], and Wikipedia articles [97]. Recently, MDS technology has also received a great amount
of industry attention; an intelligent multilingual news reporter bot named Xiaomingbot [166] was developed
for news generation, which can summarize multiple news sources into one article and translate it into multiple
languages. Massive application requirements and rapidly growing online data have promoted the development of
MDS. Existing methods using traditional algorithms are based on: term frequency-inverse document frequency
(TF-IDF) [11, 131], clustering [52, 159], graphs [104, 158] and latent semantic analysis [8, 60]. Most of these
works still generate summaries with manually crafted features [108, 158], such as sentence position features
[12, 41], sentence length features [41], proper noun features [157], cue-phrase features [59], biased word features,
sentence-to-sentence cohesion and sentence-to-centroid cohesion.

Deep learning has gained enormous attention in recent years due to its success in various domains, for instance,
computer vision [81], natural language processing [36] and multi-modal learning [67]. Both industry and academia
have embraced deep learning to solve complex tasks due to its capability of capturing highly nonlinear relations of
data. Moreover, deep learning based models reduce dependence on manual feature extraction and pre-knowledge
in the field of linguistics, drastically improving the ease of engineering [152]. Therefore, deep learning based
methods demonstrate outstanding performance in MDS tasks in most cases [21, 85, 94, 98, 101]. With recent
dramatic improvements in computational power and the release of increasing numbers of public datasets, neural
networks with deeper layers and more complex structures have been applied in MDS [93, 98], accelerating the
development of text summarization with more powerful and robust models. These tasks are attracting attention in
the natural language processing community; the number of research publications on deep learning based MDS has
increased rapidly over the last five years. The prosperity of deep learning for summarization in both academia and
industry requires a comprehensive review of current publications for researchers to better understand the process
and research progress. However, most of the existing summarization survey papers are based on traditional
algorithms instead of deep learning based methods or target general text summarization [39, 46, 61, 116, 142].
We have therefore surveyed recent publications on deep learning methods for MDS that, to the best of our
knowledge, is the first comprehensive survey of this field. This survey has been designed to classify neural based
MDS techniques into diverse categories thoroughly and systematically. We also conduct a detailed discussion on
the categorization and progress of these approaches to establish a clearer concept standing in the shoes of readers.
We hope this survey provides a panorama for researchers, practitioners and educators to quickly understand and
step into the field of deep learning based MDS. The key contributions of this survey are three-fold:

e We propose a categorization scheme to organize current research and provide a comprehensive review for
deep learning based MDS techniques, including deep learning based models, objective functions, benchmark
datasets, and evaluation metrics.

o We review development movements and provide a systematic overview and summary of the state-of-the-art.
We also summarize nine network design strategies based on our extensive studies of the current models.

e We discuss the open issues of deep learning based multi-document summarization and identify the future
research directions of this field. We also propose potential solutions for some discussed research directions.

Paper Selection. We used Google Scholar as the main search engine to select representative works from 2015 to
2021. High-quality papers were selected from top NLP and Al journals and conferences, include ACL!, EMNLP?,

! Annual Meeting of the Association for Computational Linguistics.
2Empirical Methods in Natural Language Processing.
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Fig. 1. Hierarchical Structure of This Survey.

COLING®, NAACL*, AAAT’, ICML®, ICLR’ and IJCAI®. The major keywords we used include multi-documentation
summarization, summarization, extractive summarization, abstractive summarization, deep learning and neural
networks.

Organization of the Survey. This survey will cover various aspects of recent advanced deep learning based
works in - MDS. Our proposed taxonomy categorizes the works from six aspects (Figure 1). To be more self-
contained, in Section 2, we give the problem definition, the processing framework of text summarization, discuss
similarities and differences between SDS and MDS. Nine deep learning architecture design strategies, six deep
learning based methods, and the variant tasks of MDS are presented in Section 3. Section 4 summarizes objective
functions that guide the model optimization process in the reviewed literature while evaluation metrics in Section
5 help readers choose suitable indices to evaluate the effectiveness of a model. Section 6 summarizes standard

3International Conference on Computational Linguistics

4 Annual Conference of the North American Chapter of the Association for Computational Linguistics.
> AAAI Conference on Artificial Intelligence.

SInternational Conference on Machine Learning.

7International Conference on Learning Representations

8International Joint Conference on Artificial Intelligence.
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Fig. 2. The Processing Framework of Text Summarization. Each of the highlighted steps (the one with the triangle mark)
indicates the differences between SDS and MDS.

and the variant MDS datasets. Finally, Section 7 discusses future research directions for deep learning based MDS
followed by conclusions in Section 8.

2 FROM SINGLE TO MULTI-DOCUMENT SUMMARIZATION

Before we dive into the details of existing deep learning based techniques, we start by defining SDS and MDS,
and introducing the concepts used un both methods. The aim of MDS is to generate a concise and informative
summary Sum from a collection of documents D. D denotes a cluster of topic-related documents {d; | i € [1, N]},
where N is the number of documents. Each document d; consists of My, sentences {si, iljell, Md,—]}- s;,j refers
to the j-th sentence in the i-th document. The standard summary Ref is called the golden summary or reference
summary. Currently, most golden summaries are written by experts. We keep this notation consistent throughout
the article.

To give readers a clear understanding of the processing of deep learning based summarization tasks, we
summarize and illustrate the processing framework as shown in Figure 2. The first step is preprocessing input
document(s), such as segmenting sentences, tokenizing non-alphabetic characters, and removing punctuation
[144]. MDS models in particular need to select suitable concatenation methods to capture cross-document
relations. Then, an appropriate deep learning based model is chosen to generate semantic-rich representation for
downstream tasks. The next step is to fuse these various types of representation for later sentence selection or
summary generation. Finally, document(s) are transformed into a concise and informative summary. Each of the
highlighted steps in Figure 2 (indicated by triangles) indicates a difference between SDS and MDS. Based on this
process, the research questions of MDS can be summarized as follows:

e How to capture the cross-document relations and in-document relations from the input documents?

e Compared to SDS, how to extract or generate salient information in a larger search space containing
conflict, duplication; and complementary information?

e How to best fuse various representation from deep learning based models and external knowledge?

e How to comprehensively evaluate the performance of MDS models?

The following sections provide a comprehensive analysis of the similarities and differences between SDS and
MDS.

2.1 Similarities between SDS and MDS

Existing SDS and MDS methods share the summarization construction types, learning strategies, evaluation
indexes and objective functions. SDS and MDS both seek to compress the document(s) into a short and infor-
mative summary. Existing summarization methods can be grouped into abstractive summarization, extractive
summarization and hybrid summarization (Figure 3). Extractive summarization methods select salient snippets
from the source documents to create informative summaries, and generally contain two major components:
sentence ranking and sentence selection [20, 112]. Abstractive summarization methods aim to present the main
information of input documents by automatically generating summaries that are both succinct and coherent; this
cluster of methods allows models to generate new words and sentences from a corpus pool [127]. Hybrid models
are proposed to combine the advantages of both extractive and abstractive methods to process the input texts.
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Fig. 3. Summarization Construction Types for Text Summarization.

Research on summarization focuses on two learning strategies. One strategy seeks to enhance the generalization
performance by improving the architecture design of the end-to-end models [31, 44, 74, 98]. The other leverages
external knowledge or other auxiliary tasks to complement summary selection or generation [19, 94]. Furthermore,
both SDS and MDS aim to minimize the distance between machine-generated summary and golden summary.
Therefore, SDS and MDS could share some indices to evaluate the performance of summarization models such as
Recall-Oriented Understudy for Gisting Evaluation (ROUGE, see Section 5), and objective functions (see Section
4) to guide model optimization.

2.2 Differences between SDS and MDS

In the early stages of MDS, researchers directly applied SDS models to MDS [105]. However, a number of aspects
in MDS that are different from SDS and these differences are also the breakthrough point for exploring the MDS
models. We summarize the differences in the following five aspects:

e More diverse input document types;

o Insufficient methods to capture cross-document relations;

e High redundancy and contradiction across input documents;
e Larger searching space but lack of sufficient training data;

e Lack of evaluation metrics specifically designed for MDS.

A defining different character between SDS and MDS is the number of input documents. MDS tasks deal with
multiple sources, of types that can be roughly divided into three groups:

e Many short sources, where each document is relatively short but the quantity of the input data is large. A
typical example is product reviews summarization that aims to generate a short, informative summary
from numerous individual reviews [5].

o Few long sources. For example, generating a summary from a group of news articles [44], or constructing a
Wikipedia-style article from several web articles [97].

e Hybrid sources containing one or few long documents with several to many shorter documents. For
example, news article(s) with several readers’ comments to this news [92], or a scientific summary from a
long paper with several short corresponding citations [172].

As SDS only uses one input document, no additional processing is required to assess relationships between SDS
inputs. By their very nature, the multiple input documents used in MDS are likely to contain more contradictory,
redundant, and complementary information [130]. MDS models therefore require sophisticated algorithms to
identify and cope with redundancy and contradictions across documents to ensure that the final summary is
comprehensive. Detecting these relations across documents can bring benefits for MDS models. In MDS tasks,
there are two common methods to concatenate multiple input documents:

ACM Comput. Surv.



1:6

C.Maet al.

Docl  Doc2 ~ Doc3
[ sen1 Efggifﬁff%nl\
E Sen 2 i Em“ E Sen2 |
| sen3 E{E;E;“E/%n3‘

[
= 2/ N =

‘ Doc 1 i Senl Sen2 Sen3 5—* Summary 1 or Representation 1

Doc 2 E Senl Sen2 Sen3 E—» Summary 2 or Representation 2
] 1 |

Doc3 Senl Sen2 Sen3 \—> summary 3 or Representation 3

(b) Word/Sentence-level Concatenation Methods

senl [sen3 | {

|sen2 P—a& —
o) | sen1 | N )* ; : / \
Sen2 || sen3 | D ,
- L e, @ (1 2
{ Sen1l \ Sen 3 I
----------- (&
Clustering Graph

Fig. 4. The Methods of Hierarchical Concatenation.

o Flat concatenation is a simple yet powerful concatenation method, where all input documents are spanned

and processed as a flat sequence; to a certain extent, this method converts MDS to SDS tasks. Inputting
flat-concatenated documents requires models to have a strong ability to process long sequences.
Hierarchical concatenation is able to preserve cross-document relations. However, many existing deep
learning methods do not make full use of this hierarchical relationship [44, 97, 160]. Taking advantage
of hierarchical relations among documents instead of simply flat concatenating articles facilitates the
MDS model to obtain representation with built-in hierarchical information, which in turn improves
the effectiveness of the models. The input documents within a cluster describe a similar topic logically
and semantically. Figure 4 illustrates two representative methods of hierarchical concatenation. Existing
hierarchical concatenation methods either perform document-level condensing in a cluster separately
[4] or process documents in word/sentence-level inside document cluster [6, 114, 160]. In Figure 4(a), the
extractive or abstractive summaries, or representation from the input documents are fused in the subsequent
processes for final summaries generation. The models using document-level concatenation methods are
usually two-stage models. In Figure 4(b), sentences in the documents can be replaced by words. For word
or sentence-level concatenation methods, clustering algorithms and graph-based techniques are the most
commonly used methods. Clustering methods could help MDS models decrease redundancy and increase
the information coverage for the generated summaries [114]. Sentence relation graph is able to model
hierarchical relations among multi-documents as well [6, 172, 173]. Most of the graph construction methods
utilize sentences as vertexes and the edge between two sentences indicates their sentence-level relations
[6]. Cosine similarity graph [41], discourse graph [30, 98, 173], semantic graph [126] and heterogeneous
graph [160] can be used for building sentence graph structures. These graph structures could all serve as
an external knowledge to improve the performance of MDS models.
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In addition to capture cross-document relation, hybrid summarization models can also be used to capture
complex documents semantically, as well as to fuse disparate features that are more commonly adopted by MDS
tasks. These models usually process data in two stages: extractive-abstractive and abstractive-abstractive (the
right part of Figure 3). The two-stage models try to gather important information from source documents with
extractive or abstractive methods at the first stage, to significantly reduce the length of documents. In the second
stage, the processed texts are fed into an abstractive model to form final summaries [4, 85, 94, 97, 98].

Furthermore, conflict, duplication, and complementarity among multiple source documents require MDS
models to have stronger abilities to handle complex information. However, applying the SDS model directly on
MDS tasks is difficult to handle much higher redundancy [105]. Therefore, the MDS models are required not only
to generate coherent and complete summary but also more sophisticated algorithms to identify and cope with
redundancy and contradictions across documents ensuring that the final summary should be complete in itself.
MDS also involves larger searching spaces but has smaller-scale training data than SDS, which sets obstacles for
deep learning based models to learn adequate representation [105]. In addition, there are no specific evaluation
metrics designed for MDS; however, existing SDS evaluation metrics cannot evaluate the relationship between
the generated abstract and different input documents well.

3 DEEP LEARNING BASED MULTI-DOCUMENT SUMMARIZATION METHODS

Deep neural network (DNN) models learn multiple levels of representation and abstraction from input data and
can fit data in a variety of research fields, such as computer vision [81] and natural language process [36]. Deep
learning algorithms replace manual feature engineering by learning distinctive features through back-propagation
to minimize a given objective function. It is well known that linear solvable problems possess many advantages,
such as being easily solved and having numerous theoretically proven supports; however, many NLP tasks are
highly non-linear. As theoretically proven by Hornik et al. [64], neural networks can fit any given continuous
function as a universal approximator. For MDS tasks, DNNs also perform considerably better than traditional
methods to effectively process large-scale documents and distill informative summaries due to their strong fitting
abilities. In this section, we first introduce our novel taxonomy that generalizes nine neural network design
strategies (Section 3.1). We then present the state-of-the-art DNN based MDS models according to the main
neural network architecture they adopt (Section 3.2 = 3.7), before finishing with a brief introduction to MDS
variant tasks (Section 3.8).

3.1 Architecture Design Strategies

Architecture design strategies play a critical role in deep learning based models, and many architectures have
been applied to variants MDS tasks. Here, we have generalized the network architectures and summarized them
into nine types based on how they generate or fuse semantic-rich and syntactic-rich representation to improve
MDS model performance (Figure 5); these different architectures can also be used as basic structures or stacked
on each other to obtain more diverse design strategies. In Figure 5, deep neural models are in green boxes and can
be flexibly substituted with other backbone networks. The blue boxes indicate the neural embeddings processed
by neural networks or heuristic-designed approaches, e.g., "sentence/document” or "other" representation. The
explanation for each sub-figure is listed as follows:

e Naive Networks (Figure 5(a)). Multiple concatenated documents are input through DNN based models
to extract features. Word-level, sentence-level or document-level representation is used to generate the
downstream summary or select sentences. Naive networks represent the most naive model that lays the
foundation for other strategies.

o Ensemble Networks (Figure 5(b)). Ensemble based methods leverage multiple learning algorithms to obtain
better performance than individual algorithms. To capture semantic-rich and syntactic-rich representation,
ensemble networks feed input documents to multiple paths with different network structures or operations.
Later on, the representation from different networks is fused to enhance model expression capability. The
majority vote or the average score can be used to determine the final output.
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Fig. 5. Network Design Strategies.

o Auxiliary Task Networks (Figure 5(c)) employ different tasks in the summarization models, where text
classification, text reconstruction, or other auxiliary tasks serve as complementary representation learners
to obtain advanced features. Meanwhile, auxiliary task networks also provide researchers with a solution
to use appropriate data from other tasks. In this strategy, parameter sharing schemes are used for jointly
optimizing different tasks.

® Reconstruction Networks (Figure 5(d)) optimize models from an unsupervised learning paradigm, which
allows summarization models to overcome the limitation of insufficient annotated golden summaries. The
use of such a paradigm enables generated summaries to be constrained in the natural language domain in a
good manner.
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o Fusion Networks (Figure 5(e)) fuse representation generated from neural networks and hand-crafted fea-
tures. These hand-crafted features contain adequate prior knowledge that facilitates the optimization of
summarization models.

o Graph Neural Networks (Figure 5(f)). This strategy captures cross-document relations, crucial and beneficial
for multi-document model training, by constructing graph structures based on the source documents,
including word, sentence, or document-level information.

e Encoder-Decoder Structure (Figure 5(g)). The encoder embeds source documents into the hidden represen-
tation, i.e., word, sentence and document representation. This representation, containing compressed
semantic and syntactic information, is passed to the decoder which processes the latent embeddings to
synthesize local and global semantic/syntactic information to produce the final summaries.

o Pre-trained Language Models (Figure 5(h)) obtain contextualized text representation by predicting words
or phrases based on their context using large amounts of the corpus, which can be further fine-tuned
for downstream task adaption [37]. The models can fine-tune with randomly initialized decoders in an
end-to-end fashion since transfer learning can assist the model training process [94].

e Hierarchical Networks (Figure 5(i)). Multiple documents are concatenated as inputs to feed into the first
DNN based model to capture low-level representation. Another DNN based model is cascaded to generate
high-level representation based on the previous ones. The hierarchical networks empower the model with
the ability to capture abstract-level and semantic-level features more efficiently.

3.2 Recurrent Neural Networks based Models

Recurrent Neural Networks (RNNs) [137] excel in modeling sequential data by capturing sequential relations and
syntactic/semantic information from word sequences. In RNN models, neurons are connected through hidden
layers and unlike other neural network structures, the inputs of each RNN neuron come not only from the word
or sentence embedding but also from the output of the previous hidden state. Despite being powerful, vanilla
RNN models often encounter gradient explosion or vanishing issues, so a large number of RNN-variants have
been proposed. The most prevalent ones are Long Short-Term Memory (LSTM) [63], Gated Recurrent Unit (GRU)
[32] and Bi-directional Long Short-Term Memory (Bi-LSTM) [66]. The DNN based Model in Figure 5 can be
replaced with RNN based models to design models.

RNN based models have been used in MDS tasks since 2015. Cao et al. [20] proposed an RNN-based model
termed Ranking framework upon Recursive Neural Networks (R2N2), which leverages manually extracted words
and sentence-level features as inputs. This model transfers the sentence ranking task into a hierarchical regression
process, which measures the importance of sentences and constituents in the parsing tree. Zheng et al. [187] used
a hierarchical RNN structure to utilize the subtopic information by extracting not only sentence and document
embeddings, but also topic embeddings. In this SubTopic-Driven Summarization (STDS) model, the readers’
comments are seen as auxiliary documents and the model employs soft clustering to incorporate comment and
sentence representation for further obtaining subtopic representation. Arthur et al. [16] introduced a GRU-based
encoder-decoder architecture to minimize the diversity of opinions reflecting the dominant views while generating
multi-review summaries. Mao et al. [105] proposed a maximal margin relevance guided reinforcement learning
framework (RL-MMR) to incorporate the advantages of neural sequence learning and statistical measures. The
proposed soft attention for learning adequate representation allows more exploration of search space.

To leverage the advantage of the hybrid summarization model, Reinald et al. [4] proposed a two-stage framework,
viewing opinion summarization as an instance of multi-source transduction to distill salient information from
source documents. The first stage of the model leverages a Bi-LSTM auto-encoder to learn word and document-
level representation; the second stage fuses multi-source representation and generates an opinion summary with
a simple LSTM decoder combined with a vanilla attention mechanism [9] and a copy mechanism [156].

Since paired MDS datasets are rare and hard to obtain, Li et al. [93] developed a RNN-based framework to
extract salient information vectors from sentences in input documents in an unsupervised manner. Cascaded
attention retains the most relevant embeddings to reconstruct the original input sentence vectors. During the
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reconstruction process, the proposed model leverages a sparsity constraint to penalize trivial information in the
output vectors. Also, Chu et al. [31] proposed an unsupervised end-to-end abstractive summarization architecture
called MeanSum. This LSTM-based model formalizes product or business reviews summarization problem into
two individual closed-loops. Inspired by MeanSum, Coavoux et al. [33] used a two-layer standard LSTM to
construct sentence representation for aspect-based multi-document abstractive summarization, and discovered
that the clustering strategy empowers the model to reward review diversity and handle contradictory ones.

3.3 Convolutional Neural Networks Based Models

Convolutional neural networks (CNNs) [87] achieve excellent results in computer vision tasks. The convolution
operation scans through the word/sentence embeddings and uses convolution kernels to extract important
information from input data objects. Using a pooling operation at intervals can return simple to complex feature
levels. CNNs have been proven to be effective for various NLP tasks in recent years [38, 77] as they can process
natural language after sentence/word vectorization. Most of the CNN based MDS models use CNNs for semantic
and syntactic feature representation. As with RNN, CNN-based models can also replace DNN-based models in
network design strategies (Please refer to Figure 5).

A simple way to use CNNs in MDS is by sliding multiple filters with different window sizes over the input
documents for semantic representation. Cao et al. [21] proposed a hybrid CNN-based model PriorSum to capture
latent document representation. The proposed representation learner slides over the input documents with filters
of different window widths and two-layer max-over-time pooling operations [34] to fetch document-independent
features that are more informative than using standard CNNs. Similarly, HNet [145] uses distinct CNN filters
and max-over-time-pooling to generate salient feature representation for downstream processes. Cho et al. [29]
also used different filter sizes in DPP-combined model to extract low-level features. Yin et al. [174] presented an
unsupervised CNN-based model termed Novel Neural Language Model (NNLM) to extract sentence representation
and diminish the redundancy of sentence selection. The NNLM framework contains only one convolution
layer and one max-pooling layer, and both element-wise averaging sentence representation and context words
representation are used to predict the next word. For aspect-based opinion summarization, Stefanos et al. [5]
leveraged a CNN based model to encode the product reviews which contain a set of segments for opinion polarity.

People with different background knowledge and understanding can produce different summaries of the same
documents. To account for this variability, Zhang et al. [184] suggested a MV-CNN model that ensembles three
individual models to incorporate multi-view learning and CNNs to improve the performance of MDS. In this
work, three CNNs with dual-convolutional layers used multiple filters with different window sizes to extract
distinct saliency scores of sentences.

To overcome the MDS bottlenecks of insufficient training data, Cao et al. [19] developed a TCSum model
incorporating an auxiliary text classification sub-task into MDS to introduce more supervision signals. The
text classification model uses a CNN descriptor to project documents onto the distributed representation, and
to classify input documents into different categories. The summarization model shares the projected sentence
embedding from the classification model, and the TCSum model then chooses the corresponding category based
transformation matrices according to classification results to transform the sentence embedding into the summary
embedding.

Unlike RNNss that support the processing of long time-serial signals, a naive CNN layer struggles to capture
long-distance relations while processing sequential data due to the limitation of the fixed-sized convolutional
kernels, each of which has a specific receptive field size. Nevertheless, CNN based models can increase their
receptive fields through formation of hierarchical structures to calculate sequential data in a parallel manner.
Because of this highly parallelizable characteristic, training of CNN-based summarization models is more efficient
than for RNN-based models. However, summarizing lengthy input articles is still a challenging task for CNN
based models because they are not skilled in modeling non-local relationships.
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Table 1. Multi-document Summarization Models based on Graph Neural Networks.

Models Nodes Edges Edge Weights GNN Methods
HeterDoc- word, sentence, | word-sentence, TF-IDF Graph Attention
SumGraph [160] document word-document Networks
Graph-based sentence sentence-sentence Personalized Graph Convolutional
Neural MDS [173] Discourse Graph Networks
Cosine Similarity Graph | Graph Convolutional
SemSentSum [6] sentence sentence-sentence Edge Removal Method Networks
. . R Graph Convolutional
ScisummNet [172] sentence sentence-sentence | Cosine Similarity Graph Networks

3.4  Graph Neural Networks Based Models

CNNs have been successfully applied to many computer vision tasks to extract distinguished image features
from the Euclidean space, but struggle when processing non-Euclidean data. Natural language data consist of
vocabularies and phrases with strong relations which can be better represented with graphs than with sequential
orders. Graph neural networks (GNNs, Figure 5 (f)) are composed of an ideal architecture for NLP since they
can model strong relations between entities semantically and syntactically. Graph convolution networks (GCNs)
and graph attention networks (GANs) are the most commonly adopted GNNs because of their efficiency and
simplicity for integration with other neural networks. These models first build a relation graph based on input
documents, where nodes can be words, sentences or documents, and edges capture the similarity among them.
At the same time, input documents are fed into a DNN based model to generate embeddings at different levels.
The GNNs are then built over the top to capture salient contextual information. Table 1 describes the current
GNN based models used for MDS with details of nodes, edges, edge weights, and applied GNN methods.

Yasunage et al. [173] developed a GCN based extractive model to capture the relations between sentences.
This model first builds a sentence-based graph and then feeds the pre-processed data into a GCN [78] to capture
sentence-wise related features. Defined by the model, each sentence is regarded as a node and the relation
between each pair of sentences is defined as an edge. Inside each document cluster, the sentence relation graph
can be generated through a cosine similarity graph [41], approximate discourse graph [30], and the proposed
personalized discourse graph. Both the sentence relation graph and sentence embeddings extracted by a sentence-
level RNN are fed into GCN to produce the final sentence representation. With the help of a document-level GRU,
the model generates cluster embeddings to fully aggregate features between sentences.

Similarly, Antognini et al. [6] proposed a GCN based model named SemSentSum that constructs a graph based
on sentence relations. In contrast to Yasunage et al. [173], this work leverages external universal embeddings,
pre-trained on the unrelated corpus, to construct a sentence semantic relation graph. Additionally, an edge
removal method has been applied to deal with the sparse graph problems emphasizing high sentence similarities;
if the weight of the edge is lower than a given threshold, the edge is removed. The sentence relation graph and
sentence embeddings are fed into a GCN [78] to generate saliency estimation for extractive summaries.

Yasunage et al. [172] also designed a GCN based model for summarizing scientific papers. The proposed
ScisummNet model uses not only the abstract of source scientific papers but also the relevant text from papers
that cite the original source. The total number of citations is also incorporated into the model as an authority
feature. A cosine similarity graph is applied to form the sentence relation graph, and GCNs are adopted to predict
the sentence salience estimation from the sentence relation graph, authority scores and sentence embeddings.

Existing GNN based models focused mainly on the relationships between sentences, and do not fully consider
the relationships between words, sentences, and documents. To fill this gap, Wang et al. [160] proposed a hetero-
geneous GAN based model, called HeterDoc-SUM Graph, that is specific for extractive MDS. This heterogeneous
graph structure includes word, sentence, and document nodes, where sentence nodes and document nodes are
connected according to the contained word nodes. Word nodes thus act as an intermediate bridge to connect
the sentence and document nodes, and are used to better establish document-document, sentence-sentence and
sentence-document relations. TF-IDF values are used to weight word-sentence and word-document edges, and
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the node representation of these three levels are passed into the graph attention networks for model update. In
each iteration, bi-directional updating of both word-sentence and word-document relations are performed to
better aggregate cross-level semantic knowledge.

3.5 Pointer-generator Networks Based Models

Pointer-generator (PG) networks [139] are proposed to overcome the problems of factual errors and high
redundancy in the summarization tasks. This network has been inspired by Pointer Network [156], CopyNet
[57], forced-attention sentence compression [107], and coverage mechanism from machine translation [153]. PG
networks combine sequence-to-sequence (Seq2Seq) model and pointer networks to obtain a united probability
distribution allowing vocabularies to be selected from source texts or generated by machines. Additionally, the
coverage mechanism prevents PG networks from consistently choosing the same phrases.

The Maximal Marginal Relevance (MMR) method is designed to select a set of salient sentences from source
documents by considering both importance and redundancy indices [22]. The redundancy score controls sentence
selection to minimize overlap with the existing summary. The MMR model adds a new sentence to the objective
summary based on importance and redundancy scores until the summary length reaches a certain threshold.
Inspired by MMR, Alexander et al. [44] proposed an end-to-end Hierarchical MMR-Attention Pointer-generator
(Hi-MAP) model to incorporate PG networks and MMR [22] for abstractive MDS. The Hi-MAP model improves
PG networks by modifying attention weights (multiplying MMR scores by the original attention weights) to
include better important sentences in, and filter redundant information from, the summary. Similarly, the MMR
approach is implemented by PG-MMR model [86] to identify salient source sentences from multi-document inputs,
albeit with a different method for calculating MMR scores from Hi-MAP; instead, ROUGE-L Recall and ROUGE-L
Precision [95] serve as evaluation metrics to calculate the importance and redundancy scores. To overcome the
scarcity of MDS datasets, the PG-MMR model leverages a support vector regression model that is pre-trained
on a SDS dataset to recognize the important contents. This support vector regression model also calculates the
score of each input sentence by considering four factors: sentence length, sentence relative/absolute position,
sentence-document similarities, and sentence quality obtained by a PG network. Sentences with the top-K scores
are fed into another PG network to generate a concise summary.

3.6 Transformer Based Models

As discussed, CNN based models are not as good at processing sequential data as RNN based models. However,
RNN based models are not amenable to parallel computing, as the current states in RNN models highly depend on
results from the previous steps. Additionally, RNNs struggle to process long sequences since former knowledge
will fade away during the learning process. Adopting Transformer based architectures [155] is one solution to
solve these problems. The Transformer is based on the self-attention mechanism, has natural advantages for
parallelization, and retains relative long-range dependencies. The Transformer model has achieved promising
results in MDS tasks [74, 94, 97, 98] and can replace the DNN based Model in Figure 5. Most of the Transformer
based models follow an encoder-decoder structure. Transformer based models can be divided into flat Transformer,
hierarchical Transformer, and pre-train language models.

Flat Transformer. Liu et al. [97] introduced Transformer to MDS tasks, aiming to generate a Wikipedia article
from a given topic and set of references. The authors argue that the encoder-decoder based sequence transduction
model cannot cope well with long input documents, so their model selects a series of top-K tokens and feeds
them into a Transformer based decoder-only sequence transduction model to generate Wikipedia articles. More
specifically, the Transformer decoder-only architecture combines the results from the extractive stage and golden
summary into a sentence for training. To obtain rich semantic representation from different granularity, Jin
et al. [74] proposed a Transformer based multi-granularity interaction network MGSum and unified extractive
and abstractive MDS. Words, sentences, and documents are considered as three granular levels of semantic unit
connected by a granularity hierarchical relation graph. In the same granularity, a self-attention mechanism is
used to capture the semantic relationships. Sentence granularity representation is employed in the extractive
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summarization, and word granularity representation is adapted to generate an abstractive summary. MGSum
employs a fusion gate to integrate and update the semantic representation. Additionally, a spare attention
mechanism is used to ensure the summary generator focus on important information. Brazinskas et al. [17]
created a precedent for few-shot learning for MDS that leverages a Transformer conditional language model and
a plug-in network for both extractive and abstractive MDS to overcome rapid overfitting and poor generation
problems resulting from naive fine-tuning of large parameter models.

Hierarchical Transformer. To handle huge amounts of input documents (currently many large scale MDS
datasets contain more than ten thousand input document sets), Yang et al. [98] proposed a two-stage Hierarchical
Transformer (HT) model with an inter-paragraph and graph-informed attention mechanism that allows the model
to encode multiple input documents hierarchically instead of by simple flat-concatenation. A logistic regression
model is employed to select the top-K paragraphs, which are fed into a local Transformer layer to obtain contextual
features. A global Transformer layer mixes the contextual information to model the dependencies of the selected
paragraphs. To leverage graph structure to capture cross-document relations, Li et al. [94] proposed an end-to-end
Transformer based model GraphSum, based on the HT model. In the graph encoding layers, GraphSum extends
the self-attention mechanism to the graph-informed self-attention mechanism, which incorporates the graph
representation into the Transformer encoding process. Furthermore, the Gaussian function is applied to the graph
representation matrix to control the intensity of the graph structure’s impact on the summarization model. The
HT and GraphSum models are both based on the self-attention mechanismleading quadratic memory growth
increases with the number of input sequences; to address this issue, Pasunuru et al. [126] modified the full
self-attention with local and global attention mechanism [14] to scale the memory linearly. Dual encoders are
proposed for encoding truncated concatenated documents and linearized graph information from full documents.

Pre-trained language models (LMs). Pre-trained Transformers on large text corpora have shown great suc-
cesses in downstream NLP tasks including text summarization. The pre-trained LMs can be trained on non-
summarization or SDS datasets to overcome lack of MDS data [94, 126, 178]. Most pre-trained LMs such as BERT
[35] and RoBERTa [99] can work well on short sequences. In hierarchical Transformer architecture, replacing
the low-level Transformer (token-level) encoding layer with pre-trained LMs helps the model breakthrough
length limitations to perceive further information [94]. Inside a hierarchical Transformer architecture, the output
vector of the "[CLS]" token can be used as input for high-level Transformer models. To avoid the self-attention
quadratic-memory increment when dealing with document-scale sequences, a Longformer based approach
[14], including local and global attention mechanisms, can be incorporated with pre-trained LMs to scale the
memory linearly for MDS [126]. Another solution for computational issues can be borrowed from SDS is to use
a multi-layer Transformer architecture to scale the length of documents allowing pre-trained LMs to encode
a small block of text and the information can be shared among the blocks between two successive layers [55].
BART [88], GPT-2 [133], and T5 [134] are pre-trained language models that can be used for language generation
and they have been-applied for MDS tasks [2, 122, 147]. Instead of regular language models, PEGASUS [178] is a
pre-trained Transformer-based encoder-decoder model with gap-sentences generation (GSG) that focused on
abstractive summarization. GSG shows that masking whole sentences based on importance, instead of through
random or lead selection, works well for downstream summarization tasks. BART, T5, and PEGASUS are based
on data-rich SDS settings. Goodwin et al. [54] evaluated these three pre-trained models on four MDS datasets
and suggested that while large improvements have been made on the standard SDS task, highly abstractive MDS
remains a challenge. PRIMER [164] is a pre-trained model specifically designed for MDS which can serve as a
zero-shot summarizer.

3.7 Deep Hybrid Models

Many neural models can be integrated to formalize a more powerful and expressive model. In this section, we
summarize the existing deep hybrid models that have proven to be effective for MDS.
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CNN + LSTM + Capsule networks. Cho et al. [29] proposed a hybrid model based on the determinantal
point processes for semantically measuring sentence similarities. A convolutional layer slides over the pairwise
sentences with filters of different sizes to extract low-level features. Capsule networks [138, 168] are employed
to identify redundant information by transforming the spatial and orientational relationships for high-level
representation. The authors also used LSTM to reconstruct pairwise sentences and add reconstruction loss to the
final objective function.

CNN + Bi-LSTM + Multi-layer Perceptron (MLP). Abhishek et al. [145] proposed an extractive MDS frame-
work that considers document-dependent and document-independent information. In this model, a CNN with
different filters captures phrase-level representation. Full binary trees formed with these salient representation
are fed to the recommended Bi-LSTM tree indexer to enable better generalization abilities. A MLP with ReLU
function is employed for leaf node transformation. More specifically, the Bi-LSTM tree indexer leverages the time
serial power of LSTMs and the compositionality of recursive models to capture both semantic and compositional
features.

PG networks + Transformer. In generating a summary, it is necessary to consider the information fusion of
multiple sentences, especially sentence pairs. Logan et al. [85] found the majority of summary sentences are
generated by fusing one or two source sentences; so they proposed a two-stage summarization method that
considers the semantic compatibility of sentence pairs. This method joint-scores single sentence and sentence
pairs to filter representative from the original documents. Sentences or sentence pairs with high scores are then
compressed and rewritten to generate a summary that leverages PG network. This paper uses a Transformer
based model to encode both single sentence and sentence pairs indiscriminately to obtain the deep contextual
representation of words and sequences.

3.8 The Variants of Multi-document Summarization

In this section, we briefly introduce several MDS task variants to give researchers a comprehensive understanding
of MDS. These tasks can be modeled as MDS problems and adopt the aforementioned deep learning techniques
and neural network architectures.

Query-oriented MDS calls for a summary from a set of documents that answers a query. It tries to solve realistic
query-oriented scenario problems and only summarizes important information that best answers the query in a
logical order [125]. Specifically, query-oriented MDS combines the information retrieval and MDS techniques.
The content that needs to be summarized is based on the given queries. Liu et al. [98] incorporated the query by
simply prepending the query to the top-ranked document during encoding. Pasunuru [125] involved a query
encoder and integrated query embedding into an MDS model, ranking the importance of documents for a given
query.

Dialogue summarization aims to provide a succinct synopsis from multiple textual utterances of two or
more participants, which could help quickly capture relevant information without having to listen to long
and convoluted dialogues [96]. Dialogue summary covers several areas, including meetings [45, 80, 192], email
threads [180], medical dialogues [40, 75, 146], customer service [96] and media interviews [191]. Challenges in
dialogue summarization can be summarized into the following seven categories: informal language use, multiple
participants, multiple turns, referral and coreference, repetition and interruption, negations and rhetorical
questions, role and language change [25]. The flow of the dialogue would be neglected if MDS models are directly
applied for dialogue summarization. Liu et al. [96] relied on human annotations to capture the logic of the dialogue.
Wu et al. [163] used summary sketch to identify the interaction between speakers and their corresponding textual
utterances in each turn. Chen et al. [25] proposed a multi-view sequence to sequence based encoder to extract
dialogue structure and a multi-view decoder to incorporate different views to generate final summaries.

ACM Comput. Surv.



Multi-document Summarization via Deep Learning Techniques: A Survey « 1:15

Table 2. Deep Learning based Methods. "Ext", "Abs" and "Hyd" mean extractive, abstractive and hybrid respectively; "FC"
and "HC" represent Flat Concatenate, Hierarchical Concatenate respectively.

Construction | Document-level Comparison of
Methods Works Types Relationship DL based techniques
Ext | Abs | Hyb | FC HC Pros and Cons
MeanSum [31] v v
Zhang et al. [177] v v Pros: Can capture sequential
STDS [187] v v relations and syntactic/semantic
ParaFuse_doc [114] v v information from word
RNN R2N2 [20] v v sequences
CondaSum [4] v v Cons: Not easy to parallel
C-Attention [93] v v computing; Highly depending
Wang et al.[162] v v on results from the
RL-MMR [105] v v previous steps
Coavoux et al.[33] v v
MV-CNN [184] v v
TCSum [19] v v Pros: Good parallel computing;
CNN CNNLM [174] v v Cons: Not good at processing
PriorSum [21] v v sequential data
Angelidis et al.[5] v v
Yasunaga et al.[173] | v Pros: Can capture cross-document
GNN SemSentSum [6] v v and in-document relations
Scisummnet [172] v v Cons: Inefficient when
HDSG [160] v v dealing with large graphs
PG PG-MMR [86] v v Pros: Low redundancy
Hi-MAP [44] v va Cons: Hard to train
HT [98] v v Pros: Good performance; Good
MGSum [74] v |V v parallel computing; Can capture
Transformer FewSum [17] v v v cross-document and
GraphSum [94] v v in-document relations
Bart-Long [126] v v Cons: Time-consuming; Problems
WikiSum [97] VoV with position encoding
Cho et al.[29] v v Pros: Combines the advantages
Deep Hybid Model | GT-SingPairMix [85] v v of different DL models
HNet [145] v v Cons: Computationally intensive

Stream summarization aims to summarize new documents in a continuously growing document stream, such
as information from social media. Temporal summarization and real-time summarization (RTS)® can be seen
as a form of stream document summarization. Stream summarization considers both historical dependencies
and future uncertainty of the document stream. Yang et al. [167] used deep reinforcement learning to solve the
relevance, redundancy, and timeliness issues in steam summarization. Tan et al. [150] transformed the real time
summarization task as a sequential decision-making problem and used a LSTM layer and three fully connected
neural network layers to maximize the long-term rewards.

3.9 Discussion

In this section, we have reviewed the state-of-the-art works of deep learning based MDS models according to the
neural networks applied. Table 2 summarizes the reviewed works by considering the type of neural networks,
construction types, and concatenation methods; and provides a high-level summary of their relative advantages
and disadvantages. Transformer based models have been most commonly used in the last three years because
they overcome the limitations of CNN’s fixed-size receptive field and RNN’s inability to parallel process. However,
deep learning based MDS models face some challenges. Firstly, the complexity of deep learning based models
and the data-driven deep learning systems do require more training data, with concomitant increased efforts

“http://trecrts.github.io/
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in data labelling, and computing resources than non-deep learning based methods. Inevitably, deep learning
based MDS models require more computation during the training phase. During the inference process, they
generally consume more computation power than non-deep learning based methods as well. Secondly, deep
learning based methods lack linguistic knowledge that can serve as important roles in assisting deep learning
based learners to have informative representation and better guide the summary generation. We believe that this
is one possible reason that some non-deep learning based MDS methods sometimes show better performance
than deep learning based methods [21, 101] as non-deep learning based methods pay more attention to linguistic
information. We discuss this point in Section 7.1. Further researches could also be based on techniques adopted in
non-deep learning based MDS as reviewed in [39, 46, 142]. Thirdly, deep learning based models can be regarded
as black boxes with high non-linearity. It is challenging to understand the detailed transformation inside them.
Exploring the interpretability of MDS models allows researchers to understand the effect of each module in MDS
neural models, therefore guiding the model design with a more accurate target. However, there is little existing
work on the interpretability of MDS models, which is of great help in improving the quality of summaries. More
discussions about explainable deep learning MDS models can be found in Section 7.6.

4 OBJECTIVE FUNCTIONS

In this section, we will take a closer look at different objective functions adopted by various MDS models. In
summarization models, objective functions play an important role by guiding the model to achieve specific
purposes. To the best of our knowledge, we are the first to provide a comprehensive survey on different objectives
of summarization tasks.

4.1 Cross-Entropy Objective

Cross-entropy usually acts as an objective function to measure the distance between two distributions. Many
existing MDS models adopt it to measure the difference between the distributions of generated summaries and
the golden summaries [20, 29, 160, 172, 177, 184]. Formally, the cross-entropy loss is defined as:

Lcg = - Z yilog(3i), (1)
i=1
where y; is the target score from golden summaries and machine-generated summaries, and y; is the predicted esti-
mation from the deep learning based models. Different from calculations in other tasks, such as text classification,
in summarization tasks, y; and y; have several methods to calculate. §; usually is calculated by Recall-Oriented
Understudy for Gisting Evaluation (ROUGE) (Please refer to Section 5). For example, ROUGE-1[6], ROUGE-2 [98]
or the normalized average of ROUGE-1 and ROUGE-2 scores [173] could be adopted to compute the ground truth
score between the selected sentences and golden summary.

4.2 Reconstructive Objective

Reconstructive objectives are used to train a distinctive representation learner by reconstructing the input vectors
in an unsupervised learning manner. The objective function is defined as:

Lrec = ||xi — ¢ ($(xi;0);6")], )
where x; represents the input vector; ¢ and ¢’ represent the encoder and decoder with 6 and 0’ as their parameters
respectively, || - || represents norm (* stands for 0, 1, 2, ..., infinity). Lg,. is a measuring function to calculate the

distance between source documents and their reconstructive outputs. Chu et al. [31] used a reconstructive loss
to constrain the generated text into the natural language domain, reconstructing reviews in a token-by-token
manner. Moreover, this paper also proposes a variant termed reconstruction cycle loss. By using the variant, the
reviews are encoded into a latent space to further generate the summary, and the summary is then decoded
to the reconstructed reviews to form another reconstructive closed-loop. An unsupervised learning loss was
designed by Li et al. [93] to reconstruct the condensed output vectors to the original input sentence vectors
with L, distance. This paper further constrains the condensed output vector with a L; regularizer to ensure
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sparsity. Similarly, Zheng et al. [187] adopted a bi-directional GRU encoder-decoder framework to reconstruct
both news sentences and comment sentences in a word sequence manner. Liu et al. [97] concatenated both input
and output sequences to predict the next token to train the abstractive model. There are also some variants, such
as leveraging the latent vectors of variational auto-encoder for reconstruction to capture better representation. Li
et al. [92] introduced three individual reconstructive losses to consider both news reconstruction and comments
reconstruction separately, along with a variational auto-encoder lower bound. Bravzinskas et al. [16] utilized a
variational auto-encoder to generate the latent vectors of given reviews, where each review is reconstructed by
the latent vectors combined with other reviews.

4.3 Redundancy Objective

Redundancy is an important objective to minimize the overlap between semantic units in a machine-generated
summary. By using this objective, models are encouraged to maximize information coverage. Formally,

LReq = Sim(xi, xj), 3)

where Sim(-) is the similarity function to measure the overlap between different x; and x;, which can be phrases,
sentences, topics or documents. The redundancy objective is often treated as an auxiliary objective combined
with other loss functions. Li et al. [93] penalized phrase pairs with similar meanings to eliminate the redundancy.
Nayeem et al. [114] used the redundancy objective to avoid generating repetitive phrases, constraining a sentence
to appear only once while maximizing the scores of important phrases. Zheng et al. [187] adopted a redundancy
loss function to measure overlaps between subtopics; intuitively, smaller overlaps between subtopics resulted in
less redundancy in the output domain. Yin et al. [174] proposed a redundancy objective to estimate the diversity
between different sentences.

4.4  Max Margin Objective

Max Margin Objectives (MMO) are also used to empower the MDS models to learn better representation. The
objective function is formalized as:

Latargin =max (0, f(xi;0) - f (xj:0) +v) , (@)

where x; and x; represent the input vectors, § are parameters of the model function f(-), and y is the margin
threshold. The MMO aims to force function f(x;; 6) and function f (xj; &) to be separated by a predefined margin
y-In Cao et al. [19], a MMO is designed to constrain a pair of randomly sampled sentences with different salience
scores — the one with a higher score should be larger than the other one more than a marginal threshold. Two max
margin losses are proposed in Zhong et al. [188]: a margin-based triplet loss that encouraged the model to pull
the golden summaries semantically closer to the original documents than to the machine-generated summaries;
and a pair-wise margin loss based on a greater margin between paired candidates with more disparate ROUGE
score rankings.

4.5 Multi-Task Objective

Supervision signals from MDS objectives may not be strong enough for representation learners, so some works
seek other supervision signals from multiple tasks. A general form is as follows:

Lytur = Lsumm + Lothers (5)
where Lgy,mm is the loss function of MDS tasks, and Lo;pe, is the loss function of an auxiliary task. Angelidis et al.
[5] assumed that the aspect-relevant words not only provide a reasonable basis for model aspect reconstruction,
but also a good indicator for product domain. Similarly, multi-task classification was introduced by Cao et al. [19].
Two models are maintained: text classification and text summarization models. In the first model, CNN is used to
classify text categories and cross-entropy loss is used as the objective function. The summarization model and
the text classification model share parameters and pooling operations, so are equivalent to the shared document
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vector representation. Coavoux et al. [33] jointly optimized the model from a language modeling objective and
two other multi-task supervised classification losses, which are polarity loss and aspect loss.

4.6 Other Types of Objectives

There are many other types of objectives in addition to those mentioned above. Cao et al. [21] proposed using
ROUGE-2 to calculate the sentence saliency scores and the model tries to estimate this saliency with linear
regression. Yin et al. [174] suggested summing the squares of the prestige vectors calculated by the PageRank
algorithm to identify sentence importance. Zhang et al. [184] proposed an objective function by ensembling
individual scores from multiple CNN models; besides the cross-entropy loss, a consensus objective is adopted to
minimize disagreement between each pair of classifiers. Amplay et al. [4] used two objectives in the abstract
module: the first to optimize the generation probability distribution by maximizing the likelihood; and the second
to constrain the model output to be close to its golden summary in the encoding space, as well as being distant
from the random sampled negative summaries. Chu et al. [31] designed a similarity objective that shares the
encoder and decoder weights within the auto-encoder module, while in the summarization module, the average
cosine distance indicates the similarity between the generated summary and the reviews. A variant similarity
objective termed early cosine objective is further proposed to compute the similarity in a latent space which is the
average of the cell states and hidden states to constrain the generated summaries semantically close to reviews.

4.7 Discussion

In MDS, cross-entropy is the most commonly adopted objective function that bridges the predicted candidate
summaries and the golden summaries by treating the golden summaries as strong supervision signals. However,
adopting cross-entropy loss alone may not lead the model to achieve good performance since the supervisory
signal for cross-entropy objective is not strong enough by itself to effectively learn good representation. Several
other objectives can thus serve as complements, e.g., reconstruction objectives offer a view from the unsupervised
learning perspective; the redundancy objective constrains models from generating redundant content; while
max-margin objectives require a step-change improvements from previous versions. By using multiple objectives,
model optimization could be conducted with the input documents themselves if the manual annotation is
scarce. The models that adopt multi-task objectives explicitly define multiple auxiliary tasks to assist the main
summarization task for better generalization, and provide various constraints from different angles that lead to
better model optimization.

5 EVALUATION METRICS

Evaluation metrics are used to measure the effectiveness of a given method objectively, so well-defined evaluation
metrics are crucial to MDS research. We classify the existing evaluation metrics into two categories and will
discuss each category in detail: (1) ROUGE: the most commonly used evaluation metrics in the summarization
community; and (2) other evaluation metrics that have not been widely used in MDS research to date.

5.1 ROUGE

Recall-Oriented Understudy for Gisting Evaluation (ROUGE) [95] is a collection of evaluation indicators that is
one of the most essential metrics for many natural language processing tasks, including machine translation and
text summarization. ROUGE obtains prediction/ground-truth similarity scores through comparing automatically
generated summaries with a set of corresponding human-written references. ROUGE has many variants to
measure candidate abstracts in a variety of ways [95]. The most commonly used ones are ROUGE-N and ROUGE-
L.

ROUGE-N (ROUGE with n-gram co-occurrence statistics ) measures a n-gram recall between reference and their
corresponding candidate summaries [95]. ROUGE-N can be calculated as:
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ZSumE{Ref} Zgramn eSum County, grcp(gramy)
ZSumE{Ref} Zgramn esum Count(gramy)
where Ref and Sum are reference and machine-generated summary, n represents the length of n-gram, and
Countyqsch(gramy) represents the maximum number of n-grams in the reference summary and corresponding
candidates. The numerator of ROUGE-N is the number of n-grams owned by both the reference and generated
summary, while the denominator is the total number of n-grams occurring in the golden summary. The denomi-
nator could also be set to the number of candidate summary n-grams to measure precision; however, ROUGE-N
mainly focuses on quantifying recall, so precision is not usually calculated. ROUGE-1 and ROUGE-2 are special

cases of ROUGE-N that are usually chosen as best practices and represent the unigram and bigram.

ROUGE-N =

(6)

ROUGE-L (ROUGE with Longest Common Subsequence) adopts the longest common subsequence algorithm to
count the longest matching vocabularies [95]. Formally, ROUGE-L is calculated using:

(1+ ﬂz)RlcsPlcs

Fies = ) (7)
CS Rlcs +ﬁ2Plcs
where ( \
LCS(Ref, Sum
Ries = —f, (8)
m
and ( |
LCS(Ref,Sum
Ppes = —f~ )

n

where LCS(-) represents the longest common subsequence function. ROUGE-L is termed as LCS-based F-measure
as it is obtained from LCS-Precision P;.s and LCS-Recall Rjs. f is the balance factor between R;.s and Pj.;. It
can be set by the fraction of Pj.; and R.s; by setting f'to a big number, only R; s is considered. The use of
ROUGE-L enables the measurement of the similarity of two text sequences at sentence-level. ROUGE-L also has
the advantage of deciding the n-gram without extra manual input, since the calculation of LCS can count grams
adaptively.

Other ROUGE Based Metrics. ROUGE-W [95] is proposed to weight consecutive matches to better measure
semantic similarities between two texts. ROUGE-S [95] stands for ROUGE with Skip-bigram co-occurrence
statistics that allows the bigram to skip arbitrary words. An extension of ROUGE-S, ROUGE-SU [95] refers to
ROUGE with Skip-bigram plus Unigram-based co-occurrence statistics and is able to be obtained from ROUGE-S
by adding a begin-of-sentence token at the start of both references and candidates. ROUGE-WE [119] is proposed
to further extend ROUGE by measuring the pair-wise summary distances in word embedding space. In recent
years, more ROUGE-based evaluation models have been proposed to compare golden and machine-generated
summaries, not just-according to their literal similarity, but also considering semantic similarity [141, 181, 186].
In terms of the ROUGE metric for multiple golden summaries, the Jackknifing procedure (similar to K-fold
validation) has been introduced [95]. The M best scores are computed from sets composed of M-1 reference
summaries and the final ROUGE-N is the average of M scores. This procedure can also be applied to ROUGE-L,
ROUGE-W and ROUGE-S.

5.2 Other Evaluation Metrics

Besides ROUGE-based [95] metrics, other evaluation metrics for MDS exist, but have received less attention than
ROUGE. We hope this section will give researchers and practitioners a holistic view of alternative evaluation
metrics in this field. Based on the mode of summaries matching, we divide the evaluation metrics into two groups:
lexical matching metrics and semantic matching metrics.

Lexical Matching Metrics. BLEU [123] is a commonly used vocabulary-based evaluation metric that provides a
precision-based evaluation indicator, as opposed to ROUGE that mainly focuses on recall. Perplexity [72] is used
to evaluate the quality of the language model by calculating the negative log probability of a word’s appearance.
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Table 3. Advantages and disadvantages of different evaluation metrics.

Evaluation Metrics Advantages Disadvantages
» Widely used « Cannot measure texts
ROUGE « Intuitive semantically
« Easily computed « Exact matching
. « Cannot measure texts
« Intuitive .
Easily computed semantically
BLEU sty pu . « Cannot deal with
. « High correlations with .
Lexical . languages lacking word
‘ human judgments .
Matching boundaries
Metrics Perplexit » Easily computed « Sensitive to certain
plexity « Intuitive symbols and words
. . . « Requi 1
. « High correlations with equires matia
Pyramid . extraction of units
human judgments . )
« Bias results easily
« Consider both content and
. linguistic quality .
Responsiveness | Can be calculated without « Not widely adopted
reference
Data « Can measure the density « Cannot measure texts
Statistics and coverage of summary semantically
METEOR « Consider non-exact matching | « Sensitive to length
- C text: ti .
SUPERT I Measure texts semantic « Not widely adopted
similarity
Preferences | « Does not depend on the « Require human
based Metric golden summaries annotations
« Semantically measure texts to . .

. » High tational
Semantic BERTScore some extent d;iaxi((;?pu ahona
Matching + Mimic human evaluation

Metrics « Semantically measure texts to
some extent
. « High tational
MoverScore | « More similar to human 1eh computationa
. . demands
evaluation by adopting earth
mover’s distance
» Combining red.undancy., . Non-trivial for
Importance relevance and informativeness | . .
. implementation
« Theoretically supported
Human « Can accurately and « Require human
Evaluation semantically measure texts annotations

A low perplexity on a test dataset is a strong indicator of a summary’s high grammatical quality because it
measures the probability of words appearing in sequences. Based on Pyramid [117] calculation, the abstract
sentences are manually divided into several Summarization Content Units (SCUs), each representing a core
concept formed from a single word or phrase/sentence. After sorting SCUs in order of importance to form the
Pyramid, the quality of automatic summarization is evaluated by calculating the number and importance of SCUs
included in the document [118]. Intuitively, more important SCUs exist at higher levels of the pyramid. Although
Pyramid shows a strong correlation with human judgment, it requires professional annotations to match and
evaluate SCUs in generated and golden summaries. Some recent works focus on the construction of Pyramid
[48, 62, 124, 143, 169]. Responsiveness [100] measures content selection and linguistic quality of summaries by
directly rating scores. Additionally, the assessments are calculated without reference to model summaries. Data
Statistics [56] contain three evaluation metrics: extractive fragment coverage measures the novelty of generated
summaries by calculating the percentage of words in the summary that are also present in source documents;
extractive fragment density measures the average length of the extractive block to which each word in the
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summary belongs; and compression ratio compares the word numbers in the source documents and generated
summary.

Semantic Matching Metrics. METEOR (Metric for Evaluation of Translation with Explicit Ordering) [10] is an
improvement to BLEU. The main idea behind METEOR is that while candidate summaries can be correct with
similar meanings, they are not exactly matched with references. In such a case, WordNet!? is introduced to expand
the synonym set, and the word form is also taken into account. SUPERT [49] is an unsupervised MDS evaluation
metric that measures the semantic similarity between the pseudo-reference summary and the machine-generated
summary. SUPERT obviates the need for human annotations by not referring to golden summaries. Contextualized
embeddings and soft token alignment techniques are leveraged to select salient information from the input
documents to evaluate summary quality. Preferences based Metric [194] is a pairwise sentence preference-based
evaluation model and it does not depend on the golden summaries. The underlying premise is to ask annotators
about their pair-wise preferences rather than writing complex golden summaries, and are much easier and faster
to obtain than traditional reference summary-based evaluation models. BERTScore [181] computes a similarity
score for each token within the candidate sentence and the reference sentence. It measures the soft overlap of
two texts’ BERT embeddings. MoverScore [186] adopts a distance to evaluate the agreement between two texts
in the context of BERT and ELMo word embeddings. This proposed metric has a high correlation with human
judgment of text quality by adopting earth mover’s distance. Importance [129] is a simple but rigorous evaluation
metric from the aspect of information theory. It is a final indicator calculated from the three aspects: Redundancy,
Relevance, and Informativeness. A good summary should have low Redundancy and high Relevance and high
Informativeness. The cluster of Human Evaluation is used to supplement automatic evaluation on relatively small
instances. Annotators evaluate the quality of machine-generated summaries by rating Informativeness, Fluency,
Conciseness, Readability, Relevance. Model ratings are usually computed by averaging the rating on all selected
summary pairs.

5.3 Discussion

We summarize the advantages and disadvantages of above-mentioned evaluation metrics in Table 3. Although
there are many evaluation metrics for MDS, the indicators of the ROUGE series are generally accepted by the
summarization community. Almost all research works utilize ROUGE for evaluation, while other evaluation
indicators are just for assistance currently. Among the ROUGE family, ROUGE-1, ROUGE-2 and ROUGE-L are
the most commonly used evaluation metrics. In addition, there are plenty of existing evaluation metrics in other
natural language processing tasks that could be potentially adjusted for MDS tasks, such as efficiency, effectiveness
and coverage from information retrieval.

6 DATASETS

Compared to SDS tasks, large-scale MDS datasets, which contain more general scenarios with many downstream
tasks, are relatively scarce. In this section, we present our investigation on the 10 most representative datasets
commonly used for MDS and its variant tasks.

DUC & TAC. DUC!! (Document Understanding Conference) provides official text summarization competitions
each year from 2001-2007 to promote summarization research. DUC changed its name to Text Analysis Conference
(TAC)* in 2008. Here, the DUC datasets refer to the data collected from 2001-2007; the TAC datasets refer to the
datasets after 2008. Both DUC and TAC are from the news domains, including various topics such as politics,
natural disasters, and biography. Nevertheless, as shown in Table 4, the DUC and TAC datasets provide small
datasets for model evaluation that only include hundreds of news documents and human-annotated summaries.
Of note, the first sentence in a news item is usually information-rich that renders bias in the news datasets, so it

Ohttps://wordnet.princeton.edu/
Mhttp://duc.nist.gov/
Zhttp://www.nist.gov/tac/
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Table 4. Comparison of Different Datasets. In the table, “Ave”, “Summ”, “Len”, “bus”;‘rev” and “#” represent average, summary,
length, business, reviews and numbers respectively; “Docs” and “sents” mean documents and sentences respectively.

Datasets Cluster # Document # Summ # Ave Summ Len Topic
DUCO01 30 309 docs 60 summ 100 words News
DUCO02 59 567 docs 116 summ 100 words News
DUCO03 30 298 docs 120 summ 100 words News
DUC04 50 10 docs / cluster 200 summ 665 bytes News
DUC05 50 25-50 docs / cluster 140 summ 250 words News
DUC06 50 25 docs / cluster 4 summ / cluster 250 words News
DUCo07 45 25 docs / cluster 4 summ / cluster 250 words News

TAC 2008 43 10 docs / cluster 4 summ / cluster 100 words News

TAC 2009 44 10 docs / cluster 4 summ / cluster 100 words News

TAC 2010 46 10 docs / cluster 4 summ / cluster 100 words News

TAC 2011 44 10 docs / cluster 4 summ / cluster 100 words News

OPOSUM 60 600 rev 1 summ / cluster 100 words Amfizon

reviews

WikiSum - 1 57;;21)n//3‘éa114{1t/e222 05 1 summ / cluster | 139.4 tokens/ summ | Wikipedia

train / val / test 263.66 words / summ
Multi-News - 44972 / 5622 / 5622 1 summ / cluster | 9.97 sents / summ News
2-10 docs / cluster 262 tokens / summ
Opinosis 51 6457 rev 5 summ / cluster - S}te
reviews
Rotten 3731 99.8 rev / cluster 1 summ / cluster | 19.6 tokens / summ M(.)Vle
Tomatoes reviews
train / val / test Customer
Yelp - bus: 10695 / 1337 / 1337 - - reviews
rev: 1038184 / 129856 / 129840
Scisumm 1000 21 - 928 cites / paper 1 summ / cluster 151 words Science
15 sents / refer Paper
WCEP 10200 235 docs / cluster 1 summ / cluster 32 words Wikipedia
Multi-XScience - 3 (gz;n //5‘(7)216/ /t;(s)t% 1 summ / cluster | 116.44 words / summ S;;iicre

fails to reflect the structure of natural documents in daily lives. These two datasets are on a relatively small scale
and not ideal for large-scale deep neural based MDS model training and evaluation.

OPOSUM. OPOSUM [5] collects multiple reviews of six product domains from Amazon. This dataset not only
contains multiple reviews and corresponding summaries but also products’ domain and polarity information.
The latter information could be used as auxiliary supervision signals.

WikiSum. WikiSum [97] targets abstractive MDS. For a specific Wikipedia theme, the documents cited in
Wikipedia articles or the top-10 Google search results (using the Wikipedia theme as a query) are seen as the
source documents. Golden summaries are the real Wikipedia articles. However, some of the URLSs are not available
and can be identical to each other in parts. To remedy these problems, Liu et al. [98] cleaned the dataset and
deleted duplicated examples, so here we report statistical results from [98].

Multi-News. Multi-News [44] is a relatively large-scale dataset in the news domain; the articles and human-
written summaries are all from the Web!3. This dataset includes 56,216 article-summary pairs and contains
trace-back links to the original documents. Moreover, the authors compared the Multi-News dataset with prior
datasets in terms of coverage, density, and compression, revealing that this dataset has various arrangement
styles of sequences.

3http://newser.com
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Opinosis. The Opinosis dataset [47] contains reviews of 51 topic clusters collected from TripAdvisor'*, Amazon'?,

and Edmunds’®. For each topic, approximately 100 sentences on average are provided and the reviews are fetched
from different sources. For each cluster, five professionally written golden summaries are provided for model
training and evaluation.

Rotten Tomatoes. The Rotten Tomatoes dataset [162] consists of the collected reviews of 3,731 movies from
the Rotten Tomato website!”. The reviews contain both professional critics and user comments. For each movie,
a one-sentence summary is created by professional editors.

Yelp. Chu et al. [31] proposed a dataset named Yelp based on the Yelp Dataset Challenge. This dataset includes
multiple customer reviews with five-star ratings. The authors provided 100 manual-written summaries for model
evaluation using Amazon Mechanical Turk (AMT), within which every eight input reviews are summarized into
one golden summary.

Scisumm. Scisumm dataset [172] is a large, manually annotated corpus for scientific document summarization.
The input documents are a scientific publication, called the reference paper, and multiple sentences from the
literature that cite this reference paper. In the SciSumm dataset, the 1,000 most cited papers from the ACL
Anthology Network [132] are treated as reference papers, and an average of 15 citation sentences are provided
after cleaning. For each cluster, one golden summary is created by five NLP-based Ph.D. students or equivalent
professionals.

WCEP. The Wikipedia Current Events Portal dataset (WCEP) [51] contains human-written summaries of recent
news events. Similar articles are provided by searching similar articles from Common Crawl News dataset!®
to extend the inputs to obtain large-scale news articles. Overall, the WCEP dataset has good alignment with
real-world industrial use cases.

Multi-XScience. The source data of Multi-XScience [101] are from Arxiv and Microsoft academic graphs and
this dataset is suitable for abstractive MDS. Multi-XScience contains fewer positional and extractive biases than
the WikiSum and Multi-News datasets, so the drawback of obtaining higher scores from a copy sentence at a
certain position can be partially avoided.

Datasets for MDS Variants. The representative query-oriented MDS datasets are Debatepedia [115], AQUA-
MUSE [82], and QBSUM [185]. The representative dialogue summarization datasets are DIALOGSUM [26], AMI
[24], MEDIASUM [191], and QMSum [189]. RTS is a track at the Text Retrieval Conference (TREC) which provides
several RTS datasets!®. Tweet Contextualization track [13] (2012-2014) is derived from the INEX 2011 Question
Answering Track, that focuses on more NLP-oriented tasks and moves to MDS.

Discussion. Table 4 compares 20 MDS datasets based on the numbers of clusters and documents; the number and
the average length of summaries; and the field to which the dataset belongs. Currently, the main areas covered
by the MDS datasets are news (60%), scientific papers (10%) and Wikipedia (10%). In the early development of
the MDS, most studies were performed on the DUC and TAC datasets. However, the size of these datasets is
relatively small; and thus not highly suitable for training deep neural network models. Datasets on news articles
are also common, but the structure of news articles (highly compressed information in the first paragraph or
first sentence of each paragraph) can cause positional and extractive biases during training. In recent years,
large-scale datasets such as WikiSum and Multi-News datasets have been developed and used by researchers to
meet training requirements, reflecting the rising trend of data-driven approaches.

https://www.tripadvisor.com/
BShttps://www.amazon.com.au/
Ohttps://www.edmunds.com/

http://rottentomatoes.com
8https://commoncrawl.org/2016/10/news-dataset-available/
http://trecrts.github.io/
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7 FUTURE RESEARCH DIRECTIONS AND OPEN ISSUES

Although existing works have established a solid foundation for MDS it is a relatively understudied field compared
with SDS and other NLP topics. Summarizing on multi-modal data, medical records, codes, project activities and
MDS combining with Internet of Things [183] have still received less attention. Actually, MDS techniques are
beneficial for a variety of practical applications, including generating Wikipedia articles, summarizing news,
scientific papers, and product reviews, and individuals, industries have a huge demand for compressing multiple
related documents into high-quality summaries. This section outlines several prospective research directions and
open issues that we believe are critical to resolving in order to advance the field.

7.1 Capturing Cross-document Relations for MDS

Currently, many MDS models still center on a simple concatenation of input documents into a flat sequence,
ignoring cross-document relations. Unlike SDS, MDS input documents may contain redundant, complementary,
or contradictory information [130]. Discovering cross-document relations, which can assist models to extract
salient information, improve the coherence and reduce redundancy of summaries[94]. Research on capturing
cross-document relations has begun to gain momentum in the past two years; one of the most widely studied
topics is graphical models, which can easily be combined with deep learning based models such as graph neural
networks and Transformer models. Several existing works indicate the efficacy of graph-based deep learning
models in capturing semantic-rich and syntactic-rich representation and generating high-quality summaries
[94, 160, 172, 173]. To this end, a promising and important direction would be to design a better mechanism to
introduce different graph structures [30] or linguistic knowledge [15, 103], possibly into the attention mechanism
in deep learning based models, to capture cross-document relations and to facilitate summarization.

7.2 Creating More High-quality Datasets for MDS

Benchmark datasets allow researchers to train, evaluate and compare the capabilities of different models at
the same stage. High-quality datasets are critical to developing MDS tasks. DUC and TAC, the most common
datasets used for MDS tasks, have a relatively small number of samples so are not very suitable for training DNN
models. In recent years, some large datasets have been proposed, including WikiSum [97], Multi-News [44], and
WCEP [51], but more efforts are still needed. Datasets with documents of rich diversity, with minimal positional
and extractive biases are desperately required to promote and accelerate MDS research, as are datasets for
other applications such as summarization of medical records or dialogue [111], email [154, 176], code [106, 135],
software project activities [3], legal documents [76], and multi-modal data [89]. The development of large-scale
cross-task datasets will facilitate multi-task learning [165]. However, the datasets of MDS combining with text
classification, question answering, or other language tasks have seldom been proposed in the MDS research
community, but these datasets are essential and widely employed in industrial applications.

7.3 Improving Evaluation Metrics for MDS

To our best knowledge, there are no evaluation metrics specifically designed for MDS models — SDS and MDS
models share the same evaluation metrics. New MDS evaluation metrics should be able to: (1) evaluating the
relations between the different input documents in the generated summary; (2) measuring to what extent
the redundancy in input documents is reduced; and (3) judging whether the contradictory information across
documents is reasonably handled. A good evaluation indicator is able to reflect the true performance of an MDS
model and guide design of improved models. However, current evaluation metrics [43] still have several obvious
defects. For example, despite the effectiveness of commonly used ROUGE metrics, they struggle to accurately
measure the semantic similarity between a golden and generated summary because ROUGE-based evaluation
metrics only consider vocabulary-level distances; as such, even if a ROUGE score improves, it does not necessarily
mean that the summary is of a higher quality and so is not ideal for model training. Recently, some works extend
ROUGE along with WordNet [141] or pre-trained LMs [181] to alleviate these drawbacks. It is challenging to
propose evaluation indicators that can reflect the true quality of generated summaries comprehensively and
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as semantically as human raters. Another frontline challenge for evaluation metrics research is unsupervised
evaluation, being explored by a number of recent studies [49, 148].

7.4 Reinforcement Learning for MDS

Reinforcement learning [110] is a cluster of algorithms based on dynamic programming according to the Bellman
Equation to deal with sequential decision problems, where state transition dynamics of the environment are
provided in advance. Several existing works [113, 127, 171] model the document summarization task as a sequential
decision problem and adopt reinforcement learning to tackle the task. Although deep reinforcement learning
for SDS has made great progress, we still face challenges to adapt existing SDS models to MDS, as the latter
suffers from a large state, action space, and problems with high redundancy and contradiction [105]. Additionally,
current summarization methods are based on model-free reinforcement learning algorithms, in which the model
is not aware of environment dynamics but continuously explores the environment through simple trial-and-error
strategies, so they inevitably suffer from low sampling efficiencies. Nevertheless, the model-based approaches
can leverage data more efficiently since they update models upon the prior to the environment. In this case,
data-efficient reinforcement learning for MDS could potentially be explored in the future.

7.5 Pre-trained Language Models for MDS

In many NLP tasks, the limited labeled corpora are not adequate to train semantic-rich word vectors. Using
large-scale, unlabeled, task-agnostic corpora for pre-training can enhance the generalization ability of models and
accelerate convergence of networks [109, 128]. At present, pre-trained LMs have led to successes in many deep
learning based NLP tasks. Among the reviewed papers [2, 85, 94, 122, 147, 188], multiple works adopt pre-trained
LMs for MDS and achieve promising improvements. Applying pre-trained LMs such as BERT [35], GPT-2 [133],
GPT-3 [18], XLNet [170], ALBERT [84], or T5 [134], and fine-tuning them on a variety of downstream tasks allows
the model to achieve faster convergence speed and can improve model performance. MDS requires the model to
have a strong ability to process long sequences. It is promising to explore powerful LMs specifically targeting
long sequence input characteristics and avoiding quadratic memory growth for self-attention mechanism, such
as Longformer [14], REFORMER [79], or Big Bird [175] with pre-trained models. Also, tailor-designed pre-trained
LMs for summarization have not been well-explored, e.g., using gap sentences generation is more suitable than
using masked language model [178]. Most MDS methods focus on combining pre-trained LMs in encoder and, as
for capturing cross-document relations, applying them in decoder is also a worthwhile direction for research
[126]. Other promising directions in this area involve exploring pre-trained LMs in languages other than English
and specialized LMs for dealing with specific summarization tasks, e.g. LMs pre-trained on scientific articles.

7.6 Creating Explainable Deep Learning Model for MDS

Researchers are more focused on designing deep architectures towards a certain MDS task by improving the
models performance while ignoring their interpretabilities. However, an explainable model can reveal how it
generates candidate summaries — to distinguish whether the model has learned the distribution of generating
condensed and coherent summaries from multiple documents without bias — and is thus crucial for model
building. Recently, a large number of researches into explainable models [136, 179] have proposed easing the
non-interpretable concern of deep neural networks, within which model attention plays an especially important
role in model interpretation [140, 190]. While explainable methods have been intensively researched in NLP
[68, 83], studies into explainable MDS models are relatively scarce and would benefit from future development.

7.7 Adversarial Attack and Defense for MDS

Adversarial examples are strategically modified samples that aim to fool deep neural networks based models. An
adversarial example is created via the worst-case perturbation of the input to which a robust DNN model would
still assign correct labels, while a vulnerable DNN model would have high confidence in the wrong prediction.
The idea of using adversarial examples to examine the robustness of a DNN model originated from research in
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Computer Vision [149] and was introduced in NLP by Jia et al. [73]. An essential purpose for generating adversarial
examples for neural networks is to utilize these adversarial examples to enhance the model’s robustness [53].
Therefore, research on adversarial examples not only helps identify and apply a robust model but also helps to
build robust models for different tasks. Following the pioneering work proposed by Jia et al. [73], many attack
methods have been proposed to address this problem in NLP applications [182] with limited research for MDS [28].
It is worth filling this gap by exploring existing and developing new, adversarial attacks on the state-of-the-art
DNN-based MDS models.

7.8 Multi-modality for MDS

Existing multi-modal summarization is based on non-deep learning techniques [69-71, 90], leaving a huge
opportunity to exploit deep learning techniques for this task. Multi-modal learning has led to successes in many
deep learning tasks, such as Visual Language Navigation [161] and Visual Question Answering [7]. Combining
MDS with multi-modality has a range of applications:

e text + image: generating summaries with pictures and texts for documents with pictures. This kind of
multi-modal summary can improve the satisfaction of users [193];

o text + video: based on the video and its subtitles, generating a concise text summary that describes the
main context of video [121]. Movie synopsis is one application;

o text + audio: generating short summaries of audio files that people could quickly preview without actually
listening to the entire audio recording [42].

Deep learning is well-suited for multi-modal tasks [58], as it is-able to effectively capture highly nonlinear
relationships between images, text or video data. Existing MDS models target at dealing with textual data only.
Involving richer modalities based on textual data requires models to embrace larger capacity to handle these
multi-modal data. The big models such as UNITER [27], VisualBERT [91] deserve more attention in multi-modality
MDS tasks. However, at present, there is little multi-modal research work based on MDS; this is a promising, but
largely under-explored, area where more studies are expected.

8 CONCLUSION

In this article, we have presented the first comprehensive review of the most notable works to date on deep
learning based multi-document summarization (MDS). We propose a taxonomy for organizing and clustering
existing publications and devise the network design strategies based on the state-of-the-art methods. We also
provide an overview of the existing multi-document objective functions, evaluation metrics and datasets, and
discuss some of the most pressing open problems and promising future extensions in MDS research. We hope
this survey provides readers with a comprehensive understanding of the key aspects of MDS tasks, clarifies the
most notable advances, and sheds light on future studies.

REFERENCES

[1] Stergos Afantenos, Vangelis Karkaletsis, and Panagiotis Stamatopoulos. 2005. Summarization from Medical Documents: A Survey.
Artificial Intelligence in Medicine. 33, 2, 157-177.

[2] Amanuel Alambo, Cori Lohstroh, Erik Madaus, Swati Padhee, Brandy Foster, Tanvi Banerjee, Krishnaprasad Thirunarayan, and
Michael L. Raymer. 2020. Topic-Centric Unsupervised Multi-Document Summarization of Scientific and News Articles. In 2020 IEEE
International Conference on Big Data (BigData 2020). Atlanta, United States, 591-596.

[3] Mahfouth Alghamdi, Christoph Treude, and Markus Wagner. 2020. Human-Like Summaries from Heterogeneous and Time-Windowed
Software Development Artefacts. In Proceedings of the 6th International Conference of Parallel Problem Solving from Nature (PPSN 2020).
Leiden, The Netherlands, 329-342.

[4] Reinald Kim Amplayo and Mirella Lapata. 2021. Informative and Controllable Opinion Summarization. In Proceedings of the 16th
Conference of the European Chapter of the Association for Computational Linguistics (EACL 2021). Online, 2662-2672.

[5] Stefanos Angelidis and Mirella Lapata. 2018. Summarizing Opinions: Aspect Extraction Meets Sentiment Prediction and They are Both
Weakly Supervised. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP 2018). Brussels,
Belgium, 3675-3686.

ACM Comput. Surv.



(6]
(7]

[8

[

[9

—

[10]

[11]
[12]
[13]

[14]
[15]

[16]
(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Multi-document Summarization via Deep Learning Techniques: A Survey « 1:27

Diego Antognini and Boi Faltings. 2019. Learning to Create Sentence Semantic Relation Graphs for Multi-Document Summarization.
In Proceedings of the 2nd Workshop on New Frontiers in Summarization (NFiS 2019). Hongkong, China, 32-41.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C. Lawrence Zitnick, and Devi Parikh. 2015. VQA:
Visual Question Answering. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV 2015). Santiago, Chile,
2425-2433.

Rachit Arora and Balaraman Ravindran. 2008. Latent Dirichlet Allocation and Singular Value Decomposition based Multi-document
Summarization. In Proceedings of the 2008 Eighth IEEE International Conference on Data Mining (ICDM 2008). Pisa, Italy, 713-718.
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine Translation by Jointly Learning to Align and Translate.
In Proceedings of the 3rd International Conference on Learning Representations (ICLR 2015). San Diego, CA, United States.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human
Judgments. In Proceedings of the Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization.
Ann Arbor, United States, 65-72.

Elena Baralis, Luca Cagliero, Saima Jabeen, and Alessandro Fiori. 2012. Multi-document Summarization Exploiting Frequent Itemsets.
In Proceedings of the 27th Annual ACM Symposium on Applied Computing (SAC 2012). Riva, Italy, 782-786.

Phyllis B Baxendale. 1958. Machine-made Index for Technical Literature - An Experiment. IBM Journal of Research and Development. 2,
4, 354-361.

Patrice Bellot, Véronique Moriceau, Josiane Mothe, Eric SanJuan, and Xavier Tannier. 2016. INEX Tweet Contextualization Task:
Evaluation, Results and Lesson Learned. Information Processing and Management. 52, 5, 801-819.

1z Beltagy, Matthew E Peters, and Arman Cohan. 2020. Longformer: The Long-document Transformer. arXiv preprint arXiv:2004.05150.
Lidong Bing, Piji Li, Yi Liao, Wai Lam, Weiwei Guo, and Rebecca J. Passonneau. 2015. Abstractive Multi-Document Summarization
via Phrase Selection and Merging. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing (ACL 2015).
Beijing, China, 1587-1597.

Arthur Brazinskas, Mirella Lapata, and Ivan Titov. 2019. Unsupervised Opinion Summarization as Copycat-Review Generation. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL 2020). Online, 5151-5169.

Arthur Brazinskas, Mirella Lapata, and Ivan Titov. 2020. Few-Shot Learning for Opinion Summarization. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP 2020). Online, 4119-4135.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, et al. 2020. Language Models Are Few-shot Learners. In Proceedings of the 34th Annual Conference on
Neural Information Processing Systems (NeurIPS 2020). Online, 1877-1901.

Zigiang Cao, Wenjie Li, Sujian Li, and Furu Wei. 2017. Improving Multi-document Summarization via Text Classification. In Proceedings
of the 31st AAAI Conference on Artificial Intelligence (AAAI 2017). San Francisco, United States, 3053-3059.

Zigiang Cao, Furu Wei, Li Dong, Sujian Li, and Ming Zhou. 2015. Ranking with Recursive Neural Networks and its Application to
Multi-document Summarization. In Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI 2015). Austin, United States,
2153-2159.

Zigiang Cao, Furu Wei, Sujian Li, Wenjie Li, Ming Zhou, and Houfeng Wang. 2015. Learning Summary Prior Representation for
Extractive Summarization. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (ACL 2015). Beijing, China, 829-833.

Jaime G. Carbonell and Jade Goldstein. 1998. The Use of MMR, Diversity-Based Reranking for Reordering Documents and Producing
Summaries. In Proceedings of the 21st Annual International Conference on Research and Development in Information Retrieval (SIGIR
1998). Melbourne, Australia, 335-336.

Giuseppe Carenini, Raymond T. Ng, and Xiaodong Zhou. 2007. Summarizing Email Conversations with Clue Words. In Proceedings of
the 16th International Conference on World Wide Web (WWW 2007). Banff, Canada, 91-100.

Jean Carletta, Simone Ashby, Sebastien Bourban, Mike Flynn, Maél Guillemot, Thomas Hain, Jaroslav Kadlec, Vasilis Karaiskos,
Wessel Kraaij, Melissa Kronenthal, Guillaume Lathoud, Mike Lincoln, Agnes Lisowska, lain McCowan, Wilfried Post, Dennis Reidsma,
and Pierre Wellner. 2005. The AMI Meeting Corpus: A Pre-announcement. In Machine Learning for Multimodal Interaction, Second
International Workshop (MLMI 2005). Edinburgh, UK, 28-39.

Jiaao Chen and Diyi Yang. 2020. Multi-View Sequence-to-Sequence Models with Conversational Structure for Abstractive Dialogue
Summarization. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020). Online,
4106-4118.

Yulong Chen, Yang Liu, Liang Chen, and Yue Zhang. 2021. DialogSumm: A Real-Life Scenario Dialogue Summarization Dataset. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics (ACL 2021). Online, 5062-5074.

Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and Jingjing Liu. 2020. Uniter: Universal
Image-text Representation Learning. In Proceedings of 16th European Conference on Computer Vision (ECCV 2020). Online, 104-120.

ACM Comput. Surv.



1:28

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

(37]

(38]
[39]

[40]

[41]
[42]
[43]

[44]

[45]

[46]

[47]

[48]

« C.Maetal

Minhao Cheng, Jinfeng Yi, Pin-Yu Chen, Huan Zhang, and Cho-Jui Hsieh. 2020. Seq2Sick: Evaluating the Robustness of Sequence-to-
Sequence Models with Adversarial Examples. In Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI 2020). New
York, United States, 3601-3608.

Sangwoo Cho, Logan Lebanoft, Hassan Foroosh, and Fei Liu. 2019. Improving the Similarity Measure of Determinantal Point Processes

for Extractive Multi-Document Summarization. In Proceedings of the 57th Conference of the Association for Computational Linguistics
(ACL 2019). Florence, Italy, 1027-1038.

Janara Christensen, Stephen Soderland, Oren Etzioni, et al. 2013. Towards Coherent Multi-document Summarization. In Proceedings
of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

(HLT-NAACL 2013). Atlanta, United States, 1163-1173.

Eric Chu and Peter J. Liu. 2019. MeanSum: A Neural Model for Unsupervised Multi-Document Abstractive Summarization. In Proceedings
of the 36th International Conference on Machine Learning (ICML 2019). Long Beach, United States, 1223-1232.

Junyoung Chung, Caglar Giilgehre, KyungHyun Cho, and Yoshua Bengio. 2014. Empirical Evaluation of Gated Recurrent Neural

Networks on Sequence Modeling. In Proceedings of the 28th Annual Conference on Neural Information Processing Systems Workshop on
Deep Learning (NIPS 2014). Montreal, Canada.

Maximin Coavoux, Hady Elsahar, and Matthias Gallé. 2019. Unsupervised Aspect-Based Multi-Document Abstractive Summarization.
In Proceedings of the 2nd Workshop on New Frontiers in Summarization (NFiS 2019). Hong Kong, China, 42-47.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011. Natural Language Processing

(Almost) from Scratch. Journal of Machine Learning Research. 12, 2493-2537.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (NAACL-HLT 2019). Minneapolis, United States, 4171-4186.

Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas Lamar, Richard Schwartz; and John Makhoul. 2014. Fast and Robust Neural

Network Joint Models for Statistical Machine Translation. In Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (ACL 2014). Baltimore, United States, 1370-1380.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou, and Hsiao-Wuen Hon. 2019. Unified

Language Model Pre-training for Natural Language Understanding and Generation. In Proceedings of the 33th Annual Conference on
Neural Information Processing Systems (NeurIPS 2019). Vancouver, Canada, 13042-13054.

Cicero Dos Santos and Maira Gatti. 2014. Deep Convolutional Neural Networks for Sentiment Analysis of Short Texts. In Proceedings
of the International Conference on Computational Linguistics (COLING 2014). Dublin, Ireland, 69-78.

Wafaa S. El-Kassas, Cherif R. Salama, Ahmed A. Rafea, and Hoda K. Mohamed. 2021. Automatic Text Summarization: A Comprehensive

Survey. Expert Systems with Applications. 165, 113679.

Seppo Enarvi, Marilisa Amoia, Miguel Del-Agua Teba, Brian Delaney, Frank Diehl, Stefan Hahn, Kristina Harris, Liam McGrath, Yue

Pan, Joel Pinto, et al. 2020. Generating Medical Reports from Patient-doctor Conversations Using Sequence-to-sequence Models. In
Proceedings of the First Workshop on Natural Language Processing for Medical Conversations. Online, 22-30.

Giines Erkan and Dragomir R Radev. 2004. Lexrank: Graph-based Lexical Centrality as Salience in Text Summarization. Journal of
Artificial Intelligence Research. 22, 457-479.

Berna Erol, Dar-Shyang Lee, and Jonathan J. Hull. 2003. Multimodal Summarization of Meeting Recordings. In Proceedings of the 2003
IEEE International Conference on Multimedia and Expo (ICME 2003). Baltimore, United States, 25-28.

Alexander R Fabbri, Wojciech Kryscinski, Bryan McCann, Caiming Xiong, Richard Socher, and Dragomir Radev. 2021. Summeval:
Re-evaluating Summarization Evaluation. Transactions of the Association for Computational Linguistics. 9, 391-409.

Alexander R. Fabbri, Irene Li, Tianwei She, Suyi Li, and Dragomir R. Radev. 2019. Multi-News: A Large-Scale Multi-Document
Summarization Dataset and Abstractive Hierarchical Model. In Proceedings of the 57th Conference of the Association for Computational
Linguistics (ACL 2019). Florence, Italy, 1074-1084.

Xiachong Feng, Xiaocheng Feng, Bing Qin, Xinwei Geng, and Ting Liu. 2021. Dialogue Discourse-Aware Graph Convolutional Networks
for Abstractive Meeting Summarization. In Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI 2021).
3808-3814.

Rafael Ferreira, Luciano de Souza Cabral, Frederico Freitas, Rafael Dueire Lins, Gabriel de Franca Silva, Steven J Simske, and Luciano
Favaro. 2014. A Multi-document Summarization System based on Statistics and Linguistic Treatment. Expert Systems with Applications.
41, 13, 5780-5787.

Kavita Ganesan, ChengXiang Zhai, and Jiawei Han. 2010. Opinosis: A Graph Based Approach to Abstractive Summarization of Highly
Redundant Opinions. In Proceedings of the 23rd International Conference on Computational Linguistics (COLING 2010). Beijing, China,
340-348.

Yanjun Gao, Chen Sun, and Rebecca J Passonneau. 2019. Automated Pyramid Summarization Evaluation. In Proceedings of the 23rd
Conference on Computational Natural Language Learning (CoNLL 2019). Hong Kong, China, 404-418.

ACM Comput. Surv.



[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]
(58]
[59]

[60]

[61]
[62]
[63]
[64]
[65]
[66]
[67]
[68]
[69]

[70]

[71]

Multi-document Summarization via Deep Learning Techniques: A Survey « 1:29

Yang Gao, Wei Zhao, and Steffen Eger. 2020. SUPERT: Towards New Frontiers in Unsupervised Evaluation Metrics for Multi-Document
Summarization. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL 2020). Online, 1347-1354.
Shima Gerani, Yashar Mehdad, Giuseppe Carenini, Raymond Ng, and Bita Nejat. 2014. Abstractive Summarization of Product Reviews
Using Discourse Structure. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP 2014).
Doha, Qatar, 1602-1613.

Demian Gholipour Ghalandari, Chris Hokamp, Nghia The Pham, John Glover, and Georgiana Ifrim. 2020. A Large-Scale Multi-Document
Summarization Dataset from the Wikipedia Current Events Portal. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics (ACL 2020). Online, 1302-1308.

Jade Goldstein, Vibhu O Mittal, Jaime G Carbonell, and Mark Kantrowitz. 2000. Multi-document Summarization by Sentence Extraction.
In Proceedings of the 2000 Conference of the North American Chapter of the Association for Computational Linguistics: Applied Natural
Language Processing Conference (NAACL-ANLP 2000). Seattle, United States, 91-98.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and Harnessing Adversarial Examples. In Proceedings of
the 3rd International Conference on Learning Representations (ICLR 2015). San Diego, United States,.

Travis R. Goodwin, Max E. Savery, and Dina Demner-Fushman. 2020. Flight of the PEGASUS? Comparing Transformers on Few-shot
and Zero-shot Multi-document Abstractive Summarization. In Proceedings of the 28th International Conference on Computational
Linguistics (COLING 2020). Online, 5640-5646.

Quentin Grail, Julien Perez, and Eric Gaussier. 2021. Globalizing BERT-based Transformer Architectures for Long Document Summa-
rization. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2021).
Online, 1792-1810.

Max Grusky, Mor Naaman, and Yoav Artzi. 2018. Newsroom: A Dataset of 1.3 Million Summaries with Diverse Extractive Strategies. In
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (NAACL-HLT 2018). New Orleans, United States, 708-719.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O. K. Li. 2016. Incorporating Copying Mechanism in Sequence-to-Sequence Learning. In
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL 2016). 1631-1640.

Wenzhong Guo, Jianwen Wang, and Shiping Wang. 2019. Deep Multimodal Representation Learning: A Survey. IEEE Access. 7,
63373-63394.

Vishal Gupta and Gurpreet Singh Lehal. 2010. A Survey of Text Summarization Extractive Techniques. Journal of Emerging Technologies
in Web Intelligence. 2, 3, 258-268.

Aria Haghighi and Lucy Vanderwende. 2009. Exploring Content Models for Multi-document Summarization. In Proceedings of the 2009
Annual Conference of the North American Chapter of the Association for Computational Linguistics (HLT-NAACL 2009). Boulder, United
States, 362-370.

Majharul Haque, Suraiya Pervin, Zerina Begum, et al. 2013. Literature Review of Automatic Multiple Documents Text Summarization.
International Journal of Innovation and Applied Studies. 3, 1,121-129.

Tsutomu Hirao, Hidetaka Kamigaito, and Masaaki Nagata. 2018. Automatic Pyramid Evaluation Exploiting Edu-based Extractive
Reference Summaries. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP 2018). Brussels,
Belgium, 4177-4186.

Sepp Hochreiter and Jurgen Schmidhuber. 1997. Long Short-term Memory. Neural Computation. 9, 8, 1735-1780.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. 1989. Multilayer Feedforward Networks are Universal Approximators. Neural
Networks. 2, 5, 359-366.

Ya-Han Hu, Yen-Liang Chen, and Hui-Ling Chou. 2017. Opinion Mining from Online Hotel Reviews—A Text Summarization Approach.
Information Processing and Management. 53, 2, 436—449.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirectional LSTM-CRF Models for Sequence Tagging. arXiv preprint arXiv:1508.01991.
Jinbae Im, Moonki Kim, Hoyeop Lee, Hyunsouk Cho, and Sehee Chung. 2021. Self-Supervised Multimodal Opinion Summarization. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (ACL-IJCNLP 2021). Online, 388-403.

Sarthak Jain, Sarah Wiegreffe, Yuval Pinter, and Byron C. Wallace. 2020. Learning to Faithfully Rationalize by Construction. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL 2020). Online, 4459-4473.

Anubhav Jangra, Adam Jatowt, Mohammad Hasanuzzaman, and Sriparna Saha. 2020. Text-image-video Summary Generation Using
Joint Integer Linear Programming. Advances in Information Retrieval. 12036, 190.

Anubhav Jangra, Sriparna Saha, Adam Jatowt, and Mohammad Hasanuzzaman. 2020. Multi-modal Summary Generation Using
Multi-objective Optimization. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR 2020). Online, 1745-1748.

Anubhav Jangra, Sriparna Saha, Adam Jatowt, and Mohammed Hasanuzzaman. 2021. Multi-Modal Supplementary-Complementary
Summarization using Multi-Objective Optimization. In Proceedings of the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR 2021). Online, 818-828.

ACM Comput. Surv.



1:30 « C.Maetal

[72] Fred Jelinek, Robert L Mercer, Lalit R Bahl, and James K Baker. 1977. Perplexity - A Measure of the Difficulty of Speech Recognition
Tasks. The Journal of the Acoustical Society of America. 62, S1, S63-S63.

[73] Robin Jia and Percy Liang. 2017. Adversarial Examples for Evaluating Reading Comprehension Systems. In Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing (EMNLP 2017). Copenhagen, Denmark, 2021-2031.

[74] Hangqi Jin, Tianming Wang, and Xiaojun Wan. 2020. Multi-Granularity Interaction Network for Extractive and Abstractive Multi-
Document Summarization. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL 2020). Online,
6244-6254.

[75] Anirudh Joshi, Namit Katariya, Xavier Amatriain, and Anitha Kannan. 2020. Dr. Summarize: Global Summarization of Medical Dialogue
by Exploiting Local Structures. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings,
(EMNLP 2020). Online, 3755-3763.

[76] Ambedkar Kanapala, Sukomal Pal, and Rajendra Pamula. 2019. Text Summarization from Legal Documents: A Survey. Artificial
Intelligence Review. 51, 3, 371-402.

[77] Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classification. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP 2014). Doha, Qatar, 1746-1751.

[78] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with Graph Convolutional Networks. In Proceedings of the 5th
International Conference on Learning Representations (ICLR 2017). Toulon, France.

[79] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. 2020. Reformer: The Efficient Transformer. In Proceedings of the 8th International
Conference on Learning Representations (ICLR 2020). Addis Ababa, Ethiopia.

[80] Jia Jin Koay, Alexander Roustai, Xiaojin Dai, Dillon Burns, Alec Kerrigan, and Fei Liu. 2020. How Domain Terminology Affects Meeting
Summarization Performance. In Proceedings of the 28th International Conference on Computational Linguistics (COLING 2020). Online,
5689-5695.

[81] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet Classification with Deep Convolutional Neural Networks. In
Proceedings of the 26th Annual Conference on Neural Information Processing Systems (NIPS 2012). Lake Tahoe, United States, 1106-1114.

[82] Sayali Kulkarni, Sheide Chammas, Wan Zhu, Fei Sha, and Eugene Ie. 2020. AQuaMuSe: Automatically Generating Datasets for
Query-Based Multi-Document Summarization. arXiv preprint arXiv:2010.12694.

[83] Sawan Kumar and Partha P. Talukdar. 2020. NILE : Natural Language Inference with Faithful Natural Language Explanations. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL 2020). Online, 8730-8742.

[84] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut. 2020. ALBERT: A Lite BERT for
Self-supervised Learning of Language Representations. In Proceedings of the 8th International Conference on Learning Representations
(ICLR 2020). Addis Ababa, Ethiopia.

[85] Logan Lebanoff, Kaigiang Song, Franck Dernoncourt, Doo Soon Kim, Seokhwan Kim, Walter Chang, and Fei Liu. 2019. Scoring
Sentence Singletons and Pairs for Abstractive Summarization. In Proceedings of the 57th Conference of the Association for Computational
Linguistics (ACL 2019). Florence, Italy, 2175-2189.

[86] Logan Lebanoff, Kaigiang Song, and Fei Liu. 2018. Adapting the Neural Encoder-Decoder Framework from Single to Multi-Document
Summarization. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP 2018). Brussels,
Belgium, 4131-4141.

[87] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based Learning Applied to Document Recognition.
Proceedings of the IEEE. 86, 11, 2278-2324.

[88] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettle-
moyer. 2020. BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension.
In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL 2020). Online, 7871-7880.

[89] Haoran Li, Peng Yuan, Song Xu, Youzheng Wu, Xiaodong He, and Bowen Zhou. 2020. Aspect-Aware Multimodal Summarization for
Chinese E-Commerce Products. In Proceedings of The 34th AAAI Conference on Artificial Intelligence (AAAI 2020). New York, United
States, 8188-8195.

[90] Haoran Li, Junnan Zhu, Cong Ma, Jiajun Zhang, and Chengging Zong. 2017. Multi-modal Summarization for Asynchronous Collection
of Text, Image, Audio and Video. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (EMNLP
2017). Copenhagen, Denmark, 1092-1102.

[91] Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, and Kai-Wei Chang. 2019. Visualbert: A Simple and Performant Baseline for
Vision and Language. arXiv preprint arXiv:1908.03557.

[92] Piji Li, Lidong Bing, and Wai Lam. 2017. Reader-Aware Multi-Document Summarization: An Enhanced Model and The First Dataset. In
Proceedings of the Workshop on New Frontiers in Summarization (NFiS 2017). Copenhagen, Denmark, 91-99.

[93] Piji Li, Wai Lam, Lidong Bing, Weiwei Guo, and Hang Li. 2017. Cascaded Attention based Unsupervised Information Distillation for
Compressive Summarization. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (EMNLP 2017).
Copenhagen, Denmark, 2081-2090.

ACM Comput. Surv.



[94]

[95]

[96]

[97]

[98]
[99]
[100]

[101]

[102]

[103]

[104]

[105]

[106]
[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

Multi-document Summarization via Deep Learning Techniques: A Survey « 1:31

Wei Li, Xinyan Xiao, Jiachen Liu, Hua Wu, Haifeng Wang, and Junping Du. 2020. Leveraging Graph to Improve Abstractive Multi-
Document Summarization. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL 2020). Online,
6232-6243.

Chin-Yew Lin. 2004. ROUGE: A Package for Automatic Evaluation of Summaries. In Proceedings of the Workshop of Text Summarization
Branches Out. Barcelona, Spain, 74-81.

Chunyi Liu, Peng Wang, Jiang Xu, Zang Li, and Jieping Ye. 2019. Automatic Dialogue Summary Generation for Customer Service. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD 2019). Anchorage, United
States, 1957-1965.

Peter J. Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser, and Noam Shazeer. 2018. Generating Wikipedia
by Summarizing Long Sequences. In Proceedings of the 6th International Conference on Learning Representations (ICLR 2018). Vancouver,
Canada.

Yang Liu and Mirella Lapata. 2019. Hierarchical Transformers for Multi-Document Summarization. In Proceedings of the 57th Conference
of the Association for Computational Linguistics (ACL 2019). Florence, Italy, 5070-5081.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin
Stoyanov. 2019. Roberta: A Robustly Optimized Bert Pretraining Approach. arXiv preprint arXiv:1907.11692.

Annie Louis and Ani Nenkova. 2013. Automatically Assessing Machine Summary Content Without A Gold Standard. Computational
Linguistics. 39, 2, 267-300.

Yao Lu, Yue Dong, and Laurent Charlin. 2020. Multi-XScience: A Large-scale Dataset for Extreme Multi-document Summarization of
Scientific Articles. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020). Online,
8068-8074.

Wencan Luo, Fei Liu, Zitao Liu, and Diane J. Litman. 2016. Automatic Summarization of Student Course Feedback. In Proceedings
of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
(NAACL-HLT 2016). San Diego California, United States, 80-85.

Congbo Ma, Wei Emma Zhang, Hu Wang, Shubham Gupta, and Mingyu Guo. 2021. Incorporating Linguistic Knowledge for Abstractive
Multi-document Summarization. arXiv preprint arXiv:2109.11199.

Inderjeet Mani and Eric Bloedorn. 1997. Multi-Document Summarization by Graph Search and Matching. In Proceedings of the 14th
National Conference on Artificial Intelligence and 9th Innovative Applications of Artificial Intelligence Conference (AAAI 1997). Providence,
United States, 622-628.

Yuning Mao, Yanru Qu, Yiging Xie, Xiang Ren, and Jiawei Han. 2020.  Multi-document Summarization with Maximal Marginal
Relevance-guided Reinforcement Learning. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP 2020). Online, 1737-1751.

Paul W McBurney and Collin McMillan. 2014. Automatic Documentation Generation via Source Code Summarization of Method
Context. In Proceedings of the 22nd International Conference on Program Comprehension (ICPC 2014). Hyderabad, India, 279-290.
Yishu Miao and Phil Blunsom. 2016. Language as a Latent Variable: Discrete Generative Models for Sentence Compression. In
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing (EMNLP 2016). Austin, United States, 319-328.
Rada Mihalcea and Paul Tarau. 2005. A Language Independent Algorithm for Single and Multiple Document Summarization. In
Proceedings of the 2nd International Joint Conference, Companion Volume to the Proceedings of Conference including Posters/Demos and
Tutorial Abstracts (IJCNLP 2005). 19-24.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Distributed Representations of Words and Phrases and
Their Compositionality. In Proceedings of the 27th Annual Conference on Neural Information Processing Systems (NIPS 2013). Lake Tahoe,
United States, 3111-3119.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray
Kavukcuoglu. 2016. Asynchronous Methods for Deep Reinforcement Learning. In Proceedings of the 33nd International Conference on
Machine Learning (ICML2016). New York City, United States, 1928-1937.

Sabine Molenaar, Lientje Maas, Verénica Burriel, Fabiano Dalpiaz, and Sjaak Brinkkemper. 2020. Medical Dialogue Summarization for
Automated Reporting in Healthcare. In Proceedings of the International Conference on Advanced Information Systems Engineering (CAiSE
Workshops 2020). Grenoble, France, 76-88.

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017. SummaRuNNer: A Recurrent Neural Network Based Sequence Model for
Extractive Summarization of Documents. In Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI 2017). San Francisco,
United States, 3075-3081.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata. 2018. Ranking Sentences for Extractive Summarization with Reinforcement
Learning. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT 2018). New Orleans, United States, 1747-1759.

Mir Tafseer Nayeem, Tanvir Ahmed Fuad, and Yllias Chali. 2018. Abstractive Unsupervised Multi-Document Summarization using
Paraphrastic Sentence Fusion. In Proceedings of the 27th International Conference on Computational Linguistics (COLING 2018). Santa Fe,

ACM Comput. Surv.



1:32

[115]
[116]
[117]

[118]

[119]
[120]
[121]
[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]
[132]
[133]

[134]

[135]

[136]

[137]

« C.Maetal

United States, 1191-1204.

Preksha Nema, Mitesh M. Khapra, Anirban Laha, and Balaraman Ravindran. 2017. Diversity driven attention model for query-based
abstractive summarization. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (ACL 2017).
Vancouver, Canada, 1063-1072.

Ani Nenkova and Kathleen R. McKeown. 2012. A Survey of Text Summarization Techniques. In Mining Text Data. 43-76.

Ani Nenkova, Rebecca Passonneau, and Kathleen McKeown. 2007. The Pyramid Method: Incorporating Human Content Selection
Variation in Summarization Evaluation. ACM Transactions on Speech and Language Processing. 4, 2, 4.

Ani Nenkova and Rebecca J Passonneau. 2004. Evaluating Content Selection in Summarization: The Pyramid Method. In Proceedings
of the 2004 Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics
(HLT-NAACL 2004). Boston, United States, 145-152.

Jun-Ping Ng and Viktoria Abrecht. 2015. Better Summarization Evaluation with Word Embeddings for ROUGE. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing (EMNLP 2015). Lisbon, Portugal, 1925-1930.

Ahmed Oussous, Fatima-Zahra Benjelloun, Ayoub Ait Lahcen, and Samir Belfkih. 2018. Big Data Technologies: A Survey. Journal of
King Saud University-Computer and Information Sciences. 30, 4, 431-448.

Shruti Palaskar, Jindrich Libovicky, Spandana Gella, and Florian Metze. 2019. Multimodal Abstractive Summarization for How2 Videos.
In Proceedings of the 57th Conference of the Association for Computational Linguistics (ACL 2019). Florence, Italy, 6587-6596.

Richard Yuanzhe Pang, Adam Daniel Lelkes, Vinh Q. Tran, and Cong Yu. 2021. AgreeSum: Agreement-Oriented Multi-Document
Summarization. In Findings of the Association for Computational Linguistics (ACL-IJCNLP 2021). Online, 3377-3391.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: A Method for Automatic Evaluation of Machine Translation.
In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (ACL 2002). Philadelphia, United States,
311-318.

Rebecca J Passonneau, Emily Chen, Weiwei Guo, and Dolores Perin. 2013. Automated Pyramid Scoring of Summaries Using Distributional
Semantics. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (ACL 2013). Sofia, Bulgaria, 143-147.
Ramakanth Pasunuru, Asli Celikyilmaz, Michel Galley, Chenyan Xiong, Yizhe Zhang, Mohit Bansal, and Jianfeng Gao. 2021. Data
Augmentation for Abstractive Query-Focused Multi-Document Summarization. In Proceedings of the 35th AAAI Conference on Artificial
Intelligence (AAAI 2021). Online, 13666—13674.

Ramakanth Pasunuru, Mengwen Liu, Mohit Bansal, Sujith Ravi, and Markus Dreyer. 2021. Efficiently Summarizing Text and Graph
Encodings of Multi-Document Clusters. In Proceedings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (NAACL-HLT 2021). Online, 4768-4779.

Romain Paulus, Caiming Xiong, and Richard Socher. 2018. A Deep Reinforced Model for Abstractive Summarization. In Proceedings of
the 6th International Conference on Learning Representations (ICLR 2018). Vancouver, Canada.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep
Contextualized Word Representations. In Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (NAACL-HLT 2018). New Orleans, United States, 2227-2237.

Maxime Peyrard. 2019. A Simple Theoretical Model of Importance for Summarization. In Proceedings of the 57th Conference of the
Association for Computational Linguistics (ACL 2019). Florence, Italy, 1059-1073.

Dragomir R. Radev. 2000. A Common Theory of Information Fusion from Multiple Text Sources Step One: Cross-Document Structure.
In Proceedings of the Workshop of the 1st Annual Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL 2000). Hong
Kong, China, 74-83.

Dragomir R Radev, Hongyan Jing, Malgorzata Sty$, and Daniel Tam. 2004. Centroid-based Summarization of Multiple Documents.
Information Processing and Management. 40, 6, 919-938.

Dragomir R. Radev, Pradeep Muthukrishnan, Vahed Qazvinian, and Amjad Abu-Jbara. 2013. The ACL Anthology Network Corpus.
Language Resources and Evaluation. 47, 4, 919-944.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language Models are Unsupervised
Multitask Learners. OpenAI Blog. 1, 8, 9.

Colin Raffel; Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu.
2020. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine Learning Research. 21,
140:1-140:67.

Paige Rodeghero, Collin McMillan, Paul W McBurney, Nigel Bosch, and Sidney D’Mello. 2014. Improving Automated Source Code
Summarization via An Eye-tracking Study of Programmers. In Proceedings of the 36th International Conference on Software Engineering
(ICSE 2014). Hyderabad, India, 390-401.

Cynthia Rudin. 2019. Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models
Instead. Nature Machine Intelligence. 1, 5, 206-215.

David E Rumelhart, Geoffrey E Hinton, and Ronald ] Williams. 1986. Learning Representations by Back-propagating Errors. Nature.
323, 6088, 533-536.

ACM Comput. Surv.



[138]
[139]
[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

Multi-document Summarization via Deep Learning Techniques: A Survey « 1:33

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. 2017. Dynamic Routing Between Capsules. In Proceedings of the 31st Annual
Conference on Neural Information Processing Systems (NIPS 2017). Long Beach, United States, 3856-3866.

Abigail See, Peter J. Liu, and Christopher D. Manning. 2017. Get To The Point: Summarization with Pointer-Generator Networks. In
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (ACL 2017). Vancouver, Canada, 1073-1083.
Sofia Serrano and Noah A. Smith. 2019. Is Attention Interpretable?. In Proceedings of the 57th Conference of the Association for
Computational Linguistics (ACL 2019). Florence, Italy, 2931-2951.

Elaheh ShafieiBavani, Mohammad Ebrahimi, Raymond K. Wong, and Fang Chen. 2018. A Graph-Theoretic Summary Evaluation for
Rouge. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP 2018). Brussels, Belgium,
762-767.

Chintan Shah and Anjali Jivani. 2016. Literature Study on Multi-document Text Summarization Techniques. In Proceedings of the
International Conference on Smart Trends for Information Technology and Computer Communications (SmartCom 2016). Jaipur, India,
442-451.

Ori Shapira, David Gabay, Yang Gao, Hadar Ronen, Ramakanth Pasunuru, Mohit Bansal, Yael Amsterdamer, and Ido Dagan. 2019.
Crowdsourcing Lightweight Pyramids for Manual Summary Evaluation. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT 2019). Minneapolis, United States,
682-687.

Nikhil S Shirwandkar and Samidha Kulkarni. 2018. Extractive Text Summarization Using Deep Learning. In Proceedings of the 2018
Fourth International Conference on Computing Communication Control and Automation (ICCUBEA 2018). Pune, India, 1-5.

Abhishek Kumar Singh, Manish Gupta, and Vasudeva Varma. 2018. Unity in Diversity: Learning Distributed Heterogeneous Sentence
Representation for Extractive Summarization. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI 2018). New
Orleans, United States, 5473—5480.

Yan Song, Yuanhe Tian, Nan Wang, and Fei Xia. 2020. Summarizing Medical Conversations via Identifying Important Utterances. In
Proceedings of the 28th International Conference on Computational Linguistics (COLING 2020). Online, 717-729.

Dan Su, Yan Xu, Tiezheng Yu, Farhad Bin Siddique, Elham J. Barezi, and Pascale Fung. 2020. CAiRE-COVID: A Question Answering
and Query-focused Multi-Document Summarization System for COVID-19 Scholarly Information Management. In Proceedings of the
1st Workshop on NLP for COVID-19. Online.

Simeng Sun and Ani Nenkova. 2019. The Feasibility of Embedding Based Automatic Evaluation for Single Document Summarization.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP 2019). Hong Kong, China, 1216-1221.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfellow, and Rob Fergus. 2014. Intriguing
Properties of Neural Networks. In Proceedings of the 2nd International Conference on Learning Representations (ICLR 2014). Banff,
Canada.

Haihui Tan, Ziyu Lu, and Wenjie Li. 2017. Neural Network based Reinforcement Learning for Real-time Pushing on Text Stream. In
Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2017). Tokyo,
Japan, 913-916.

Oguzhan Tas and Farzad Kiyani. 2007. A Survey Automatic Text Summarization. PressAcademia Procedia. 5, 1, 205-213.

Amirsina Torfi, Rouzbeh A. Shirvani, Yaser Keneshloo, Nader Tavaf, and Edward A. Fox. 2020. Natural Language Processing Advance-
ments By Deep Learning: A Survey. arXiv preprint arXiv:2003.01200.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu, and Hang Li. 2016. Modeling Coverage for Neural Machine Translation. In
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL 2016). Berlin, Germany, 76-85.

Jan Ulrich, Gabriel Murray, and Giuseppe Carenini. 2008. A Publicly Available Annotated Corpus for Supervised Email Summarization.
In Proceedings of the 23th AAAI Conference on Artificial Intelligence in Enhanced Messaging Workshop (AAAI 2008). 77-82.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017.
Attention Is All You Need. In Proceedings of the 31st Annual Conference on Neural Information Processing Systems (NIPS 2017). Long
Beach, United States, 5998-6008.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer Networks. In Proceedings of the 29th Annual Conference on Neural
Information Processing Systems (NIPS 2015). Montreal, Canada, 2692-2700.

Tatiana Vodolazova, Elena Lloret, Rafael Mufioz, and Manuel Palomar. 2013. Extractive Text Summarization: Can We Use the Same
Techniques for Any Text?. In Proceedings of the 18th International Conference on Applications of Natural Language to Information Systems
(NLDB 2013). Salford, UK, 164-175.

Xiaojun Wan and Jianwu Yang. 2006. Improved Affinity Graph based Multi-document Summarization. In Proceedings of the 2006 Human
Language Technology Conference of the North American Chapter of the Association of Computational Linguistics (NAACL 2006). New
York,United States, 336-347.

Xiaojun Wan and Jianwu Yang. 2008. Multi-document Summarization Using Cluster-based Link Analysis. In Proceedings of the 31st
International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2008). Singapore, 299-306.

ACM Comput. Surv.



1:34

[160]

[161]

[162]

[163]
[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]
[179]

[180]

« C.Maetal

Dangqing Wang, Pengfei Liu, Yining Zheng, Xipeng Qiu, and Xuanjing Huang. 2020. Heterogeneous Graph Neural Networks for
Extractive Document Summarization. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL
2020). Online, 6209-6219.

Hu Wang, Qi Wu, and Chunhua Shen. 2020. Soft Expert Reward Learning for Vision-and-Language Navigation. In Proceedings of the
16th European Conference on Computer Vision (ECCV 2020). Online, 126-141.

Lu Wang and Wang Ling. 2016. Neural Network-Based Abstract Generation for Opinions and Arguments. In Proceedings of the 2016
Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (HLT-NAACL
2016). San Diego California, United States, 47-57.

Chien-Sheng Wu, Linqing Liu, Wenhao Liu, Pontus Stenetorp, and Caiming Xiong. 2021. Controllable Abstractive Dialogue Summa-
rization with Sketch Supervision. In Findings of the Association for Computational Linguistics: (ACL-IJCNLP 2021). Online, 5108-5122.
Wen Xiao, Iz Beltagy, Giuseppe Carenini, and Arman Cohan. 2021. PRIMER: Pyramid-based Masked Sentence Pre-training for
Multi-document Summarization. arXiv preprint arXiv:2110.08499.

Canwen Xu, Jiaxin Pei, Hongtao Wu, Yiyu Liu, and Chenliang Li. 2020. MATINF: A Jointly Labeled Large-Scale Dataset for Classification,
Question Answering and Summarization. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
(ACL 2020). Online, 3586-3596.

Runxin Xu, Jun Cao, Mingxuan Wang, Jiaze Chen, Hao Zhou, Ying Zeng, Yuping Wang, Li Chen, Xiang Yin, Xijin Zhang, Songcheng
Jiang, Yuxuan Wang, and Lei Li. 2020. Xiaomingbot: A Multilingual Robot News Reporter. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics: System Demonstrations (ACL 2020). Online, 1-8.

Min Yang, Chengming Li, Fei Sun, Zhou Zhao, Ying Shen, and Chenglin Wu. 2020. Be Relevant, Non-Redundant, and Timely: Deep
Reinforcement Learning for Real-Time Event Summarization. In Proceedings of The 34th AAAI Conference on Artificial Intelligence
(AAAI 2020). New York, United States, 9410-9417.

Min Yang, Wei Zhao, Jianbo Ye, Zeyang Lei, Zhou Zhao, and Soufei Zhang. 2018. Investigating Capsule Networks with Dynamic
Routing for Text Classification. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP
2018). Brussels, Belgium, 3110-3119.

Qian Yang, Rebecca J Passonneau, and Gerard De Melo. 2016. PEAK: Pyramid Evaluation via Automated Knowledge Extraction. In
Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI 2016). Phoenix, Arizona, 2673-2680.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le. 2019. Xlnet: Generalized Autoregressive
Pretraining for Language Understanding. In Proceedings of the 33th Annual Conference on Neural Information Processing System (NeurIPS
2019). Vancouver, Canada, 5754-5764.

Kaichun Yao, Libo Zhang, Tiejian Luo, and Yanjun Wu. 2018. Deep Reinforcement Learning for Extractive Document Summarization.
Neurocomputing. 284, 52—62.

Michihiro Yasunaga, Jungo Kasai, Rui Zhang, Alexander R Fabbri, Irene Li, Dan Friedman, and Dragomir R Radev. 2019. Scisummnet: A
Large Annotated Corpus and Content-impact Models for Scientific Paper Summarization with Citation Networks. In Proceedings of the
33th AAAI Conference on Artificial Intelligence (AAAI 2019). Honolulu, United States, 7386-7393.

Michihiro Yasunaga, Rui Zhang, Kshitijh Meelu, Ayush Pareek, Krishnan Srinivasan, and Dragomir R. Radev. 2017. Graph-based Neural
Multi-Document Summarization. In Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017).
Vancouver, Canada, 452-462.

Wenpeng Yin and Yulong Pei. 2015. Optimizing Sentence Modeling and Selection for Document Summarization. In Proceedings of the
24th International Joint Conference on Artificial Intelligence (IJCAI 2015). Buenos Aires, Argentina, 1383-1389.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh
Ravula, Qifan Wang, Li Yang, and Amr Ahmed. 2020. Big Bird: Transformers for Longer Sequences. In Proceedings of the 34th Annual
Conference on Neural Information Processing Systems (NeurIPS 2020). Online, 17283-17297.

David M Zajic, Bonnie ] Dorr, and Jimmy Lin. 2008. Single-document and Multi-document Summarization Techniques for Email
Threads Using Sentence Compression. Information Processing and Management. 44, 4, 1600-1610.

Jianmin Zhang, Jiwei Tan, and Xiaojun Wan. 2018. Adapting Neural Single-document Summarization Model for Abstractive Multi-
document Summarization: A Pilot Study. In Proceedings of the 11th International Conference on Natural Language Generation (INLG
2018). Tilburg, Netherlands, 381-390.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter J. Liu. 2020. PEGASUS: Pre-training with Extracted Gap-sentences for
Abstractive Summarization. In Proceedings of the 37th International Conference on Machine Learning (ICML 2020). Online, 11328-11339.
Quanshi Zhang, Ying Nian Wu, and Song-Chun Zhu. 2018. Interpretable Convolutional Neural Networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR 2018). Salt Lake City, United States, 8827-8836.

Shiyue Zhang, Asli Celikyilmaz, Jianfeng Gao, and Mohit Bansal. 2021. EmailSum: Abstractive Email Thread Summarization. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (ACL-IJCNLP 2021). Online, 6895-6909.

ACM Comput. Surv.



[181]
[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

Multi-document Summarization via Deep Learning Techniques: A Survey « 1:35

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. 2020. BERTScore: Evaluating Text Generation with
BERT. In Proceedings of the 8th International Conference on Learning Representations (ICLR 2020). Addis Ababa, Ethiopia.

Wei Emma Zhang, Quan Z. Sheng, Ahoud Abdulrahmn F. Alhazmi, and Chenliang Li. 2020. Adversarial Attacks on Deep-learning
Models in Natural Language Processing: A Survey. ACM Transactions on Intelligent Systems and Technology. 11, 3, 24:1-24:41.

Wei Emma Zhang, Quan Z. Sheng, Adnan Mahmood, Dai Hoang Tran, Munazza Zaib, Salma Abdalla Hamad, Abdulwahab Aljubairy,
Ahoud Abdulrahmn F. Alhazmi, Subhash Sagar, and Congbo Ma. 2020. The 10 Research Topics in the Internet of Things. In Proceedings
of 6th IEEE International Conference on Collaboration and Internet Computing (CIC 2020). Atlanta, United States, 34-43.

Yong Zhang, Meng Joo Er, Rui Zhao, and Mahardhika Pratama. 2016. Multiview Convolutional Neural Networks for Multidocument
Extractive Summarization. IEEE Transactions on Cybernetics. 47, 10, 3230-3242.

Mingjun Zhao, Shengli Yan, Bang Liu, Xinwang Zhong, Qian Hao, Haolan Chen, Di Niu, Bowei Long, and Weidong Guo. 2021. QBSUM:
A Large-scale Query-based Document Summarization Dataset from real-world applications. Computer Speech and Language. 66,
101166.

Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Christian M. Meyer, and Steffen Eger. 2019. MoverScore: Text Generation Evaluating
with Contextualized Embeddings and Earth Mover Distance. In Proceedings of the Conference on Empirical Methods in Natural Language
and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP 2019). Hong Kong, China, 563-578.

Xin Zheng, Aixin Sun, Jing Li, and Karthik Muthuswamy. 2019. Subtopic-driven Multi-Document Summarization. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP 2019). Hong Kong, China, 3151-3160.

Ming Zhong, Pengfei Liu, Yiran Chen, Danging Wang, Xipeng Qiu, and Xuanjing Huang. 2020. Extractive Summarization as Text
Matching. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL 2020). Online, 6197-6208.
Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia Mutuma, Rahul Jha, Ahmed Hassan Awadallah, Asli Celikyilmaz, Yang Liu,
Xipeng Qiu, and Dragomir R. Radev. 2021. QMSum: A New Benchmark for Query-based Multi-domain Meeting Summarization. In
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (NAACL-HLT 2021). Online, 5905-5921.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. 2016. Learning Deep Features for Discriminative
Localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016). Las Vegas, United States,
2921-2929.

Chenguang Zhu, Yang Liu, Jie Mei, and Michael Zeng. 2021. MediaSum: A Large-scale Media Interview Dataset for Dialogue
Summarization. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (NAACL-HLT 2021). Online, 5927-5934.

Chenguang Zhu, Ruochen Xu, Michael Zeng, and Xuedong Huang. 2020. A Hierarchical Network for Abstractive Meeting Summarization
with Cross-Domain Pretraining. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings
(EMNLP 2020). Online, 194-203.

Junnan Zhu, Haoran Li, Tianshang Liu, Yu Zhou, Jiajun Zhang, and Chengqing Zong. 2018. MSMO: Multimodal Summarization with
Multimodal Output. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP 2018). Brussels,
Belgium, 4154-4164.

Markus Zopf. 2018. Estimating Summary Quality with Pairwise Preferences. In Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT 2018). New Orleans, United States,
1687-1696.

ACM Comput. Surv.



	Abstract
	1 Introduction
	2 From Single to Multi-document Summarization
	2.1 Similarities between SDS and MDS
	2.2 Differences between SDS and MDS

	3 Deep Learning Based Multi-document Summarization Methods
	3.1 Architecture Design Strategies
	3.2 Recurrent Neural Networks based Models
	3.3 Convolutional Neural Networks Based Models
	3.4 Graph Neural Networks Based Models
	3.5 Pointer-generator Networks Based Models
	3.6 Transformer Based Models
	3.7 Deep Hybrid Models
	3.8 The Variants of Multi-document Summarization
	3.9 Discussion

	4 Objective Functions
	4.1 Cross-Entropy Objective
	4.2 Reconstructive Objective
	4.3 Redundancy Objective
	4.4 Max Margin Objective
	4.5 Multi-Task Objective
	4.6 Other Types of Objectives
	4.7 Discussion

	5 Evaluation metrics
	5.1 ROUGE
	5.2 Other Evaluation Metrics
	5.3 Discussion

	6 Datasets
	7 Future research directions and open issues
	7.1 Capturing Cross-document Relations for MDS
	7.2 Creating More High-quality Datasets for MDS
	7.3 Improving Evaluation Metrics for MDS
	7.4 Reinforcement Learning for MDS
	7.5 Pre-trained Language Models for MDS
	7.6 Creating Explainable Deep Learning Model for MDS
	7.7 Adversarial Attack and Defense for MDS
	7.8 Multi-modality for MDS

	8 Conclusion
	References

