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Caching content at the edge network is a popular and effective technique widely deployed to alleviate the bur- 

den of network backhaul, shorten service delay, and improve service quality. However, there has been some 

controversy over privacy violations in caching content at the edge network. On the one hand, the multi-access 

open edge network provides an ideal entrance or interface for external attackers to obtain private data from 

edge caches by extracting sensitive information. On the other hand, privacy can be infringed on by curious 

edge caching providers through caching trace analysis targeting the achievement of better caching perfor- 

mance or higher profits. Therefore, an in-depth understanding of privacy issues in edge caching networks is 

vital and indispensable for creating a privacy-preserving caching service at the edge network. In this article, 

we are among the first to fill this gap by examining privacy-preserving techniques for caching content at 

the edge network. First, we provide an introduction to the background of privacy-preserving edge caching. 

Next, we summarize the key privacy issues and present a taxonomy for caching at the edge network from 
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the perspective of private information. Additionally, we conduct a retrospective review of the state-of-the-art 

countermeasures against privacy leakage from content caching at the edge network. Finally, we conclude the 

survey and envision challenges for future research. 
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 Introduction 

ontent caching at the edge network is driven by two factors. First, the population of networked
evices has become astronomical due to advances in intelligent terminals and the broad deploy-
ent of the Internet of Things (IoT) [ 15 , 16 , 26 , 118 ]. Second, the Internet content market is

looming due to the proliferation of various multimedia content [ 54 , 114 ]. According to a report
y Splunk, a Cisco company, there will be approximately 5.44 billion Internet users worldwide in
024, including 5.07 billion social media users [ 72 ]. As a result, network-based content delivery ser-
ices are extremely bandwidth consuming. At the same time, emerging network technologies, such
s Gigabit Ethernet, and 5G and beyond, are expected to provide extremely high data transmission
ates and low access delays for terminal devices at the edge network to support time-sensitive
ervices such as autonomous driving, industrial automation, high-quality video streaming, and
irtual/enhanced emerging applications. 

Such a vast dataflow brings two main challenges to the established networks. First, it brings a
eavy communication burden to the Internet core network links. During the peak hours of network
sage, a large amount of content transmission will inevitably aggravate the link burden of the core
etwork, causing network congestion and increasing network operating costs. Second, it will also
rolong the service delay of content transmission from remote servers to end devices, which will
dversely influence users’ service Quality-of-Experience (QoE) or even ruin the reliability of
elay-sensitive applications. 
Edge caching is a technique that involves storing content in close proximity to end users, typi-

ally at or near the point of user access or ahead of the core network [ 54 ]. Its primary objective is
o shorten service latency and enhance content delivery performance by bringing content closer
o the users who request it. When users request content that is available in edge caches (ECs) ,
heir requests can be directly served at the edge network with a high Quality-of-Service (QoS) .
owever, if the requested content is not available in the EC, it can be redirected to a remote server,

uch as a data center. Here, we make a brief introduction to edge caching from five aspects. 
Benefit of Edge Caching. Caching content at the edge network is effective in reducing the

urden of network backhaul [ 33 , 62 , 98 ], shortening service latency [ 17 , 62 , 107 ], and diminishing
esource cost [ 28 , 33 ]. First, it is common to cache popular content at the edge network through
hich the edge network can offload the access of requests and hence reduce the backhaul dataflow.
ven though the caching capability is limited at the edge network, ECs can offload up to 35%
f the traffic burden over backhaul links [ 54 ]. Second, the service latency can be shortened by
aching content on edge devices near end users. In particular, a shortened latency is critical for
ontent delivery of latency-sensitive applications [ 54 ]. Third, edge networks can make content
CM Comput. Surv., Vol. 57, No. 5, Article 114. Publication date: January 2025. 
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ccess inexpensive since caching content at edge devices can avoid the bottleneck. For example, in
ireless edge networks, spectral efficiency and energy efficiency can be improved by about 900%

nd 500%, respectively, by using edge networks for caching content [ 43 ]. 
Where to Cache. Building on the work of Ni et al. [ 54 ], we further identify three main enti-

ies in edge networks for edge caching as follows. First, end devices (e.g., smartphones, laptops,
ntelligent vehicles, and Industrial IoT devices) carried by users will generate requests for down-
oading content via networks [ 16 , 26 ]. It is possible that end devices can share content through D2D
device-to-device) communications with licensed-band or unlicensed-band protocols. Second, ac-

ess infrastructures , utilizing wired and/or wireless communication technologies, can support end
evices in accessing the Internet. These infrastructures include 5G small base stations (SBSs)

 94 ], WiFi routers, local switches, and roadside units (RSUs) in the Internet of Vehicles (IoV)

 14 , 113 ]. Popular content can be cached within these access infrastructures to promptly serve user
equests. Third, edge servers (ESs) positioned ahead of the core network, such as edge nodes

ENs) in the Content Delivery Network (CDN) [ 17 ], edge routers in the Information-Centric

etwork (ICN) [ 71 , 95 , 96 ], and macro base stations operated by Internet service providers

ISPs) [ 7 ], can be utilized as ECs, a concept known as in-network edge caching . These ESs, typ-
cally maintained by third-party suppliers, are the core points for multi-access edge networks,
nhancing various content delivery applications. 

What to Cache. In edge caching systems, determining what content to cache is crucial for op-
imizing cache space utilization and reducing latency. The content to be cached generally falls
nto three categories. The category of user-related popular content includes content that is fre-
uently requested by end users, such as web pages, videos, images, and other multimedia files [ 17 ,
5 ]. Caching such content at the edge improves user experience by reducing service delay when
sers access commonly accessed content. The category of public and static content includes high-
euse, non-user-specific content associated with applications [ 54 ], such as JavaScript files, CSS
tylesheets, icons, PDF documents, and API responses. Caching these static resources decreases
pplication load times and reduces the burden on central servers. The category of edge-computable

nd storable content includes data that can be computed and stored directly at the edge, such as
odel parameters for federated learning (FL) [ 45 , 62 ], user patterns and content popularity for

dge caching decisions [ 14 , 17 ], and IoT sensor data awaiting processing [ 84 , 101 ]. Caching such
ontent helps minimize backhaul traffic, enables efficient edge processing, and reduces overall la-
ency by avoiding redundant computations. 

How to Cache. Edge caching strategies can be broadly classified into reactive and proactive ap-
roaches. The reactive caching approach employs eviction-based methods that decide whether to
ache a specific content item only after it has been requested. This approach often relies on empir-
cal formulas and classical caching algorithms, such as LRU (Least Recently Used) and LFU (Least
requently Used), as well as their variants [ 21 , 68 ]. While these algorithms are simple and effi-
ient, they frequently encounter challenges in selecting optimal parameter values, which can limit
heir performance in dynamic and diverse edge environments. The proactive caching approach in-
olves predictive methods to determine what content should be cached before any user requests
re made. This approach leverages content popularity predictions and user behavior profiles to
ake caching decisions at edge networks in advance. Advanced machine learning models, such as

STM (Long Short-Term Memory) networks [ 22 ], are often employed to forecast content demand
ased on historical request patterns in proactive caching. These learning-driven methods generally
ffer superior caching performance compared to classical algorithms by automatically adjusting
odel parameters. However, they may require extensive computational capacity and high-quality

raining data, both of which may be often limited at the edge. 
ACM Comput. Surv., Vol. 57, No. 5, Article 114. Publication date: January 2025. 
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Privacy Concerns of Edge Caching. Despite the enormous benefits brought by caching con-
ent at the edge network, there has been some controversy over privacy violations brought by
uch caching. The concerns can be illustrated from two aspects. The first privacy threat comes
rom external attackers, such as malicious user devices [ 2 , 17 , 42 , 61 , 71 , 75 ]. The multi-access
pen property of the edge network provides an ideal entrance or interface for external attackers
o obtain the cached content from the EC to extract sensitive information of end users [ 93 ]. Ad-
ersaries can obtain user-sensitive information by launching cache side-channel attacks [ 2 , 42 , 71 ]
nd cache tampering attacks [ 17 , 61 , 75 ]. However, it is non-trivial to embed advanced privacy
rotection mechanisms into edge networks due to the limited computing capacity, energy power,
nd storage space of edge devices. Second, user privacy can be infringed by curious edge caching
roviders by analyzing traces and management records. Due to limited caching space relative to
he rapidly growing user population and the scale of content [ 122 ], edge network providers have
 strong motivation to spy on user privacy to improve their resource utilization. In other words,
f content popularity can be accurately predicted, the right content can be cached by edge devices
ust before the surge of requests toward content [ 114 ]. Hence, edge network providers are curious
bout users’ personal interests and confidential information to infer their request behaviors, which
an be extracted from users’ historical request traces (e.g., request patterns [ 14 , 17 , 114 ], identifi-
ble information [ 7 , 14 , 17 , 113 , 124 ]). Edge network providers can implement monitoring attacks
 96 , 113 ] and inference attacks [ 45 , 62 ] in their systems to compromise users’ privacy based on
ollected request information from users. Therefore, an in-depth understanding of privacy risks
n privacy-preserving edge caching (PPEC) is crucial for the design of feasible solutions to
chieve a privacy-preserving content cache at the edge network. 

Our Contributions. Recently, significant progress has been made in enhancing privacy protec-
ion for content caching at edge networks. However, these works fail to provide a comprehensive
iscussion of the privacy issues in edge caching systems. For instance, Ren et al. [ 63 ] primar-
ly discuss the state-of-the-art research on caching and privacy, respectively, in emerging edge
omputing paradigms. Besides, most surveys only discuss privacy issues for particular scenarios,
uch as IoT [ 23 , 65 ], edge intelligence [ 108 ], the metaverse [ 57 ], and FL [ 8 ], while overlooking the
istinct aspects of edge caching. Other surveys [ 54 , 87 ] addressed privacy-preserving solutions
nd countermeasures for edge caching without covering all relevant issues in a thorough manner.
n particular, there has been a lack of comprehensive discussion of protection methods targeting
ifferent types of private information in PPEC. Given these limitations and the absence of compre-
ensive literature reviews, this article aims to thoroughly examine and categorize current works
n privacy issues in edge caching scenarios. The main contributions of this article are summarized
s follows. First, we present in-depth discussions on sensitive information in edge caching and pro-
ose a taxonomy from a private information perspective to classify existing works. To the best of
ur knowledge, this is the first such comprehensive exposition. Second, we conduct a thorough
eview of recent high-quality research, diving into the background of privacy attacks and mitiga-
ion methods in the realm of edge caching. Our review encompasses the latest solutions proposed
or enhancing privacy in edge caching, which have been published in leading conferences and
ournals in the fields of computing networks, architecture, and privacy, such as CCS, INFOCOM,
oN, JSAC, TPDS, TIFS, and TDSC, as well as other top venues. Based on different kinds of privacy

nformation and attacks toward each kind of privacy information, we respectively review counter-
easures to defend against attacks for protecting each kind of infringed privacy. Third, based on

pen problems outlined in existing works, we envision privacy-related open challenges in PPEC
o provide insights for inspiring future research. 

Article Outline. The rest of this article is organized as follows. Section 2 provides an introduc-
ion to the taxonomy of privacy-preserving solutions that are based on the protection of sensitive
CM Comput. Surv., Vol. 57, No. 5, Article 114. Publication date: January 2025. 
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Fig. 1. The framework for PPEC encompasses six distinct types of data concerns, which can be primarily 

classified into three categories of private information: user privacy, content privacy, and knowledge privacy. 
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nformation data in edge caching. Section 3 provides a background discussion on privacy issues
n the edge caching paradigm from two plain perspectives: privacy attacks and mitigation meth-
ds. From Section 4 to Section 6 , we describe the possible privacy mitigation solutions for edge
aching in correspondence with three main classes of privacy: user privacy, content privacy, and
nowledge privacy, respectively. Section 7 provides open challenges and future research direc-
ions. Finally, we present a summary in Section 8 . To facilitate readability, we have compiled a
ummary of commonly used abbreviations for the solutions in Table 1 in the appendix. 

 Overview of Private Information in Edge Caching 

n this section, we overview sensitive information that should be protected to avoid privacy leak-
ge in PPEC. In the realm of edge caching, sensitive information can be exposed by either users [ 2 ]
nconsciously or ESs [ 7 , 14 ]. Specifically, users’ sensitive information includes personal informa-
ion, browsing history, location, and private content data, through their request traces to the ES or
ther service providers. Similarly, ESs can leak their private information and extract knowledge
rom a collection of users who have interacted with ESs [ 14 , 17 ]. Therefore, to build a privacy-
reserving content caching system, the first step is to understand what private information can be
xposed by users and ESs. In Figure 1 , we outline all kinds of sensitive information that should be
rotected in PPEC. We will elaborate on each kind of private information in this section. 

.1 User Privacy 

n PPEC, all information related to users but not directly related to cached content is regarded
s user privacy such as users’ historical records, age, gender, and location. For our discussion,
e classify all user privacy information into three types: request trace, personal information, and

ocation. 

2.1.1 Request Trace. A request trace refers to a sequence of content requests and responses be-
ween an end device and ESs or service providers. These traces often contain private information
uch as request patterns [ 2 , 42 ], preferences [ 14 , 61 ], and interests [ 17 , 71 ]. Advertisers or mali-
ious attackers can exploit such information to make profits or harm. Additionally, user request
races are valuable assets to service providers and caching systems. Service providers or content

roviders (CPs) can analyze these request traces to infer users’ behavior patterns, such as the
ype of websites or applications they frequently use and the content they prefer to consume. ESs
an maintain and analyze request traces to improve caching performance by predicting future
equests, allowing for prefetching and caching popular content in advance. 

There are primary two risks associated with request traces: interception and misuse. First,
equest records can be intercepted and sniffed by other users and external attackers. For example,
alicious users can use timing attacks [ 2 , 71 ] to impersonate legitimate users, sending requests

o the server. Attackers may then infer user request traces by exploiting the timing difference
etween cached and non-cached responses [ 2 , 71 ], facilitating illegal advertising and cache
ACM Comput. Surv., Vol. 57, No. 5, Article 114. Publication date: January 2025. 
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ollution attacks [ 85 ]. Second, ESs and service providers, curious about user interest patterns,
ay misuse request traces for their purposes. For example, request traces can be exploited to

evelop trace-driven content caching algorithms, posing privacy threats from untrusted or
rofit-driven third-party ESs [ 7 , 14 , 66 , 75 ]. 
However, designing methods to preserve user privacy in edge caching systems is non-trivial.
ost existing privacy-enhancing approaches fail to effectively address the privacy leakage risks

hat users face in caching systems, as request records cannot be arbitrarily altered or obfuscated
y users and must remain visible to service providers and edge caching servers to provide reliable
ervices. 

2.1.2 Personal Information. Personal information is a type of private information that can be
ined to identify a specific end device or user in the network. Edge caching servers and service

roviders can obtain various types of personal information from users, depending on the specific
ontext and implementation of the edge caching system. Typical examples of personal information
hat can be compromised in edge caching include the following. The first is identifier information
uch as pseudonyms and IP addresses. In particular, through IP addresses, we can identify a user’s
SP, approximate location, and other information, with which the EC can carry out sensitive oper-
tions, such as integrity verification [ 75 ] and cache admission control [ 95 , 96 ]. The second is device
nformation such as the operating system, connection type, browser type, and version, which is
lso essential for ESs to provide high-performance edge caching and tailored content to users [ 16 ,
13 ]. The third is account-related information such as email address, gender, age, payment, and
ocial relation, which can be captured by ECs or service providers when a user logs in or creates
n account to access the service, potentially revealing more personal privacy [ 17 , 113 ]. 

Excessively exposing personal information by edge caching can result in annoying tracking and
rofiling. When personal information is collected, edge caching servers and service providers can
reate detailed user profiles, encompassing browsing habits and interests. By identifying specific
sers or user groups, service providers can accurately predict future requests, allowing for content
refetching to reduce latency and improve QoS. Additionally, detailed profiles facilitate targeted
dvertising and personalized recommendations, potentially increasing revenue. However, these
ractices raise ethical concerns [ 16 , 113 ], including the potential for manipulation or discrimina-
ion against certain user groups. In addition, malicious nodes and attackers can take advantage of
xcessive disclosure of personal information to gain unauthorized access to user accounts [ 95 , 96 ]
nd pull off cache tampering attacks [ 16 , 17 , 75 ], resulting in financial losses and other harms. 

2.1.3 Location. Location information is a critical type of privacy data carrying location, spa-
ial coordinates, and the current time of moving objects. In edge caching systems, there are two
undamental types of location information: users’ location information and Points of Interest

POIs) . When users access edge caching systems, they may unconsciously expose private location
nformation in the following processes. First, a user’s geographic location can be exposed to the
C when accessing content or services directly from the EC [ 18 ]. Second, CPs and edge caching
roviders can proactively collect users’ geographic location information to provide better content
istribution services, such as predicting user moving patterns [ 116 ]. Third, in location-based ser-

ices (LBSs) , users may provide their private geographic information and POIs to search for their
nterests in the EC [ 3 , 18 , 25 , 56 ]. This information can be abused, resulting in undesired tracking
nd profiling or even more severe consequences, such as location-based attacks. 

Location information is sensitive and can be utilized to learn an individual’s daily routine and
ovements. Service providers can use this information to deliver more relevant advertisements

nd cached content to users, potentially boosting profits. Yet, if malicious attackers obtain loca-
ion information, it can put users at risk of physical harm. Malicious attackers can use location
CM Comput. Surv., Vol. 57, No. 5, Article 114. Publication date: January 2025. 
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nformation to track a user’s movement trajectories and potentially cause harm, particularly in
he case of stalking or other criminal activities. 

.2 Content Privacy 

ontent privacy refers to privacy information contained by the content stored and transmitted
hrough edge caching systems, mainly including private content and content popularity. 

2.2.1 Private Content. Private content refers to sensitive and confidential data that is stored and
otentially cached by edge systems. We name such sensitive content data in edge caching systems
s private content . Given its sensitive nature, private content requires strict privacy protections to
revent unauthorized access and misuse. This type of content includes but is not limited to video
lips, photos, social media, and textual data from users, copyrighted materials, confidential busi-
ess documents, and government secrets. For example, in mobile social networks, each user can
e regarded as a CP who can produce fresh content desiring that their content can be efficiently
nd accurately delivered to consumers [ 94 , 122 ]. In this case, edge computing is a feasible archi-
ecture for caching and delivering the content. Consumers in proximity [ 93 , 116 ] or with close
ocial relations [ 81 ] to a particular user CP in social networks are more likely to request this con-
ent. Thereby, using an ES to cache and deliver content in mobile social networks can diminish
andwidth costs, which however raises privacy leakage risks. 

Briefly speaking, private content privacy can be infringed in several ways. First, ESs are not
rustworthy and can expose cached content to the public. Second, malicious and unauthorized
sers at the edge network can access cached content during transmission or processing between
nd users and the EC or between different ECs. For instance, in cache side-channel attacks [ 42 ,
1 ], attackers attempt to access cached content by sending targeted requests, potentially allowing
hem to view sensitive information. For another instance, attackers can lodge cache tampering by
njecting malicious content into the cache to exploit vulnerabilities in end user systems or steal
ensitive information [ 17 , 61 , 75 ]. 

2.2.2 Content Popularity. Content popularity can be defined as the relative frequency of a par-
icular content to be requested by users. It indicates the level of popularity of content among
sers. The popularity information is broadly utilized in improving caching efficiency, and caching
he most popular content can effectively lower the content delivery cost. However, the popularity
nformation is sensitive, unveiling the private preference information of users [ 17 , 101 ]. Besides,
t is possible that content popularity information can reveal sensitive information about CPs, such
s their financial success and strategic direction, which should be kept confidential [ 7 , 17 ]. 

The popularity information is crucial for making effective edge caching decisions but is highly
usceptible to leakage. First, popularity information may be leaked during cooperative caching
ecision-making processes among ECs. For instance, as the number of records owned by a single
S is limited, CPs may need to provide supplementary information [ 7 ]. Additionally, edge caching
ervers may exchange popularity information to optimize caching decisions across the entire sys-
em [ 17 , 101 ]. Privacy leakage can occur because ESs might be untrusted, or the edge environment
tself may be vulnerable to attacks [ 17 ]. Second, popularity information can also be compromised
hrough well-decided caching content. For example, through broadcasting cached content lists [ 14 ,
4 ] or timing attacks [ 71 , 113 ], malicious entities can infer which content is more popular. This
ensitive information, once exposed and tampered with, can be exploited to obtain illegal benefits,
anipulate cache performance [ 17 , 75 ], or even launch cache tampering attacks [ 17 , 93 ]. Espe-

ially, as content popularity can describe specific content attributes and serve as key knowledge
o improve caching efficiency, we consider it a unique type of information that intersects both
ontent privacy and knowledge privacy, as shown in Figure 1 . 
ACM Comput. Surv., Vol. 57, No. 5, Article 114. Publication date: January 2025. 
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Fig. 2. The possible privacy attacks on different sensitive information in edge caching systems. 

Fig. 3. The corresponding defense methods for enhancing different private information in edge caching 

systems. 
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.3 Knowledge Privacy 

nowledge privacy refers to the insights, patterns, and parameters derived from datasets processed
y machine learning models, typically owned by ECs or other service providers. Unlike user pri-
acy and content privacy, which focus on data directly linked to users or content, knowledge
rivacy involves higher-level abstractions extracted from these data sources. In edge caching, ser-
ice providers are particularly interested in the knowledge extracted from original datasets, as
t is valuable for improving caching performance. For example, by leveraging prediction models
ased on this extracted knowledge, providers can make effective caching decisions in dynamic
cenarios [ 51 , 98 ], leading to significant improvements in edge caching performance [ 20 , 47 , 113 ,
14 , 116 ]. Learning-based methods offer a feasible framework for making effective edge caching
ecisions, but they also pose risks of private information leakage during model training and pre-
iction phases. Therefore, it is crucial to carefully consider and mitigate these privacy risks when
mploying learning-based methods for edge caching. 

 Overview of Attack and Defense Methods 

his section is divided into two parts: an overview of attack methods targeting each type of sen-
itive information in edge caching systems and a summary of defense methods against each type
f attack. In Figures 2 and 3 , we present a relational map that illustrates the connections between
otential privacy attacks, defense methods, and sensitive information in edge caching systems. In
he rest of this section, we briefly discuss each type of attack and defense methods as depicted in
igure 2 and Figure 3 , respectively. 

.1 Privacy Attack in Edge Caching Systems 

here are mainly four types of privacy attacks in edge caching systems, which are monitoring at-
acks, data mining attacks, cache side-channel attacks, and cache tampering attacks. We introduce
hese attacks with potential risk entities in this subsection. 

3.1.1 Monitoring Attack. Monitoring attacks , also known as eavesdropping attacks, can be di-
ided into two main categories. The first is sniffing attacks on network communications—that is,
CM Comput. Surv., Vol. 57, No. 5, Article 114. Publication date: January 2025. 
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n adversary sniffs on network traffic through the edge caching node to read or intercept private
nformation in network packets [ 113 ]. For example, the EC can monitor user requests during the
aching service process. In other words, the edge caching operator can monitor users’ requests in-
ended to responding end users’ requests and improve the caching efficiency. Through subsequent
ata analysis, edge caching managers can improve the caching efficiency and reduce the transmis-
ion delay of the requested content. However, a user request may contain private information, such
s personal content preference [ 14 , 66 , 104 ], location [ 116 ], content popularity [ 14 ], and other per-
onal information [ 34 , 95 , 96 ]. Therefore, edge caching systems should take both caching efficiency
nd privacy preservation into account. Entities that can implement sniffing attacks in network
ommunications include edge caching managers (e.g., CPs [ 14 ], location service providers [ 116 ],
SPs or a base station [ 104 ], edge devices [ 14 , 66 , 75 , 94 , 122 ]), malicious end devices [ 14 , 55 , 95 ,
6 ], and external adversaries [ 113 ]. The second type of monitoring attack is super visor y attacks on
ached content—that is, attackers conduct improper monitoring, replacement, pollution, and other
rivacy attack activities on cached content. By leveraging the illegal cache access, adversaries can
btain private data or information such as content popularity [ 4 , 7 , 17 ], user preferences [ 61 ], and
ther private information [ 17 , 75 ]. If the cached content is not protected prudently, the user’s pri-
acy can be seriously compromised by ECs, which are often deployed by honest but curious third
arties (e.g., ISPs [ 4 , 7 ], ESs [ 17 , 61 , 75 ], and end devices [ 17 , 61 ]). 

3.1.2 Data Mining Attacks. Data mining attacks usually occur when an edge caching entity ap-
lies a learning-based caching algorithm to explore sensitive data for making caching decisions.
ue to the high dynamics and complicated access patterns driven by users’ interest [ 51 , 98 ], de-

igning an intelligent edge caching algorithm is essential to improve the caching performance.
ommonly, learning-based methods make caching decisions by exploiting historical information

o train a prediction model. It is necessary to feed the model training with private and sensitive
ata related to users, and thus users may be reluctant to share. Since edge caching decisions are
enerated by learning algorithms, edge caching becomes a tradeoff problem between caching per-
ormance and privacy protection level. As a consequence, learning-based methods in edge comput-
ng assisted caching are usually vulnerable to two types of privacy risks: (1) exploratory , in which
dversaries investigate vulnerabilities (e.g., the training dataset, model parameters, and gradient
ata) without changing the training process, and (2) causative , in which attackers manipulate and
nject misleading training datasets to alter the machine learning model’s training process [ 76 ].
dditionally, previous research has shown that model parameters [ 70 ] and gradients [ 1 , 117 ] of

he machine learning model can be utilized to recover original sensitive and private information.
earning-based methods provide a practical framework for making edge caching decisions but are
usceptible to privacy risks that can compromise user privacy. The potential adversaries to launch
ata mining attacks include edge caching managers (e.g., CPs [ 14 , 62 ], ISPs [ 84 ], edge devices [ 45 ,
2 , 80 ]) and malicious end devices [ 81 ]. 

3.1.3 Cache Side-Channel Attacks. In cache side-channel attacks , attackers can learn privacy in-
ormation about users and cached content by observing and measuring activities relevant to edge
aches such as response time, power consumption, and return faults [ 2 , 42 , 71 , 85 ]. Through the
dge caching service, users can conveniently upload their content to ESs or download requested
ontent from ESs. Due to the open accessibility of ECs [ 54 ], adversaries can easily access content
ached by ESs. Adversaries can target a particular victim user by identifying content requested
y the victim. The attacker may know the victim’s content consumption habits or other specific
haracteristics to distinguish the victim from other users. One of the main types of cache side-
hannel attacks is cache-timing attacks , which allows attackers to determine whether specific con-
ent has been cached by comparing response times. Previous works (e.g., [ 2 , 42 , 71 ]) have explored
ACM Comput. Surv., Vol. 57, No. 5, Article 114. Publication date: January 2025. 
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ache-timing attacks in edge caching systems. An attacker can conduct the precise timing mea-
urement to distinguish cache hits from misses, which can identify what content is cached at
he ES. A cache hit means that a nearby user has requested the content (or has a high caching
alue), whereas a cache miss means that the content has not been requested (or has been ejected
rom the cache). A knowledgeable attacker can further determine whether the request is served
y the provider or by a router somewhere along the provider’s path [ 42 ]. The main risk enti-
ies to launch cache side-channel attacks include malicious end devices [ 2 , 42 , 85 ] and external
dversaries [ 71 , 113 ]. 

3.1.4 Cache Tampering Attacks. A cache tampering attack is a form of cyber-attack in which an
dversary aims to alter content stored at an EC to gain unauthorized access, introduce illicit con-
ent, and disrupt the caching system’s regular operation. Within an edge network, a caching server
ffers a temporary storage area, holding frequently accessed content to expedite distribution. How-
ver, cache tampering attacks can transpire when an attacker modifies content cached in the ES
r deceives the user to gain unauthorized content. The main risk entities to implement cache tam-
ering attacks include ESs [ 61 , 75 ], malicious end devices [ 17 , 61 ], and external adversary [ 17 , 61 ].
A typical instance of cache tampering attacks is cache poisoning , where an attacker manipulates a

DN or ES’s cache to store and deliver malicious content or information [ 17 , 75 , 113 ]. For example,
n attacker can exploit the vulnerability of the caching system by requesting a legitimate image
ith a specially crafted HTTP header. This header may contain malicious code that tricks the

ache into storing a different image the attacker controls rather than the legitimate one. The next
ime a user requests the original image, it will instead receive the attacker’s image, which could
ontain harmful content such as malware or phishing links. 

A variant of the cache tampering attack is the cache deception attack , wherein an adversary
ains access to private information by misleading and influencing a privileged user [ 24 , 49 , 50 ].
his process consists of two primary steps [ 24 ]. Initially, the attacker prompts the privileged user

o request sensitive content and cache it in the ES. Subsequently, the adversary submits an identical
equest to the EC and retrieves the sensitive content. For example, in named data networking [ 38 ],
n attacker creates a URL request targeting a victim user’s private content by attaching a tag of a
idely used image. The victim is then enticed to make that request using its privilege [ 49 ]. Upon

etrieval, the cloud server disregards the invalid suffix and returns legitimate privacy content.
he caching node retains the privacy content as the popular image’s content. In this manner, the
ttacker can make the same request to access the identical privacy content in the EC, enabling them
o acquire private content they are not authorized to access, potentially resulting in the victim’s
rivate content being leaked [ 49 , 50 ]. The preceding kinds of cache tampering attacks give rise to
nbearable privacy risks for users in edge caching systems. 

.2 Mitigation Methods to Preserve Privacy in Edge Caching Systems 

n the following subsection, we will provide a concise introduction to a range of methods that can
ffectively mitigate privacy leakage in content caching systems, which can be mainly classified into
our types of methods: noise-based methods, trusted distributed computing (TDC) , cryptology-
ased methods, and other approaches. The specific solutions corresponding to each privacy miti-
ation approach are detailed in Sections 4 through 6. For easy reference, we also present a classi-
cation matrix for the solutions introduced in this survey based on countermeasures and privacy
ata in the realm of edge caching in Table 2 in the appendix. 

3.2.1 Noise-Based Methods. Noise-based methods represent the most prevalent approaches for
reserving privacy within edge caching systems. These methods introduce disturbances to the
eal and genuine information before its exposure and interaction, effectively safeguarding privacy.
CM Comput. Surv., Vol. 57, No. 5, Article 114. Publication date: January 2025. 
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ithin the domain of edge caching, three specific types of methods are commonly employed:
ifferential privacy (DP) , confusion, and anonymization. 
DP is a data-sharing technique that allows data owners to share only some statistical character-

stics of a database while withholding individual-specific information [ 2 , 71 ]. There are two ways
o add noise in the DP mechanism. The traditional one is to add noise to the public database at the
ime of data release. However, the data collection agency is not always reliable, and thus a local

ifferential privacy (LDP) mechanism is also leveraged by data owners to distort original data
efore submitting private data. The use of DP in edge caching systems can introduce distortion
o the actual user or content information during the collection or release of sensitive data. DP is
ntroduced to protect request traces [ 71 , 81 , 111 , 116 , 122 ] personal information [ 105 , 124 ], and

achine learning models [ 101 ] in edge caching systems. 
Confusion mainly has two ways to enhance privacy in edge caching. The first one is cache obfus-

ation (e.g., proactive cache [ 55 , 61 ], off-path cache [ 85 ], and request hit delay [ 42 ]), which can be
sed to protect users’ requests when retrieving the content from monitoring or timing attacks in an
ntrusted or semi-trusted network environment. The second one is spatial confusion [ 3 , 25 , 110 ],
hich is to protect the location information when users enjoy LBSs. For instance, many pseudo

equests for POIs can be attached to the genuine request when retrieving content from the EC. 
Anonymous methods are the last category of privacy risk mitigation measures. Anonymity is

he act of not being named or using an alias, as opposed to the act of having a real identity [ 18 ].
n particular, a set of public data satisfies K-anonymity if the information of any entity cannot
e distinguished from at least K − 1 other entities. The K-anonymity method is often used to en-
ance geographical [ 30 , 56 , 99 ] and personal privacy identity information [ 18 , 67 ] in edge caching
ystems. In addition, the anonymity group technology is used in protecting users’ identity infor-
ation [ 53 , 95 , 96 , 113 ]. 

3.2.2 TDC-Based Methods. TDC methods encompass three primary mitigation frameworks–
L, secret sharing (SS) , and blockchain technology–to safeguard privacy in the context of edge
aching. 

FL is a distributed machine learning technique that trains a learning-based algorithm across
ultiple decentralized devices or ESs locally holding data samples without exposure [ 9 ]. The FL

ramework is one of the most essential methods to preserve private data during the machine learn-
ng process. It is common that the FL framework [ 40 , 45 , 83 , 84 , 100 , 102 , 103 ] trains learning models
y exposing model parameters or gradients. Instead, traditional machine learning methods need
o collect raw data for the learning process. However, model parameters or gradients are also pri-
ate assets of users since attackers can infer and recover users’ private information from exposed
odel information. In addition, model information may have significant economic benefits, which
ill compromise the self-interest of model owners if they are exposed directly. A number of works

 11 , 16 , 80 , 101 ] have contributed to upgrading the FL framework by injecting noise or other in-
erference to model information prior to exposure. 

SS , also known as secret splitting, is a kind of secure multi-party computation and storage
ethod in which each party gets a part of the secret, called a secret share . The secretly shared

nformation cannot be recovered unless a sufficient number of secret shares can be collected. A
ingle share cannot restore the original secret. For example, the (t , n)-threshold scheme is the most
traightforward SS scheme. In this scheme, there are a total of n players, each receiving only one
ecret share. The secret can be recovered if at least t players cooperate, where t is the safety thresh-
ld parameter. In edge caching scenarios, secret data may include private content generated and
tored by users and historical data required for edge caching decisions (e.g., request traces [ 2 ],
ser preferences [ 66 ], and content popularity information [ 6 ]). While introducing SS may increase
ACM Comput. Surv., Vol. 57, No. 5, Article 114. Publication date: January 2025. 
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omputational load, it significantly raises the cost for attackers attempting to obtain private infor-
ation from the edge, reducing the risk of data breaches. Moreover, it enhances the fault tolerance

f distributed caching systems. 
Blockchain is a technical solution that does not rely on third parties to carry out network data

torage, verification, transmission, and communication through its own distributed nodes. The
lockchain mechanism can automate the following four steps. First, when a new blockchain trans-
ction occurs, all participants can competitively record that transaction as a data block. Second,
ollowing the rule of consensus, most participants on the blockchain network must vote for a valid
ecorded transaction. Depending on the type of network, the consensus mechanism of agreement
an vary but is typically established at the start of the network. Third, once participants have
eached a consensus, transactions on the blockchain are written into blocks appended to a crypto-
raphic hash that links blocks together as a chain. Fourth, the blockchain system finally updates
nd broadcasts a copy of the latest ledger to all participants. Blockchain can be used to enhance
he protection of user preferences [ 61 ], personal information [ 19 , 38 , 44 , 77 ], and machine learning
ata [ 16 ] in edge caching systems. 

3.2.3 Cryptology-Based Methods. Cryptology-based methods , as a vital category of mitigation
pproaches, play a significant role in preserving privacy within edge caching systems. These meth-
ds employ cryptographic techniques to safeguard sensitive content or information, ensuring con-
dentiality, integrity, and authentication. Within the realm of edge caching, three specific types of
ethods are leveraged: encr yption communication, homomorphic encr yption (HE) , and pri-

ate information retrieval (PIR) . 
Encryption communication is divided into two steps to protect the security and privacy of com-
unication data. The first step is to encrypt communication data as follows. The sender encrypts

he content by an encryption algorithm and the receiver’s public key to obtain the ciphertext.
he receiver, once getting the ciphertext, conducts decryption through the decryption algorithm
nd the private key to recover the original data. Encryption communication is commonly used to
rotect the security of user request records and other data in Internet communications. There are
hree main approaches for encryption in edge privacy-enhanced caching systems. One is symmet-
ic encryption, which mainly uses DES (Data Encryption Standard, AES (Advanced Encryption
tandard) [ 59 , 104 ], or SE (Searchable Encryption) [ 17 ]. Second, asymmetric encryption mainly
ncludes RSA (Rivest-Shamir-Adleman) [ 94 ], ABE (Attribute-Based Encryption) [ 59 ], and ECC (El-
iptic Curve Cryptography) [ 14 , 113 ]. Finally, there are hashing algorithms [ 94 , 95 , 96 ], which are
ometimes used in blockchain [ 16 , 38 ]. However, there are also three significant concerns with the
se of cryptographic methods in edge caching systems. First, due to the existence of encryption,
hird-party ECs often cannot directly use encrypted requests to retrieve related content, which
ay lead to the unavailability of ECs. Second, introducing encryption technology may pose com-

utational pressure on the resource-constrained edge and end devices. Last, encryption commu-
ication may fail to prevent record privacy from CPs or service providers, who have the key to
ecrypt request information. Therefore, how to introduce cryptology-based techniques into edge
aching systems is still a challenging problem. In addition, as a special communication encryp-
ion method, the digital signature [ 11 , 32 , 34 ] is often used in edge caching systems to verify user
dentity and data reliability. 

HE is a form of encryption by which each party co-computes the result of a specific objective
unction concerning their private data without a trusted third party (TTP) . Each party cannot
nveil private data from other parties even if the computation is completed. In other words, it
llows a participant to perform operations such as searching and multiplying encrypted data to
CM Comput. Surv., Vol. 57, No. 5, Article 114. Publication date: January 2025. 
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roduce correct results without decrypting it during calculation. HE can be used to protect user
references [ 14 ] and information [ 34 ] when searching the EC. 
PIR is mainly used to protect a user’s request record information [ 36 , 75 ] in the edge caching

ystem. When obtaining sensitive data, request records likely expose important privacy informa-
ion of users. PIR can help users with query needs to complete private data retrieval from the
C under the condition that the query privacy information is not leaked. In other words, the PIR
echnology can prevent attackers from obtaining precise query information and content items in
ache retrieval or other sensitive queries. At the same time, PIR can let users obtain desired private
ontent. 

3.2.4 Other Methods. Optimization-based methods and access control are two of the main
pproaches to enhancing the effectiveness of privacy protection in edge caching systems. In
ptimization-based methods, metrics such as privacy exposure [ 4 , 71 ] and credibility [ 10 , 94 , 121 ]
re mathematically modeled. The quantified metrics are then regarded as the objective function
r constraint variables of the cache optimization problem. Finally, the optimal privacy protection
ecisions are deduced by solving the optimization problem [ 27 , 28 , 69 , 93 ]. Access control is an
nforcing control method that allows or denies a user’s access to a specific network resource (e.g.,
rivate content in the EC) based on the user’s account or group. Without a defined authorization
echanism, access to system resources will have no restrictions, and thus illegal device operations

an be easily launched. The EC can implement strict access control to filter out unauthorized or
llegal accesses into the caching space for privacy protection. Access control methods have been
pplied to protect personal information [ 17 , 38 , 113 ] and content privacy [ 95 , 96 ] in edge caching
ystems. In the next section, we dive into the details of defense methods for protecting each type
f sensitive information. 

3.2.5 Summar y. In conclusion, privacy-preser ving methods in edge caching systems can be
roadly classified into four categories. Noise-based methods are among the most prevalent tech-
iques for safeguarding privacy. These methods are particularly effective in preventing monitoring
ttacks and cache side-channel attacks but may negatively impact the utility and performance of
dge caching systems. For instance, DP is employed to add noises to data before or during its
elease, protecting user request traces, personal information, and machine learning models from
rivacy breaches. However, due to the limited privacy budget, strategic account [ 1 ] or allocation
echanisms [ 88 ] are required to mitigate the adverse influence of noises on utility. Noise-based
ethods typically introduce an acceptable level of computational overhead, providing adaptive

rotection in real-time edge systems where capacity is limited. 
TDC-based methods refer to techniques that organize distributed devices for collaborative com-

utation and storage while ensuring data privacy and security, such as FL, SS, and blockchain tech-
ology. FL is valuable for protecting the privacy of machine learning models by enabling decen-
ralized training without exposing raw data. These methods help mitigate the risk of data mining
ttacks, where adversaries might otherwise exploit original request traces or model parameters to
nfer private information. However, TDC-based methods, regarded as a form of adaptive protec-
ion, also need integrate with some strict privacy-preserving methods and may introduce commu-
ication and computational complexity due to the need for synchronization and consensus across
ultiple nodes, which can affect scalability and deployability. 
Cryptology-based methods utilize cryptographic techniques to ensure the confidentiality and

ntegrity of sensitive information. For example, HE allows computation on encrypted data without
eeding to decrypt it first, protecting user preferences during data processing. In addition to pre-
enting request information from being monitored by external attackers, these methods are crucial
ACM Comput. Surv., Vol. 57, No. 5, Article 114. Publication date: January 2025. 
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Fig. 4. A brief timeline of solutions aimed at enhancing user privacy, including request traces, personal 

information, and location, in the EC. Each solution is accompanied by its main mitigation approach. 
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or preventing cache tampering attacks, where attackers might alter cached content to gain unau-
horized access or disrupt system operations. Despite offering stringent protection, cryptology-
ased methods generally incur high computational complexity, particularly in scenarios involving
ncryption and HE, which can become bottlenecks for resource-constrained edge devices. 

Last, other methods, including optimization-based techniques and access control, enhance pri-
acy by mathematical modeling and enforcing access restrictions to sensitive resources. The com-
lexity of privacy-preserving methods in edge caching systems varies significantly depending on
he approach.Optimization-based methods involve solving complex mathematical models, with
omputational intensity heavily dependent on the formulations and solving algorithms. This com-
lexity may be particularly high when optimizing multiple privacy metrics simultaneously or un-
er complex constraints. Therefore, selecting appropriate privacy-preserving methods requires a
areful balance between the desired level of privacy and the performance cost. For easy refer-
nce, we also present a classification matrix for the solutions introduced in this survey based on
ountermeasures and privacy data in Table 2 in the appendix. 

 Enhancing User Privacy in Edge Caching Systems 

ser privacy is the most important privacy in edge caching systems, which has attracted tremen-
ous research efforts dominating the research on privacy preservation in edge caching systems.
e discuss these defense methods based on three types of user privacy: request traces, personal

nformation, and location. 

.1 Privacy of Request Traces in the EC 

equest traces are the most critical privacy information in the EC, from which adversaries can
btain user preferences [ 81 ]. We summarize methods to protect user request records from four as-
ects, which are noise-based methods, TDC-based methods, cryptology-based methods, and other
ethods. A brief timeline of solutions for enhancing the privacy of request traces is presented

n Figure 4 . The solutions for enhancing other user privacy, such as personal information and
ocation, are also summarized in Figure 4 for the sake of brevity. 
CM Comput. Surv., Vol. 57, No. 5, Article 114. Publication date: January 2025. 
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4.1.1 Noise-Based Methods. The initial class of methods to protect request records are noise-

ased methods , which can be categorized into two main approaches. The first approach involves
dding noises generated by mechanisms such as DP to protect information [ 26 , 81 , 82 , 105 , 106 ,
11 , 122 , 124 ]. The second approach includes cache obfuscation methods (e.g., proactive cache [ 55 ,
1 ], off-path cache [ 85 ], and request hit delay [ 42 ]) to protect users’ requests from monitoring
r timing attacks in untrusted or semi-trusted network environments. We will elaborate on these
ethods in the following sections. 
Differential Privacy. CPs often utilize edge caching nodes at the edge network and collect

sers’ private access records to predict user preference to improve delivery efficiency. However,
irectly collecting users’ profiles can lead to privacy breaches. Additionally, in highly dynamic
cenarios, the entities of the EC (e.g., ENs [ 122 ] and ESs [ 124 ]) collect user request records in real
ime and make dynamic decisions to improve the efficiency of edge caching. This real-time data
ollection process also poses a risk of privacy leakage, where DP-based methods can be employed
o mitigate the risk. 

Zhou et al. [ 122 ] proposed a privacy-preserving and online distributed multimedia content re-
rieval system. Each EN in the system is modeled as an online learner to exploit user requests with
 context that includes their background information (e.g., age, gender, location, social profile, and
uery criteria). The ENs can collaboratively make multimedia content recommendations and cache
t the edge network. When an EN needs extra context information to make a retrieval scheme, the
TP sends noisy records to ENs by deploying the DP mechanism. A trust mechanism is also pro-
osed to identify and remove malicious ENs. Zhu et al. [ 124 ] studied the tradeoff between privacy
rotection and caching efficiency in edge caching systems. When a user generates a content rat-
ng vector, Gaussian noises are added to the original rating vector, then the distorted rating vector
s transmitted to the ES for privacy protection. In the global aggregation information stage, the
S calculates the eigenvalues and eigenvectors of collected data based on the lightweight-level
alculation algorithm. Then, the ES broadcasts the results to all users. Xiong et al. [ 90 ] presented
 novel network traffic shaping framework for protecting privacy in IoT networks by integrat-
ng DP with constrained optimization. They developed a tunable DP model that shapes encrypted
oT traffic to protect against monitoring attacks, particularly eavesdropping on packet sizes and
iming. This approach not only safeguards IoT traces from privacy breaches but also enhances
he resilience of IoT systems against traffic analysis attacks by dynamically adapting to changing
etwork conditions and heterogeneous user demands. 
In collaborative edge caching, managers exchange sensitive information, such as user records

r preferences [ 105 , 122 ], and routing records [ 105 ], to improve caching efficiency. However, pro-
ecting privacy often in collaborative ECs may rely on a centralized TTP, which is challenging
o obtain in practice and places more pressure on network bandwidth. Moreover, if the central-
zed TTP is attacked, it may pose a more serious privacy breach risk. Zeng et al. [ 105 ] proposed
 distributed method to develop network caching and routing strategies for SBSs. The scheme
dds a DP noise in the routing information (i.e., the portion of the requested content served by
ach SBS) during the exchange process to protect the privacy of SBSs and mobile users (MUs) .
t defines an optimization problem that minimizes the global cost, which is solved by a distributed
rotocol. Guo et al. [ 26 ] introduced a blockchain and DP-based decentralized edge-thing system
or privacy preservation and fair utilization of edge computing resources. The proposed system
mployed blockchain technique to deal with transactions and smart contracts’ tempering issues
aused by the malicious auctioneer node. Moreover, an exponential mechanism-based DP is ap-
lied to the double auction scheme to tackle the inference attack on auction results saved in the
lockchain. 
ACM Comput. Surv., Vol. 57, No. 5, Article 114. Publication date: January 2025. 
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Hits on the user’s local cache can provide the best service experience for users. However, it is
hallenging for end devices that rely on a user’s personal historical information to make accurate
refetching decisions solely. Collaborative efforts between users are necessary, but such informa-
ion exchange is risky, and the recorded history must be protected when disclosed. Wang et al.
 81 ] presented a mobile video prefetching strategy based on DP and distributed online learning
lgorithms. They formulated the prefetching problem as an online optimization problem consid-
ring user preferences, video popularity, and social connections. The problem is then decomposed
nto two subproblems, which are solved and swapped at each terminal by a distributed method
o obtain the optimal global solution. The DP mechanism is added in exchanging user-sensitive
nformation during each round of iteration to protect user privacy. 

Cache Obfuscation. In an ICN, users can directly access desired content from edge routing
odes. However, edge routing nodes are often vulnerable to cache side-channel attacks, which
an result in the exposure of requested record privacy. Liang and Liu [ 42 ] designed a method to
efend against timing attacks in Content-Centric Networks. According to the privacy protection
egree for requested content and the honesty degree of requested nodes, evaluated by the historical
nformation, the caching node calculates the delay in responding to requests to defend against
iming attacks. Further, Wu et al. [ 85 ] designed a multi-path caching strategy for ICN based on
andom linear network coding. The strategy encodes different video chunks into the same block
or efficient content delivery. When the block is delivered along the path, it can only serve all
outing nodes with related video chunk requests and keep unavailable to irrelevant nodes. It adopts
 random forwarding method that increases the diversity of routing paths, thereby increasing the
ize of anonymity sets and the cost of inferring user privacy. 

In addition, proactive caching of redundant and obfuscated content at the edge can interfere
ith an attacker’s ability to access the user’s actual request records. Qian et al. [ 61 ] proposed a
rivacy-aware content caching architecture for cognitive IoV networks with proactive caching
nd blockchain technology. In this system, RSUs and smart vehicles can cache content in advance,
hich can provide the cached content in the form of a broadcast to meet the content needs of
ther vehicles. Therefore, a vehicle only needs to obtain content from broadcast data without fur-
her requests, which can reduce user privacy exposure. At the same time, blockchain technology
s introduced to ensure a more secure and reliable transaction mode to guarantee the reliabil-
ty of the content. Additionally, Nikolaou et al. [ 55 ] proposed two cache placement strategies for
he joint caching of users. The first strategy considers the graph network structure between user
erminals, and the second one focuses on the workload change of the server. However, trans-
itting requested videos between clients will leak privacy for both sides. The requested user

roactively fetches and caches obfuscated content. At the same time, the server adds randomly
bfuscated addresses when sending feasible retrieval address lists to reduce the risk of privacy
xposure. 

4.1.2 TDC-Based Methods. The second category of TDC-based methods aim at safeguarding
equest records primarily comprises SS, a secure multi-party computation technique, that can ef-
ectively prevent attackers from acquiring valued request records. Acs et al. [ 2 ] proposed two
iming attack defense methods for the edge router cache in the ICN. For interactive traffic-type
ommunication, random naming and SS are used for privacy protection to prevent attackers from
btaining specific traffic information. In view of the content distribution traffic, a method of in-
reasing artificial delay is proposed to protect privacy, and a certain delay is added to the private
ontent that is hit by the router cache to prevent adversaries from determining the hit status of
rivate-sensitive content. 
CM Comput. Surv., Vol. 57, No. 5, Article 114. Publication date: January 2025. 
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4.1.3 Cryptology-Based Methods. Cryptology-based methods have been widely used to protect
he security and privacy of user request records and other information in Internet communications.
owever, there are also three challenging problems when using cryptographic methods to protect

he privacy of request records in edge caching systems. First, due to the existence of encryption,
hird-party ECs probably cannot directly use encrypted requests to retrieve related content, leading
o the unavailability of ECs [ 37 , 104 ]. Second, introducing encryption technology may pose heavy
omputational pressure on the resource-constrained edge and end devices. Last, cryptology-based
ethods fail to prevent the leakage of record privacy from CPs or service providers, who have

he key to decrypt requests. Therefore, how to apply cryptology-based techniques to edge caching
ystems is still a challenging problem. 

Encryption Communication. To prevent the monitoring of users’ request records by ISPs,
fforts have been made to encrypt request records and the corresponding transmitted data using
ncryption algorithms while ensuring the availability of the cache within the ISP. Yuan et al. [ 104 ]
esigned a system to achieve efficient encrypted video delivery in the ISP network. The content
ached in the network is encrypted and distributed in the ISP network. This system can efficiently
nd safely locate and retrieve related content from the ISP network with a proposed encrypted
ontent fingerprint index for a given encrypted request. 

To improve privacy in the CDN, Cui et al. [ 17 ] proposed a novel encrypted method that combines
E and a multi-CDN strategy to achieve both content delivery performance and security in edge
DN nodes. The work introduces the SE method to realize content security and searchability. In
ddition, a semantically secure algorithm is used to encrypt user requests so that the same query
an correspond to different request content. To further protect user preference privacy, a one-
ime nonce will also be used for secondary encryption, which will be transmitted together with
he content transferred between CDN node clusters. For each request, the node must receive the
once to search, and after the search hits, the nonce must be regenerated and re-encrypted before
ontinuing to deliver the content. 

Homomorphic Encryption. In previous works, HE has been introduced to protect the privacy
f vehicles’ request records in the IoV while collaborating with RSUs to improve the efficiency of
dge caching. Cui et al. [ 14 ] proposed a cooperative download scheme in the IoV network, con-
idering the security and privacy protection of request traces. This scheme uses edge computing
rchitecture to reduce transmission delay. It uses lightweight encryption methods, such as ECC,
he Tesla broadcast authentication, and additive HE, to protect user privacy and content security.
he strategy proposed in this work is composed of two phases: the non-accelerated phase and the
ccelerated phase, the details of which can be found in the work of Cui et al. [ 14 ]. 

Kong et al. [ 34 ] utilized an invertible matrix to construct multiple content requests sent by
ifferent vehicles such that the RSUs can recover each request without being associated with a
pecific car. Specifically, when a vehicle needs to initiate a request, it will first generate a k ∗ k
andom invertible matrix and send secret information required for HE to k vehicle users within
 unified range. Then, in the response, a collaborative request group is randomly selected for the
equested vehicle. Other vehicles in the group first generate the requested information according
o the Paillier HE algorithm and send it to the RSU, returning the HE information to the requested
ehicle. That vehicle completes the corresponding HE according to the returned information and
he invertible matrix. Finally, it sends the encrypted request to the RSU to retrieve the private
ontent without exposing its privacy. 

Private Information Retrieval. By utilizing PIR methods, users are able to obtain the
ontent they desire while preventing potential leaks of their private interests. Kumar et al. [ 36 ]
ere the first to introduce a PIR strategy based on encoding cache into wireless edge caching.
ACM Comput. Surv., Vol. 57, No. 5, Article 114. Publication date: January 2025. 
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rasure-correcting codes are used to encode cached content, and different bit rates can be selected
or videos with varying popularity to conserve backhaul bandwidth usage. Additionally, the
cheme is based on general Reed-Solomon coding to safeguard user privacy from SBSs that may
ollude with one another. Furthermore, ensuring the integrity of content in the EC is essential
or maintaining a stable edge caching system. This is particularly important because edge devices
wned by individuals or small organizations are susceptible to cache tampering attacks and
nternal hardware failures. However, verifying the integrity of the content can compromise its
rivacy, especially when third-party verifiers are involved. To address this issue, Tong et al. [ 75 ]
roposed an integrity-checking protocol for edge storage based on provable data possession to
erify the integrity of cached content on a single EN. The protocol employs a PIR scheme and
omomorphic verifiable tags to prevent the disclosure of sensitive information (e.g., user request
races, edge download schemes, and private content) to verifiers. 

4.1.4 Other Methods. Other methods, such as optimization-based methods , are also introduced
o enhance the privacy of request traces or user preferences in EC. Sivaraman and Sikdar [ 71 ]
sed game theory to formulate an off-path and cooperative caching problem in the edge of the
CN, where users can choose their optimal routers at the edge network to cache content. Con-
traints in the problem include network latency, caching cost, and the amount of exposed user
rivacy. Two different privacy measures (i.e., mutual information and DP) are used as constraints
n the work. Finally, it is proved that a Nash equilibrium point exists in the game, which can be
olved by an iterative method. In addition, to mislead adversaries eavesdropping on ECs, Has-
anpour et al. [ 27 , 28 ] proposed caching approaches aimed at enhancing privacy and reducing
ommunication costs in edge networks. The solution presented one work by Hassanpour et al.
 27 ] employs an ϵ-constraint optimization approach to balance the tradeoff between minimizing
he average delivery load and maximizing context-oriented privacy. By optimizing cache place-
ent probabilities, the approach in another work by Hassanpour et al. [ 28 ] utilizes chunk-based

oint probabilistic caching (JPC) to increase adversarial errors while maintaining the desired
rivacy levels. Furthermore, to address the exponential growth of the feasible solution set in the
PC optimization problem, they proposed a scalable JPC strategy to solve the linear programming
ptimization problem efficiently. 
Furthermore, Cao et al. [ 10 ] studied the reliable and efficient performance of multimedia trans-
ission services between base stations and MUs through a two-stage joint optimization. In the first

tage of optimization, a service reliability evaluation mechanism is designed to evaluate the cred-
bility of the base station to ensure the security of user privacy information. Then, the price and
eliability competition among base stations and the strategic interaction of all players are modeled
y the Stackelberg game [ 29 ]. A resource allocation problem is further proposed in the second
tage to coordinate multiple MUs serving on the same base station. The potential game model
s used to improve the transmission service performance. Additionally, Shi et al. [ 69 ] proposed
 model for the cache placement problem in wireless edge caching, considering a multi-attacker
cenario where both benign users’ and attackers’ locations follow a homogeneous Poisson point
rocess. An optimization problem is formulated to determine the probability of each caching file,
onsidering the average probability of successful eavesdropper attacks and transmissions at the
ireless edge network. Finally, the genetic algorithm is used to maximize the secure transmission
erformance of the system. 

.2 Privacy of Personal Information in the EC 

ersonal identity information is also sensitive in the network, which can be used by the EC
or carrying out sensitive operations such as permission control and cache admission control.
CM Comput. Surv., Vol. 57, No. 5, Article 114. Publication date: January 2025. 
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owever, excessive disclosure of users’ personal identity information makes it convenient for
alicious nodes and attackers to spam users with advertisements and recommendations and

ttack ESs by polluting cached content. 

4.2.1 Blockchain-Based Methods. Previous works mainly employ blockchain to protect users’
dentity information [ 19 , 38 , 44 , 77 ]. Specifically, Vu et al. [ 77 ] proposed a blockchain-based

DN (B-CDN) architecture for content delivery, which enables anonymous operations on users.
he B-CDN leverages intelligent contracts to maintain the blockchain and provide CPs with users’
egistration and subscription functions while ensuring user privacy. Additionally, the B-CDN can
educe the cost of CP management by utilizing a public database of requested traces, which al-
ows CPs to estimate users’ preferences with virtual identities and maximize the efficiency of their
aching services. 

The Named Data Network (NDN) is a variant of the ICN, where content can be retrieved
y the content name. Lei et al. [ 38 ] introduced a blockchain-based security architecture for
mproving the security and privacy of NDN-based vehicular edge computing systems. This
ork deploys blockchain nodes in ESs and ISP nodes, where a delegated consensus algorithm is
esigned to enhance the efficiency of the blockchain. A three-layer management framework and
n access control strategy are proposed for key management based on blockchain verification
nd vehicle attributes, respectively. A resource requester needs to prove to blockchain consensus
odes that it satisfies the access condition according to the access policy of the resource owner.
ai et al. [ 19 ] designed a content caching mechanism based on the permissioned blockchain

echnology to address the problem of privacy and security in the vehicle edge computing
etwork. A new block validator selection method is proposed to achieve a fast and efficient
lockchain consensus mechanism. In addition, this work presents a deep reinforcement learn-
ng based vehicle content caching algorithm. Liu et al. [ 44 ] designed a decentralized caching
ramework empowered with blockchain credentials to tackle the challenges of content data
erification and edge device authentication. In the designed system, it is possible to trace each
ransaction at an active edge network without a central manager. A cache order matching
echnique is devised to use the cache resources efficiently. Further, data integrity verification
s done with the help of a content trading mechanism that helps data sharing among the
dge devices of the edge network and ensures the efficiency of trading in the edge cashing
ystem. 

4.2.2 Other Methods. The access control is also exploited to protect users’ identity information
 53 , 95 , 96 , 113 ]. Xue et al. [ 95 , 96 ] proposed SEAF, a secure and efficient network access
ramework for cache resources at the edge of ICN. SEAF provides several security and privacy
eatures, including content confidentiality, user privacy protection, user privilege revocation,
ountability, and efficiency. In SEAF, routers at the edge network authenticate user requests to
eparate access control from content provisioning. Only authenticated requests can enter the
etwork; thus, authorized users can only access the bandwidth and cache resources inside the
CN. Meanwhile, to protect privacy, users can verify their identity to the edge router by generating
 valid group signature, thereby maintaining users’ anonymity to the edge router. Zhang et al.
 113 ] focused on the security issues of cache-based software-defined networks, using the Tesla
rotocol to achieve fast authentication of the cache of vehicles and fog nodes. Besides, the
edersen commitment mechanism is used to directly authenticate vehicles and fog nodes without
xposing user identity privacy. Considering the limited computing power and delay-sensitive
haracteristics of the IoV, the author designed a set of cryptographic mechanisms supporting batch
erification. 
ACM Comput. Surv., Vol. 57, No. 5, Article 114. Publication date: January 2025. 
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.3 Privacy of Location in the EC 

he location information is a kind of critical privacy of a high value, including moving trajectory
 39 , 86 , 116 ], spatial coordinates [ 110 ], and other unique features [ 116 ]. Noise-based methods
omprise the primary class of techniques employed to enhance location privacy as illustrated in
igure 4 . 

4.3.1 Noise-Based Methods. As such, noise-based methods are mainly introduced to protect
ocation privacy, including geographic DP [ 116 ], spatial confusion [ 3 , 25 , 110 ], and k-anonymity
 18 , 56 , 67 , 99 , 110 ], among others. 

Differential Privacy. With the increasing mobility of users and the constant threat of malicious
ttacks from third parties, there is a growing risk of privacy breaches in mobile edge caching. To
ddress this issue, Zhang et al. [ 116 ] proposed a DP-based method for improving the video QoE for
Us while protecting their location and preference privacy in mobile edge caching. The proposed

cheme utilizes a privacy-preserving approach for computing the location transfer model and ag-
regating user preferences, achieving a balance between caching service efficiency and privacy
rotection at mobile edge networks. Specifically, the Laplacian perturbation model is employed to
rotect users’ location and preferences when submitting their information. Based on the perturbed
nformation, mobile edge caching nodes can evaluate the popularity of videos in the user’s area,
nd Q-learning [ 73 ] is employed to achieve cache optimization goals combined with transcoding
echnologies. 

Spatial Obfuscation. Amini et al. [ 3 ] were one of the first to utilize devices’ cache to protect
sers’ location information, where location-based content can be periodically prefetched to devices

n large geographic blocks before they are actually consumed. When content has been cached in a
ser’s local area, the user can access it directly on their device without needing external network
ervices. This can effectively reduce privacy exposure risks for the user. 

Additionally, privacy protection can be achieved through a distributed collaborative cache that
orms anonymous user groups within the vicinity. Zhang et al. [ 110 ] proposed a multi-level caching
trategy to reduce the number of users directly requesting LBS from the local service provider

LSP) . In turn, users can obtain the required services from the local cache, surrounding neighbor
aches, and trusted anonymizers. In this way, the interaction with untrusted LBS is reduced and
rivacy exposure is mitigated. When the request is lost, it has to request the LSP by generating
 stealth zone and making a request to the LSP. The anonymizer will select the optimal K -space
nonymity to request content according to the prediction result (considering a user’s future ge-
graphic location, the caching contribution rate of each unit, and the freshness of the content in
he unit). However, the high communication overhead and computational energy consumption of
sers collaborating as a group pose problems in protecting privacy. Moreover, the introduction of
entralized anonymizers is vulnerable to attacks, and if breached, all users’ private information
ay be compromised. To address these limitations, Gu et al. [ 25 ] proposed a method that employs

he trusted ESs to preprocess user requests and blur their location information during the snapshot
uery (i.e., one-shot query) of their POI. The ESs cache the requested POI for further query, thus
inimizing the number of queries exposed to LBS providers and potential attackers. Additionally,

n continuous queries, fuzzy prediction queries are generated and correlated with the actual query
o enhance the queries’ utility while interfering with attackers. 

Anonymity. The utilization of cache in edge devices, such as user devices [ 18 , 56 , 99 ], ESs
 67 ], and RSUs [ 30 ], can keep users’ transparency from LBS providers by reusing the users’ POI
ithin a specific region. This approach allows users to access the cached POI directly at the edge
etwork instead of relying on remote LBS service providers. Additional privacy protections (e.g., k-
CM Comput. Surv., Vol. 57, No. 5, Article 114. Publication date: January 2025. 
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nonymity [ 30 , 99 , 109 ], l-diversity [ 18 ], anonymity groups [ 56 , 67 ]) are exploited when resources
ave to be obtained from LBS providers. As a result, the likelihood of exposing sensitive location

nformation to the service provider is reduced. 
Zhang et al. [ 109 ] devised a CDKA (Caching-based Dual k-Anonymous) mechanism to preserve

ocation privacy. CDKA uses double anonymity and multi-level caching to reduce communication
verhead while providing location privacy. For this, an ES is used to intervene between the user
nd the LBS server, and location privacy is ensured by making mobile clients and ESs anonymous.
he proposed mechanism is assessed for computational efficiency, communication overhead, and
ache hit ratio. Additionally, dealing with vehicles’ high-speed movement characteristics in vehic-
lar networks, Hu et al. [ 30 ] designed a privacy protection algorithm combining proactive caching
nd the k-anonymity method. When a vehicle user requests a specific POI, it needs to send k − 1
bfuscated requests simultaneously. Besides, the corresponding request content will be obtained
hrough multiple passing RSUs to protect the user’s location information, including factual geo-
raphic and POI. 
Moreover, at the edge of the wireless network, Sen et al. [ 67 ] proposed a double cache strategy

o deploy a pair of caches for each region. Cache A records previous request results of users in
he region, and cache B caches all user requests and maintains cooperation between users. When
uerying private content, a user queries cache A first. If it is not hit, the request will be redi-
ected to cache B for conversion. Finally, the converted request is sent to other users within the
egion to request LBS together, and the received results may be maintained in cache A for further
ueries. 
To further prevent users’ location and personal information from being accessed by untrustwor-

hy EC and malicious users, Nisha et al. [ 56 ] proposed a caching scheme called the Group Collabo-

ation Scheme to request POI combining with spatial obfuscation. In this scheme, users who need
o find a POI in a specific area will modify the requested area according to the proposed random
rea obfuscation algorithm and then register with the group authenticator to obtain virtual group
dentity information and cooperative anonymous user groups. The collaboration is one-time, and
he anonymous group changes as the user moves. Users with request requirements will cooperate
ith nearby users to query whether the cache of other users in the anonymous group meets the

equest requirements. If the request POI is unavailable in the user group, the required content will
e requested in the name of the anonymous group. 

4.3.2 Trusted Distributed Computing. To enhance the QoS, CPs collaborate with ISPs to deploy
dge caching resources as close to the users as possible. ISPs can support the EC by placing vir-
ual servers at the network’s edge and assigning them to CPs. However, CPs only possess the
equest records of users, whereas ISPs only have access to their geographic location information.
n the caching process, CPs do not want to disclose all the requested information to the ISPs, and
ice versa. To deal with this challenge, Andreoletti et al. [ 5 ] proposed a secure multi-party com-
utation protocol to facilitate cooperation between ISPs and CPs without requiring either party
o disclose sensitive information. The protocol enables ISPs to obtain the number of requests for
pecific video content in a given area at a low computational cost. Once the ISP has this infor-
ation, it can deploy virtual servers efficiently, and the CP can use these virtual servers to place

he EC, thereby minimizing the number of hops for content delivery and reducing communication
elays. 
Despite the comprehensive introduction of major solutions, our discussion is not exhaustive.

hus, we provide a supplementary introduction in Table 3 in the appendix, briefly introducing
ther solutions to protect user privacy in edge caching systems that have not been discussed in
etail in Section 4 . 
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Fig. 5. A brief timeline of solutions for enhancing content privacy, including private content data and content 

popularity. 
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 Enhancing Content Privacy in Edge Caching Systems 

n this section, we move on to discuss defense methods that can preserve the second type of sensi-
ive information (i.e., content privacy) in edge caching systems. We present a timeline, as depicted
n Figure 5 , summarizing the methods employed to safeguard content privacy, encompassing pri-
ate content data and content popularity. 

.1 Privacy of Content Data in the EC 

ther than caching content for CPs, ESs are also able to cache private content generated by users.
owever, due to the presence of incompletely trusted ESs [ 59 , 94 ] or malicious and unauthorized
sers [ 93 , 94 ] at the edge network, stored content in the EC may face privacy leakage risks. 
DP-based methods are used to upload local data in the network cache while preserving its pri-

acy. For example, Wang et al. [ 78 ] proposed DP-DLCF (Differential Privacy-Preserving Peep
earning Caching Framework) to deal with the privacy leakage problem of private content in
dge caching networks. The privacy budget is utilized adaptively to strike a tradeoff between the
rivacy and accuracy of the prediction. In the proposed technique, users upload their data after
erturbing it with a randomized response technique based on LDP to preserve the privacy of their

ocal data. Next, the neighboring base station accumulates the uploaded data and transfers it to
he deep model for training. Moreover, the prediction accuracy of the model training is improved
y the bootstrap aggregation algorithm. 

Cryptology-based methods can also be leveraged in protecting the private content in the EC. Pu
t al. [ 59 ] proposed a secure and privacy-aware content-sharing strategy to protect sharing data
tored and delivered by incompletely trusted ESs. To ensure the secure sharing of content, the
ontent generator first encrypts the content using the CP-ABE (Ciphertext-Policy Attribute-Based
ncryption) algorithm and calculates its signature based on its private key. Additionally, by
tilizing the public key cached at the nearest ES, the generator performs secondary encryption
f the content to the nearest ES. When the ES receives the encrypted content from the content
enerator, it will first decrypt the content with its private key and check the security of the
ontent. According to the SS scheme, the ES randomly divides the content into n parts and
istributes the content parts to other n − 1 ESs to store the content. The proposed scheme can
ffectively ensure the integrity and recovery ability of the content in case any EC node becomes
ffline. The SS method was also integrated by Xiong et al. [ 89 ] to design an edge-assisted
rivacy-preserving data-sharing framework for autonomous vehicles. This approach encrypts
aw data into two ciphertexts, which are processed by two ESs. Additionally, a privacy-preserving
onvolutional neural network (P-CNN) was developed to ensure that the classification results are
CM Comput. Surv., Vol. 57, No. 5, Article 114. Publication date: January 2025. 
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dentical to those of the original convolutional neural network model, without any data leakage.
he framework effectively addresses threats such as potential data leakage and unauthorized
ccess to private content by malicious vehicles or ESs. 

Optimization-based methods are introduced to enhance the privacy of content caching in ESs.
o prevent private content from leaking to the unreliable edges and make optimal caching deci-
ions for MUs, Xu et al. [ 94 ] used the multi-leader and multi-follower Stackelberg game to model
 multi-link cache scenario at the mobile edge network. In the scenario, edge computing small

ase stations (ECSBS) act as leaders and, first, set pricing strategies in a non-cooperative game.
hen, a trust mechanism is proposed to evaluate the reliability of each ECSBS, which consists of

wo parts: direct trust degree and indirect trust degree. Based on the caching reliability and pric-
ng offered by ECSBS, MUs can make their optimal caching decisions as followers. Additionally,
u et al. [ 93 ] proposed a Stackelberg game model to encourage edge cache devices (ECDs) to
rovide secure caching services in both static and dynamic scenarios. The model takes into ac-
ount the selfish and open nature of ECDs and employs a zero-payment mechanism to penalize
CDs that provide poor services. The optimal strategies for the CP and ECDs in a static game
re analyzed, proving the existence of a unique equilibrium in the Stackelberg game. Besides,
n dynamic games with incomplete information, the Q-learning algorithm is used to solve the
roblem. 

.2 Privacy of Content Popularity in the EC 

ontent popularity, which can be used as the key knowledge to improve caching efficiency, is
usiness-critical information for the CPs and edge caching managers (e.g., ISPs). Due to the limited
umber of records in the service scope of the EC (e.g., serving a specific geographical location range
r a particular network level), edge caching suppliers may require CPs and other edge caching
ntities to provide the critical content popularity information so that they can judiciously make
aching decisions so as to shrink bandwidth consumption of the core network. 

Andreoletti et al. [ 4 ] improved the solution proposed in the work of Yuan et al. [ 104 ] by allowing
Ps to encrypt content and associate them with pseudonyms to prevent privacy leakage to edge
aching managers. ISPs only count the occurrences of these pseudonyms to infer content popular-
ty without examining the original content. The authors introduced the mathematical definition
f privacy and studied the tradeoff relationship among privacy and hit rate, retrieval latency, and
raffic load metrics. Additionally, Andreoletti et al. [ 6 ] proposed a protocol for spatial partitioning
f ISP caches based on the popularity of different CPs’ content, which aims to improve the QoS
f edge caching services while protecting CPs’ privacy of popularity information. The protocol
mploys the Shamir SS scheme for CPs to share the popularity information between the ISP and
he regulator authority, which guarantees a fair subdivision of the cache storage and the preserva-
ion of privacy. The ISP can calculate the caching space requirement for each CP using the secret
nformation, thus protecting CPs’ privacy. 

Similarly, Araldo et al. [ 7 ] proposed a caching space partitioning method that protects the pop-
larity information of CPs while ensuring the efficiency of edge caching. The method divides the
SP’s caching space into multiple slices and assigns each slice to different CPs using the stochastic
ynamic cache partitioning algorithm. The algorithm takes an initial slice allocation as input and
teratively optimizes the slice allocation scheme by testing the cache miss rate of the allocation
cheme in each round. However, unlike the partitioning method proposed by Andreoletti et al.
 6 ], this method does not depend on the private information of CPs’ popularity. Additionally, this
rchitecture also supports a transparent cache of encrypted content deployed at the edge of the
SP network. 
ACM Comput. Surv., Vol. 57, No. 5, Article 114. Publication date: January 2025. 
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Fig. 6. A brief timeline of solutions for enhancing knowledge privacy. 
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 Enhancing Knowledge Privacy in Edge Caching Systems 

n this section, we discuss defense methods that can preserve privacy for the last type of privacy
i.e., knowledge privacy) in edge caching systems. All edge caching service providers have the
otivation to extract knowledge for improving caching performance, which gives rise to the

radeoff between caching performance and privacy protection. Due to the high dynamics and
omplicated access patterns driven by users’ interest [ 51 , 98 ], it is essential to come up with
ntelligent edge caching algorithms to improve the caching performance. Machine learning based

ethods provide a feasible framework to extract user access patterns by exploiting collected
atasets related to users, which may contain sensitive information. For example, video request
ccess patterns are driven by users’ interest in different locations [ 20 , 47 ]. Users may keep
ynamic moving [ 19 ], and their interests evolve over time [ 114 ]. Thus, it is necessary to make
dge caching decisions based on features which can be extracted from localized and private user
nformation by machine learning methods. 

FL as a distributed machine learning framework is the most popular method to preserve knowl-
dge privacy. FL trains a learning-based algorithm across multiple decentralized devices or ESs
olding local data samples without exposing them. Additionally, we provide a comprehensive sum-
ary of the FL-based methods employed to safeguard knowledge privacy, presented in a timeline

llustrated in Figure 6 . As well, Table 4 in the appendix offers a detailed classification of these
olutions based on the combination of methods used. 

.1 Enhacing Knowledge Privacy with FL Frameworks 

he most common approach is to use an FL framework to train prediction models. Unlike tra-
itional machine learning methods, FL does not collect raw data for model training [ 100 , 102 ,
03 ]. This framework encourages models to be trained on local data, and all training works up-
oad model parameters or gradients rather than sensitive raw data. Yu et al. [ 100 ] were probably
he first to propose a learning-based proactive content caching method following the FL frame-
ork. This work proposes a hybrid filtering method based on the autoencoder to calculate the
ser-content similarity and predict the content of a user’s interest. Yu et al. [ 103 ] also designed an
L-based proactive caching method for vehicular networks. Considering the high mobility of ve-
icles and dynamic content popularity in vehicular networks, RSUs integrate the mobility-aware
ache replacement policy to make proactive caching decisions. Following the FL framework, the
receding three works [ 100 , 102 , 103 ] enable users to train machine learning models (e.g., autoen-
oder model) with their private datasets, locally and distributively, and upload trained models to
he corresponding parameter server for aggregation. 
CM Comput. Surv., Vol. 57, No. 5, Article 114. Publication date: January 2025. 
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Reinforcement learning can be realized in the FL framework to solve the complex dynamic con-
rol problem and mitigate the privacy leakage problem in edge caching systems [ 1 , 40 , 45 , 62 , 83 ,
4 , 87 ] to improve the caching performance and privacy protection simultaneously. Wang et al.
 83 ] proposed an “In-EDGE AI” system with deep reinforcement learning in FL. It delegates the re-
nforcement learning training task to the device side to protect the private dataset and brings more
ntelligence to edge systems. Liu et al. [ 45 ] proposed a privacy-preserving distributed deep deter-

inistic policy gradient scheme to make caching decisions for the EC. At the same time, to preserve
ser privacy, the model only predicts content popularity by avoiding mining sensitive historical

nformation. The model training process is completed by FL to prevent users from leaking pri-
acy to ESs. Qiao et al. [ 62 ] proposed an FL-based proactive content caching scheme to shorten
ontent retrieval latency and protect users’ private datasets. First, the edge computing architec-
ure reduces energy consumption and transmission overhead. The problems of client selection
nd local iteration round selection in the FL process are modeled as an MDP, which is solved by
he deep reinforcement learning algorithm. The solution can alleviate the non-independent and

dentically distributed (non-IID) data distribution problem and limited resources for end users.
In vehicular networks, PPEC nodes, such as at RSUs, can also be effectively achieved by combin-

ng FL and DRL frameworks. However, the high mobility of vehicles introduces additional chal-
enges to edge caching efficiency and privacy security. To tackle these challenges, Wu et al. [ 86 ]
esigned an asynchronous FL model to evaluate regional content popularity, taking into account
ehicle movement speed, RSU coverage, and network channel conditions. They modified the se-
ection of training vehicles and the aggregation function’s weight, assigning different weights to
ehicles with varying dwell times and channel conditions. They proposed a joint content place-
ent strategy based on dueling DRL to overcome the caching efficiency degradation caused by

igh vehicle mobility. This strategy further reduces content transmission delay while ensuring
ser data privacy and RSU joint caching efficiency in edge vehicle computing scenarios. Li et al.
 39 ] tackled the privacy and long-term training delay issues in high-precision map caching in in-
elligent connected vehicles by formulating a framework called F-DRL (Federated Deep Reinforce-
ent Learning). F-DRL is an MDP-based edge cooperative caching technique in which Dueling-
QN (Dueling-Deep-Q-Network) is employed to optimize the adaptive edge caching scheme with
n improved FL approach to preserve the privacy of the intelligent connected vehicle. For FL, re-
ource provision and member vehicle selection are made using joint optimization to minimize the
elays in training and load in the EC. 

.2 Combining FL with Other Methods 

ther than requiring sensitive data to train machine learning models, the edge caching system may
lso need private information to make edge caching decisions. Therefore, some works [ 13 , 60 , 79 ,
20 ] have introduced additional privacy protection methods into the FL framework to enhance
ata privacy during the model training process. Zheng et al. [ 120 ] proposed a privacy-preserving
L model to predict popularity in an unsupervised manner. The prediction method introduces two
oncepts: local and global popularity, considering both efficiency and privacy. Local popularity can
e evaluated by historical information by the LSTM model on users. In contrast, global popularity
an only be predicted by the information at the current moment, which will be erased immedi-
tely at the next moment. FL is applied to perform offline training and online popularity evaluation
ith distributed information to avoid exposing privacy. Wang and Deng [ 79 ] proposed a private

L-based caching scheme, which utilizes an FL framework and a pseudo rating matrix to collect
tatistical characteristics of user groups. With this distorted information, the server can predict
he popularity of content and make caching decisions. The scheme also protects the privacy of
ACM Comput. Surv., Vol. 57, No. 5, Article 114. Publication date: January 2025. 
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ndividual users from being accessed by servers and other users. Saputra et al. [ 64 ] introduced
he HE method into the FL framework to protect the privacy of MUs with constrained computing
esources. The scheme allows MUs to upload encrypted training data to ESs, which can perform
dditional training processes. The portions of the encrypted decision problem are modeled as a
ulti-objective profit maximization problem considering both privacy and training costs. The op-

imization problem is proved to be a concave function that can be solved by the interior point
ethod. At the same time, the training data cached at the EN or the cloud node is HE based on the
rakerski/Fan-Vercauteren, or BFV, method. 

.3 Combining Noise-Based FL with Other Methods 

ore parameters or gradients (representing knowledge extracted from user-related data) can ex-
ose user privacy because attackers can probably infer and restore user information from exposed
odel information. In addition, model parameters may have a huge economic value, and directly

ploading model parameters will compromise the self-interest of model owners. Therefore, there
re works dedicated to upgrading the FL framework by adding noises [ 31 , 46 , 52 , 101 ] or other
nterference [ 11 , 16 , 80 ] to model information prior to exposure. 

The FL framework has further employed DP-based noise to safeguard the parameters or gradi-
nts in previous works. Lu et al. [ 46 ] designed a differentially private asynchronous FL scheme to
hare resources in vehicular networks. The proposed scheme uses LDP to perturb the local model
arameters with noise drawn from the Gaussian distribution. Moreover, a distributed random up-
ate method is used to preserve the privacy of the global ML model during the update process.
u et al. [ 101 ] proposed an FL framework based on privacy protection so that the user dataset is
lways kept locally. Further, the LDP mechanism is added while exchanging model parameters for
ggregation to protect user privacy. In addition, this work proposes a hierarchical joint caching
echanism to combine the characteristics of local caching and global caching. A weighted aggre-

ation method is used to solve the data imbalance problem. Jiang et al. [ 31 ] developed a privacy-
reserving FL framework for industrial data processing. This framework works by compressing
daptive gradients in the first place during model training at the edge terminal. Afterward, hybrid
P is applied to optimize the FL framework, and the privacy-preserved gradients are transferred

n the industrial environment. 
Furthermore, some efforts try to enhance privacy protection in edge caching systems by in-

egrating the Generative Adversarial Network technique with FL. Wang et al. [ 80 ] combined FL
nd WGAN (Wasserstein Generative Adversarial Network) to improve further the efficiency of
odel training and accuracy of the popularity prediction model. With the fake data generated

y WGAN, the privacy of users’ real preferences can be enhanced. Besides, gradient clipping
nd model parameter restriction are applied at the training time to protect model privacy and
ecurity. 

Privacy preservation in vehicular edge computing is demanded since new attack types are devel-
ped continuously. To cope with the situation, Chen et al. [ 11 ] proposed a novel edge computing
pproach that utilizes unmanned aerial vehicle swarms as edge computing nodes to aggregate
odel parameters and caches the model parameters, thereby reducing the communication cost of

he core network and protecting users’ dataset. To enhance the security and privacy protection
f cached model parameters, the authors designed a comprehensive protocol for model aggrega-
ion, storage, and transmission, which can effectively prevent potential security threats, such as
oisoning attacks, man-in-the-middle attacks, and eavesdropping attacks. Meanwhile, to defend
gainst pollution attacks, the cosine similarity between local parameters and its edge aggregation
arameters is calculated to exclude parameters uploaded by malicious nodes. Then, parameters are
e-aggregated, and the aggregated parameters are sent to the cloud servers for the final process. A
CM Comput. Surv., Vol. 57, No. 5, Article 114. Publication date: January 2025. 
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Fig. 7. An outline for challenges and open issues section. 
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chnorr signature is also added before uploading the aggregated model parameters to ensure the
eliability of the parameters. 

In the IoT realm, edge computing architectures can expedite data processing, whereas edge
aching can accelerate file delivery speeds for IoT devices. To ensure the reliability and privacy of
ata in IoT networks, Cui et al. [ 16 ] proposed a blockchain system comprising four contracts to pre-
ict content popularity, cache, and deliver sensitive content. Meanwhile, to improve the security
nd throughput of the system, the Proof of Stake (PoS) consensus mechanism based on reputation
s modified and applied to reach consensus more efficiently. Besides, the FL algorithm based on
ompressed gradients is used to protect the privacy information of ESs and reduce communication
verhead. The K -means algorithm filters important gradients that must be uploaded accurately.
hese gradients are then quantified using a clustering-based quantization algorithm to reduce the
mount of data uploaded. Meanwhile, an averaged gradient value is uploaded to the server for
ther gradients with a small value. Blockchain technique is also used to verify uploaded data. Re-
ently, the Internet of Medical Things has become popular. However, it is also prone to privacy
hreats like other edge computing based approaches. To tackle these challenges for Internet of Med-
cal Things based big data analytics, Nair et al. [ 52 ] proposed an edge computing based FL scheme
alled Fed_select , which ensures privacy and provides load reduction at the central FL server by
ntroducing an ES. To ensure privacy, Fed_select performs user anonymity at the ES by employing
ybrid encryption techniques with client and attribute selection performed at the ES. Moreover,
P with Laplace noise is applied to the shared gradients to make them private during transfer. 
Due to limited space, we briefly present an overview of additional solutions for safeguarding

nowledge privacy in edge caching systems in Table 5 in the appendix, which covers methods not
ully discussed in Section 6 . 

 Open Challenges and Future Research Directions 

n this section, we discuss open challenges and future research directions worth exploring in PPEC.
s shown in Figure 7 , we elaborate on the challenges and open issues from three major perspec-

ives in PPEC: collaboration, efficiency, and efficacy. 

.1 Tradeoff between Collaboration and Privacy in PPEC 

ue to the large scale of network applications, it is common to deploy multiple ESs for collabora-
ively caching content. To enable collaborations between ESs, critical information such as cached
ontent or other private information will be exchanged between ESs, which can expose user pri-
acy and raise privacy concerns. We outline two open privacy concerns when multiple ESs share
ensitive information. 

7.1.1 Content-Right Confirmation. Digital content can be easily copied and distributed, which
s a double-edged sword making content-right confirmation difficult. For instance, when social
ACM Comput. Surv., Vol. 57, No. 5, Article 114. Publication date: January 2025. 
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edia content cached on a particular ES is accessed by other ESs, the ES completely loses con-
rol of cached social media content because other ESs can easily copy and redistribute this social
edia content [ 7 , 17 , 104 ]. Content-right confirmation is essential for content owners to maintain

vailability and accountability when using edge caching services to preserve content privacy. On
he one hand, with content-right confirmation, it is easy to determine content ownership. Privacy
trategies can be implemented to ensure that only authorized parties can access the content cached
n an ES. On the other hand, content-right confirmation is the basis of content accountability. With
ontent-right confirmation, the content right can be authenticated when the content is used once,
ith the right changed accordingly. 
Challenges. However, realizing content-right confirmation in edge caching systems is non-

rivial due to several challenges. First, the distributed nature of edge caching systems makes it
ifficult to maintain a centralized and trusted authority for content ownership verification. Sec-
nd, edge devices’ dynamic and heterogeneous nature introduces complexity in implementing
ontent-right confirmation mechanisms, which must be scalable and adaptable to different devices.
urthermore, the use of encryption and privacy-enhancing technologies in edge caching systems
urther complicates content-right confirmation. Although these technologies are essential for pro-
ecting the privacy of cached content, they may also prevent content owners from verifying the
se of their content in the cache. 
Future Directions. The challenges of realizing content-right confirmation in edge caching sys-

ems call for future work in several directions. First, new verification mechanisms are needed that
an handle the distributed nature, dynamics, and heterogeneity of edge devices. To overcome these
hallenges, several approaches have been proposed in the literature, such as blockchain-based so-
utions [ 38 , 77 ]. However, these mechanisms are short in scalability and the ability to adapt to
ifferent edge devices. Second, privacy-preserving verification methods that can coexist with en-
ryption and other privacy-enhancing techniques should be explored. One possible solution is to
everage secure multi-party computation [ 5 ] to enable verification while preserving the privacy
f cached content. Finally, standardization efforts are needed to ensure interoperability between
ifferent edge caching systems and CPs. For example, the trust management mechanisms [ 94 , 121 ]
re proposed to enable content-right confirmation in ISP and D2D edge caching. Thus, promoting
he adoption of content-right confirmation mechanisms and facilitating the collaboration between
ifferent stakeholders in different edge caching scenarios need to be further discussed. 

7.1.2 Coalition Mechanism Design. Collaborative edge caching is essential for enhancing
oS. However, many ECs are deployed on leased nodes provided by profit-oriented third-party
roviders, which are often decentralized [ 17 ], unreliable [ 37 ], or self-interested [ 17 ]. For instance,
dge caching routers can be unreliable [ 17 , 37 ] in a CDN, whereas RSUs and vehicles can be semi-
rust [ 30 , 32 , 61 , 113 ] or self-interested [ 14 , 19 , 34 ] in the edge IoV caching network. Similarly,
n social media networks, ESs can be self-interested [ 93 , 94 ]. To enable privacy-preserving ap-
lications and technology cooperation among edge caching systems, coalition mechanisms are
equired. These mechanisms involve designing an incentive and allocation model that encourages
articipants in edge caching systems to join the coalition and maximize their benefits through a
easonable selection. Additionally, punishment mechanisms should be considered when there are
ntrustworthy or dishonest nodes in the system. Hence, incentive and allocation mechanisms can
e designed in a thoughtful manner to foster participation and cooperation among edge caching
ystems. 

Challenges. However, designing coalition mechanisms for PPEC is complicated because it is
ecessary to balance several conflicting objectives. On the one hand, the mechanisms should en-
ourage participants to contribute their resources to the coalition, ensuring that the costs and
CM Comput. Surv., Vol. 57, No. 5, Article 114. Publication date: January 2025. 
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enefits of participants are distributed fairly [ 5 ]. On the other hand, they must incentivize par-
icipants to prioritize the interests of the coalition over their individual interests and punish il-
egal strategies [ 93 ], which is challenging when participants are profit oriented with conflicting
oals [ 94 ]. 

Future Directions. Game theory is a powerful mathematical framework for investigating
ecision-making processes, as well as interactions among rational individuals or entities in coali-
ion mechanisms. Its applications can optimize edge caching, capturing interactions among CPs,
etwork operators, and end users. Various game-theoretic models, such as the non-cooperative
ame [ 71 ], Stackelberg game [ 10 , 93 , 94 ], coalition games, and potential games [ 10 ], can analyze
he interaction among participants in edge caching systems. For instance, in a Stackelberg game,
ne player acts as the leader while the others follow. In the context of edge caching, the CP can be
odeled as the leader while network caching operators are the followers [ 93 ]. Similarly, the EC

an act as the leader, followed by end users [ 94 ]. Nevertheless, game theory based approaches with
omplete information [ 93 , 94 ] can not be directly applied in privacy-preserving scenarios since the
nformation is likely incomplete to players in edge caching systems. Besides, it is impractical to
ssume that every player is benign at an open-access edge network. There may exist semi-honest
nd even malicious players. Therefore, it is necessary to conduct further investigations into the
oalition mechanisms when analyzing the complex interactions between different kinds of players
n collaborative PPEC. 

.2 Limited Capacity for Running Privacy-Enhancing Caching Algorithms 

hallenges. Edge devices are becoming increasingly crucial in edge caching networks. However,
hese devices are typically limited in processing power, memory, caching space, and energy capac-
ty, which present challenges for running privacy-enhancing algorithms. First, limited computing
ower and memory pose a significant challenge on implementing complex privacy-preserving al-
orithms on edge devices [ 54 ]. To address this challenge, the development of lightweight privacy-
reserving algorithms is desired to protect user privacy without compromising caching perfor-
ance. Lightweight HE [ 14 ], identity authentication [ 75 , 95 , 96 , 113 ], and DP [ 2 , 71 ] are prospec-

ive approaches that can reconcile privacy protection and computational efficiency. Additionally,
t is vital to ensure that the developed algorithms are robust and productive, meeting the needs of
dge devices. Second, with regard to energy constraints, edge devices such as autonomous vehi-
les and smartphones are often battery powered [ 48 ], which can limit the ability of caching [ 64 ]
nd communication [ 16 ], and hence lower the performance of privacy-preserving algorithms [ 62 ,
4 ]. To address this challenge, energy-efficient caching management techniques should be devel-
ped to minimize the energy consumption of PPEC approaches. Techniques such as data com-
ression [ 16 ] and optimization models [ 62 ] can be adopted to reduce the consumption of caching
nd communication to minimize energy usage. For instance, an energy-aware client selection and
ommunication method for FL was proposed in the work of Qiao et al. [ 62 ] that reduced energy
onsumption by up to 50% compared to traditional FL methods when protecting the privacy of
ata sources. Third, cache space is another significant constraint for edge caching systems due to
he limited storage capacity compared to the vast amount of content that can be cached. However,
esearch has shown that only a small fraction of content is popular, whereas the majority of users
oncentrate their access on popular content, implying a long tail distribution of content popularity
 47 , 81 ]. Therefore, it is crucial to determine which content should be cached based on popular-
ty and user preferences while considering privacy concerns. PPEC approaches need to tradeoff
etween privacy protection and caching performance. 
Future Directions. Implementing privacy-preserving algorithms can complicate the system,

hich adversely impacts caching performance [ 42 ]. Conversely, simplifying the system may
ACM Comput. Surv., Vol. 57, No. 5, Article 114. Publication date: January 2025. 
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ncrease the risk of privacy breaches. Challenges associated with PPEC include balancing the
omplexity of protection algorithms with caching performance [ 95 , 96 , 124 ] or limited resources
 16 , 71 , 75 ], and ensuring user privacy while enabling efficient content distribution [ 14 , 104 ]. To
um up, an in-depth understanding of the limitations of edge devices and designing practical and
easible solutions are vital in enhancing PPEC. 

.3 Tradeoff between Efficacy and Privacy in PPEC 

7.3.1 Privacy-Enhancing Intelligent EC. Machine learning based methods have become a pow-
rful tool for optimizing edge caching performance and developing intelligent caching algorithms
 45 , 62 ]. However, there has been some controversy regarding privacy violations in edge caching.
rivacy concerns arise when edge caching providers analyze and manage content in their cache
ince the storage spaces of the EC are limited, and the content scale is growing rapidly [ 81 ]. To pro-
ide intelligent edge caching, providers may be curious about the content stored in their cache (e.g.,
opular content [ 7 , 14 , 17 ]) and the confidential information about consumers (e.g., request record
 55 , 85 , 104 ], identifiable information [ 53 , 95 , 96 , 113 ]). Providers may use monitoring and infer-
nce attacks to compromise consumers’ privacy to improve caching efficiency and gain economic
enefits. Additionally, the rise of generative AI applications can further complicate this landscape.
enerative AI can be leveraged to design more sophisticated caching algorithms that model user
ehavior and more accurately anticipate content popularity [ 74 ]. Furthermore, by caching pre-
rained foundation models at the edge network [ 92 ], various multimedia enhancement techniques,
uch as super-resolution, can be deployed to effectively improve user QoE and reduce transport
elays. However, these improvements may also come with increased privacy risks, as these mod-
ls might require more granular user data for fine-tuning at ESs, potentially exposing sensitive
nformation. Therefore, developing effective privacy-preserving mechanisms in intelligent edge
aching algorithms is crucial to address these problems. 

Challenges. However, the open-edge network provides an ideal entrance or interface for at-
ackers to obtain private data or knowledge from machine learning methods designed for edge
aching systems. Therefore, reconciling privacy and efficiency in intelligent caching methods at
he open-edge network is challenging for several reasons. First, the diversity of user requirements
nd content in machine learning based edge networks can be more significant than traditional
aching systems [ 122 ], which makes it difficult to apply traditional privacy-enhancing mecha-
isms directly. Second, the edge network is usually open, and multi-access [ 94 ], implying that

t is difficult to control the access of the cache so as to preserve privacy. Finally, the semi-trust
r unreliable third-party caching service providers exacerbate the challenge to the design of pro-
ection method [ 7 , 45 , 62 , 95 , 96 ]. For instance, the introduction of generative AI models could
ntensify these challenges, as these models may require ongoing access to real-time data for train-
ng content-specific generative models [ 92 ], thereby creating new vectors for privacy breaches.
herefore, designing intelligent caching methods that can well balance privacy and efficiency is
hallenging. 

Future Directions. The FL framework is one of the essential methods to preserve private
ata in the machine learning process [ 83 , 84 ]. Based on the FL framework, different parties may
istributedly predict the critical information, such as content population [ 45 , 62 , 120 ] or user
ocation migratory pattern [ 86 ], for intelligent caching decisions at the edge network. However,
ome parties may be dishonest and malicious. In particular, malicious users in FL may bring
oisoned data to affect the overall computing of the global model. For example, dishonest parties
ay back-infer their partners’ model by collecting their gradients to infer private information

 16 , 101 ]. These attacks can lead to the disclosure of critical privacy information or destroy
aching performance. Additionally, some adversaries even deliberately provide incorrect model
CM Comput. Surv., Vol. 57, No. 5, Article 114. Publication date: January 2025. 
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arameters during lateral FL to disrupt the overall computation and impact model performance
 80 ]. The security of private computing in the FL framework is also a challenging open topic
or edge caching. Furthermore, generative AI could introduce new methods for obfuscating
r anonymizing data before it is cached [ 80 ], thereby adding an additional layer of privacy
rotection. Similarly, with FL or other distributed learning frameworks, a lightweight generative
odel can be fine-tuned or trained with local data, stored, and run on edge devices, providing

ersonalized and customized AIGC services in real time while maintaining user privacy [ 91 ]. 

7.3.2 Reconcile Efficacy and Privacy in Advanced Edge Networks. Traditional edge caching algo-
ithms often rely on pre-determined and suboptimal caching policies, which may not be effective
n dynamic network environments where conditions [ 107 ] and user behavior [ 47 ] can change
apidly over time. In modern network systems, resource access patterns are highly dynamic and
omplex [ 114 , 119 ]. Additionally, factors such as user interests, geographical locations, and IoT
evice connectivity in edge scenarios are also highly dynamic, making one-time trained models
ess adaptable to these evolving conditions [ 12 ]. Some existing works propose high-cost training of

achine learning models, which may not be feasible for resource-constrained edge or terminal de-
ices [ 15 ]. Furthermore, advanced network infrastructures, such as NDNs and ICNs, are becoming
ore prevalent in edge networks, introducing new challenges for privacy preservation. 
Challenges. Several open challenges exist in designing privacy-preserving algorithms for ad-

anced network systems. One challenge is to balance the privacy protection strength and the ac-
uracy of the model prediction. The decision-making process in online scenarios is already highly
hallenging, and the introduction of privacy protection methods, such as noise perturbation, can
urther compromise the algorithm’s performance or even make it unusable. Another challenge is
o develop privacy-preserving algorithms that are computationally efficient and can be easily de-
loyed in dynamic network environments. Moreover, advanced network architectures inherently
ocus on data rather than specific endpoints, leading to new vulnerabilities. For instance, in the
DN and ICN, content is named and cached throughout the network, which could increase pri-
acy risks if sensitive data is cached without proper safeguards [ 17 , 71 , 95 ]. The ability to cache
nd retrieve data based on content names rather than IP addresses can expose more granular user
references and access patterns, making it easier for adversaries to infer sensitive information. Ad-
itionally, these architectures may complicate the implementation of privacy-preserving caching
trategies, as they require more sophisticated mechanisms to control data access and ensure data
ntegrity across distributed caches. 

Future Directions. Online learning algorithms, such as reinforcement learning [ 87 ] and con-
inuous learning, has become increasingly popular for solving complex problems in various fields,
ncluding edge caching in dynamic network environments [ 12 , 15 , 35 , 107 ]. However, online learn-
ng algorithms can also pose a risk to user privacy when collecting and processing sensitive user
ata. Therefore, how to safely use the latest historical information to make efficient online caching
ecisions is a problem worthy of discussion. There are little efforts to address the privacy concerns
ssociated with online learning algorithms. The FL may be a possible framework to allow multi-
le parties to process data jointly without revealing their raw datasets in dynamic scenarios [ 35 ].
dditionally, DP techniques can be used to add random noises to the data in advanced caching

ystems to obscure individual information [ 123 ]. 

7.3.3 Privacy Quantification for PPEC. Privacy quantification is a critical aspect of PPEC sys-
ems, as it allows for the measurement and assessment of privacy protection levels provided by
hese systems [ 2 , 71 , 85 , 97 ]. However, most current work on privacy-enhanced intelligent edge
aching lacks specific privacy metrics. Rather than developing clear and effective privacy metrics,
esearchers often combine existing privacy protection schemes and claim that their works can
ACM Comput. Surv., Vol. 57, No. 5, Article 114. Publication date: January 2025. 
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rotect privacy. Unfortunately, without clear quantification of the privacy protection effect, it fails
o identify weaknesses for improving privacy protection [ 2 , 97 ]. 

Challenges. One of the primary challenges in privacy quantification is developing an accurate
nd consistent metric for measuring privacy protection levels. It is a complicated task to propose
 universal method to measure different types of data leakage in the EC. Therefore, an appropri-
te privacy quantification method with a formalized definition should be established to guide the
esign of PPEC systems. For instance, in intelligent caching algorithms based on reinforcement
earning models, a good privacy exposure quantitative index can guide the model’s reward design
nd help the agent make better caching decisions [ 93 ]. Various privacy metrics have been pro-
osed in the literature, such as the information-theoretic converse bound [ 97 ] and the size of the
nonymity set [ 85 ]. However, each metric has its limitations and may not be suitable for general
PEC systems. Evaluating the privacy protection degree in dynamic network environments is an-
ther challenge in PPEC. Edge caching systems operate in a constantly changing environment,
nd various factors can impact privacy protection levels, which makes it challenging to determine
n accurate and consistent privacy metric that can be applied in a dynamic environment. 

Future Directions. To address these challenges, researchers can explore the use of online algo-
ithms [ 41 , 58 ] to predict privacy protection levels in real time based on network traffic patterns and
ser behavior. This approach can help to dynamically adjust privacy protection levels in response
o changes in the network environment and improve the effectiveness of PPEC. Future work for
esigning privacy metrics (similar to the privacy budget in DP [ 2 , 71 ] and mutual information in
nformation theory [ 71 ]) is desired. An innovative definition of privacy measurement applicable in
ntelligent edge caching scenarios [ 116 ] should be designed to guide PPEC. Finally, exploring the
ntegration of blockchain technology in PPEC could offer new avenues for ensuring data integrity
nd transparency [ 16 , 61 ]. Blockchain can be used to create an immutable record of data access
nd modifications, thus providing a reliable audit trail that enhances trust and accountability in
dge caching systems. 

 Conclusion 

dge caching has shown significant potential for improving network performance and resource
tilization, but privacy concerns must be considered when deploying ECs. This article analyzed
nd summarized the most prominent privacy issues in edge caching systems from a sensitive infor-

ation perspective, based on which a comprehensive classification has been proposed. The recent
ountermeasures for alleviating the exposed threats of different private information were retro-
pectively reviewed. The article concluded with lessons learned and highlights open challenges
or future research in PPEC. Further investigations are needed to ensure the privacy and perfor-
ance of edge caching while also reconciling the tradeoff between privacy protection and caching

erformance optimization. 
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