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Caching content at the edge network is a popular and effective technique widely deployed to alleviate the bur-
den of network backhaul, shorten service delay, and improve service quality. However, there has been some
controversy over privacy violations in caching content at the edge network. On the one hand, the multi-access
open edge network provides an ideal entrance or interface for external attackers to obtain private data from
edge caches by extracting sensitive information. On the other hand, privacy can be infringed on by curious
edge caching providers through caching trace analysis targeting the achievement of better caching perfor-
mance or higher profits. Therefore, an in-depth understanding of privacy issues in edge caching networks is
vital and indispensable for creating a privacy-preserving caching service at the edge network. In this article,
we are among the first to fill this gap by examining privacy-preserving techniques for caching content at
the edge network. First, we provide an introduction to the background of privacy-preserving edge caching.
Next, we summarize the key privacy issues and present a taxonomy for caching at the edge network from
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the perspective of private information. Additionally, we conduct a retrospective review of the state-of-the-art
countermeasures against privacy leakage from content caching at the edge network. Finally, we conclude the
survey and envision challenges for future research.
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1 Introduction

Content caching at the edge network is driven by two factors. First, the population of networked
devices has become astronomical due to advances in intelligent terminals and the broad deploy-
ment of the Internet of Things (IoT) [15, 16, 26, 118]. Second, the Internet content market is
blooming due to the proliferation of various multimedia content [54, 114]. According to a report
by Splunk, a Cisco company, there will be approximately 5.44 billion Internet users worldwide in
2024, including 5.07 billion social media users [72]. As a result, network-based content delivery ser-
vices are extremely bandwidth consuming. At the same time, emerging network technologies, such
as Gigabit Ethernet, and 5G and beyond, are expected to provide extremely high data transmission
rates and low access delays for terminal devices at the edge network to support time-sensitive
services such as autonomous driving, industrial automation, high-quality video streaming, and
virtual/enhanced emerging applications.

Such a vast dataflow brings two main challenges to the established networks. First, it brings a
heavy communication burden to the Internet core network links. During the peak hours of network
usage, a large amount of content transmission will inevitably aggravate the link burden of the core
network, causing network congestion and increasing network operating costs. Second, it will also
prolong the service delay of content transmission from remote servers to end devices, which will
adversely influence users’ service Quality-of-Experience (QoE) or even ruin the reliability of
delay-sensitive applications.

Edge caching is a technique that involves storing content in close proximity to end users, typi-
cally at or near the point of user access or ahead of the core network [54]. Its primary objective is
to shorten service latency and enhance content delivery performance by bringing content closer
to the users who request it. When users request content that is available in edge caches (ECs),
their requests can be directly served at the edge network with a high Quality-of-Service (QoS).
However, if the requested content is not available in the EC, it can be redirected to a remote server,
such as a data center. Here, we make a brief introduction to edge caching from five aspects.

Benefit of Edge Caching. Caching content at the edge network is effective in reducing the
burden of network backhaul [33, 62, 98], shortening service latency [17, 62, 107], and diminishing
resource cost [28, 33]. First, it is common to cache popular content at the edge network through
which the edge network can offload the access of requests and hence reduce the backhaul dataflow.
Even though the caching capability is limited at the edge network, ECs can offload up to 35%
of the traffic burden over backhaul links [54]. Second, the service latency can be shortened by
caching content on edge devices near end users. In particular, a shortened latency is critical for
content delivery of latency-sensitive applications [54]. Third, edge networks can make content
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access inexpensive since caching content at edge devices can avoid the bottleneck. For example, in
wireless edge networks, spectral efficiency and energy efficiency can be improved by about 900%
and 500%, respectively, by using edge networks for caching content [43].

Where to Cache. Building on the work of Ni et al. [54], we further identify three main enti-
ties in edge networks for edge caching as follows. First, end devices (e.g., smartphones, laptops,
intelligent vehicles, and Industrial IoT devices) carried by users will generate requests for down-
loading content via networks [16, 26]. It is possible that end devices can share content through D2D
(device-to-device) communications with licensed-band or unlicensed-band protocols. Second, ac-
cess infrastructures, utilizing wired and/or wireless communication technologies, can support end
devices in accessing the Internet. These infrastructures include 5G small base stations (SBSs)
[94], WiFi routers, local switches, and roadside units (RSUs) in the Internet of Vehicles (IoV)
[14, 113]. Popular content can be cached within these access infrastructures to promptly serve user
requests. Third, edge servers (ESs) positioned ahead of the core network, such as edge nodes
(ENs) in the Content Delivery Network (CDN) [17], edge routers in the Information-Centric
Network (ICN) [71, 95, 96], and macro base stations operated by Internet service providers
(ISPs) [7], can be utilized as ECs, a concept known as in-network edge caching. These ESs, typ-
ically maintained by third-party suppliers, are the core points for multi-access edge networks,
enhancing various content delivery applications.

What to Cache. In edge caching systems, determining what content to cache is crucial for op-
timizing cache space utilization and reducing latency. The content to be cached generally falls
into three categories. The category of user-related popular content includes content that is fre-
quently requested by end users, such as web pages, videos, images, and other multimedia files [17,
85]. Caching such content at the edge improves user experience by reducing service delay when
users access commonly accessed content. The category of public and static content includes high-
reuse, non-user-specific content associated with applications [54], such as JavaScript files, CSS
stylesheets, icons, PDF documents, and API responses. Caching these static resources decreases
application load times and reduces the burden on central servers. The category of edge-computable
and storable content includes data that can be computed and stored directly at the edge, such as
model parameters for federated learning (FL) [45, 62], user patterns and content popularity for
edge caching decisions [14, 17], and IoT sensor data awaiting processing [84, 101]. Caching such
content helps minimize backhaul traffic, enables efficient edge processing, and reduces overall la-
tency by avoiding redundant computations.

How to Cache. Edge caching strategies can be broadly classified into reactive and proactive ap-
proaches. The reactive caching approach employs eviction-based methods that decide whether to
cache a specific content item only after it has been requested. This approach often relies on empir-
ical formulas and classical caching algorithms, such as LRU (Least Recently Used) and LFU (Least
Frequently Used), as well as their variants [21, 68]. While these algorithms are simple and effi-
cient, they frequently encounter challenges in selecting optimal parameter values, which can limit
their performance in dynamic and diverse edge environments. The proactive caching approach in-
volves predictive methods to determine what content should be cached before any user requests
are made. This approach leverages content popularity predictions and user behavior profiles to
make caching decisions at edge networks in advance. Advanced machine learning models, such as
LSTM (Long Short-Term Memory) networks [22], are often employed to forecast content demand
based on historical request patterns in proactive caching. These learning-driven methods generally
offer superior caching performance compared to classical algorithms by automatically adjusting
model parameters. However, they may require extensive computational capacity and high-quality
training data, both of which may be often limited at the edge.
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Privacy Concerns of Edge Caching. Despite the enormous benefits brought by caching con-
tent at the edge network, there has been some controversy over privacy violations brought by
such caching. The concerns can be illustrated from two aspects. The first privacy threat comes
from external attackers, such as malicious user devices [2, 17, 42, 61, 71, 75]. The multi-access
open property of the edge network provides an ideal entrance or interface for external attackers
to obtain the cached content from the EC to extract sensitive information of end users [93]. Ad-
versaries can obtain user-sensitive information by launching cache side-channel attacks [2, 42, 71]
and cache tampering attacks [17, 61, 75]. However, it is non-trivial to embed advanced privacy
protection mechanisms into edge networks due to the limited computing capacity, energy power,
and storage space of edge devices. Second, user privacy can be infringed by curious edge caching
providers by analyzing traces and management records. Due to limited caching space relative to
the rapidly growing user population and the scale of content [122], edge network providers have
a strong motivation to spy on user privacy to improve their resource utilization. In other words,
if content popularity can be accurately predicted, the right content can be cached by edge devices
just before the surge of requests toward content [114]. Hence, edge network providers are curious
about users’ personal interests and confidential information to infer their request behaviors, which
can be extracted from users’ historical request traces (e.g., request patterns [14, 17, 114], identifi-
able information [7, 14, 17, 113, 124]). Edge network providers can implement monitoring attacks
[96, 113] and inference attacks [45, 62] in their systems to compromise users’ privacy based on
collected request information from users. Therefore, an in-depth understanding of privacy risks
in privacy-preserving edge caching (PPEC) is crucial for the design of feasible solutions to
achieve a privacy-preserving content cache at the edge network.

Our Contributions. Recently, significant progress has been made in enhancing privacy protec-
tion for content caching at edge networks. However, these works fail to provide a comprehensive
discussion of the privacy issues in edge caching systems. For instance, Ren et al. [63] primar-
ily discuss the state-of-the-art research on caching and privacy, respectively, in emerging edge
computing paradigms. Besides, most surveys only discuss privacy issues for particular scenarios,
such as IoT [23, 65], edge intelligence [108], the metaverse [57], and FL [8], while overlooking the
distinct aspects of edge caching. Other surveys [54, 87] addressed privacy-preserving solutions
and countermeasures for edge caching without covering all relevant issues in a thorough manner.
In particular, there has been a lack of comprehensive discussion of protection methods targeting
different types of private information in PPEC. Given these limitations and the absence of compre-
hensive literature reviews, this article aims to thoroughly examine and categorize current works
on privacy issues in edge caching scenarios. The main contributions of this article are summarized
as follows. First, we present in-depth discussions on sensitive information in edge caching and pro-
pose a taxonomy from a private information perspective to classify existing works. To the best of
our knowledge, this is the first such comprehensive exposition. Second, we conduct a thorough
review of recent high-quality research, diving into the background of privacy attacks and mitiga-
tion methods in the realm of edge caching. Our review encompasses the latest solutions proposed
for enhancing privacy in edge caching, which have been published in leading conferences and
journals in the fields of computing networks, architecture, and privacy, such as CCS, INFOCOM,
ToN, JSAC, TPDS, TIFS, and TDSC, as well as other top venues. Based on different kinds of privacy
information and attacks toward each kind of privacy information, we respectively review counter-
measures to defend against attacks for protecting each kind of infringed privacy. Third, based on
open problems outlined in existing works, we envision privacy-related open challenges in PPEC
to provide insights for inspiring future research.

Article Outline. The rest of this article is organized as follows. Section 2 provides an introduc-
tion to the taxonomy of privacy-preserving solutions that are based on the protection of sensitive
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| Sensitive Privacy in Edge Cache |

Content Privacy

Knowledge Privacy

Request Trace Personal Information Location Private Content (| Content Popularity || Extracted Knowledge
(e.g.[2,14,17,71,75)) || (e.g. 138,77, 95,96,113]) || (e.g. [3, 30, 56, 116]))]| (e.g. [69, 75, 93, 94]) (e.g., [7, 14, 40, 101]) (e.g., [45, 62, 80, 86, 120])

Fig. 1. The framework for PPEC encompasses six distinct types of data concerns, which can be primarily
classified into three categories of private information: user privacy, content privacy, and knowledge privacy.

information data in edge caching. Section 3 provides a background discussion on privacy issues
in the edge caching paradigm from two plain perspectives: privacy attacks and mitigation meth-
ods. From Section 4 to Section 6, we describe the possible privacy mitigation solutions for edge
caching in correspondence with three main classes of privacy: user privacy, content privacy, and
knowledge privacy, respectively. Section 7 provides open challenges and future research direc-
tions. Finally, we present a summary in Section 8. To facilitate readability, we have compiled a
summary of commonly used abbreviations for the solutions in Table 1 in the appendix.

2 Overview of Private Information in Edge Caching

In this section, we overview sensitive information that should be protected to avoid privacy leak-
age in PPEC. In the realm of edge caching, sensitive information can be exposed by either users [2]
unconsciously or ESs [7, 14]. Specifically, users’ sensitive information includes personal informa-
tion, browsing history, location, and private content data, through their request traces to the ES or
other service providers. Similarly, ESs can leak their private information and extract knowledge
from a collection of users who have interacted with ESs [14, 17]. Therefore, to build a privacy-
preserving content caching system, the first step is to understand what private information can be
exposed by users and ESs. In Figure 1, we outline all kinds of sensitive information that should be
protected in PPEC. We will elaborate on each kind of private information in this section.

2.1 User Privacy

In PPEC, all information related to users but not directly related to cached content is regarded
as user privacy such as users’ historical records, age, gender, and location. For our discussion,
we classify all user privacy information into three types: request trace, personal information, and
location.

2.1.1 Request Trace. A request trace refers to a sequence of content requests and responses be-
tween an end device and ESs or service providers. These traces often contain private information
such as request patterns [2, 42], preferences [14, 61], and interests [17, 71]. Advertisers or mali-
cious attackers can exploit such information to make profits or harm. Additionally, user request
traces are valuable assets to service providers and caching systems. Service providers or content
providers (CPs) can analyze these request traces to infer users’ behavior patterns, such as the
type of websites or applications they frequently use and the content they prefer to consume. ESs
can maintain and analyze request traces to improve caching performance by predicting future
requests, allowing for prefetching and caching popular content in advance.

There are primary two risks associated with request traces: interception and misuse. First,
request records can be intercepted and sniffed by other users and external attackers. For example,
malicious users can use timing attacks [2, 71] to impersonate legitimate users, sending requests
to the server. Attackers may then infer user request traces by exploiting the timing difference
between cached and non-cached responses [2, 71], facilitating illegal advertising and cache
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pollution attacks [85]. Second, ESs and service providers, curious about user interest patterns,
may misuse request traces for their purposes. For example, request traces can be exploited to
develop trace-driven content caching algorithms, posing privacy threats from untrusted or
profit-driven third-party ESs [7, 14, 66, 75].

However, designing methods to preserve user privacy in edge caching systems is non-trivial.
Most existing privacy-enhancing approaches fail to effectively address the privacy leakage risks
that users face in caching systems, as request records cannot be arbitrarily altered or obfuscated
by users and must remain visible to service providers and edge caching servers to provide reliable
services.

2.1.2  Personal Information. Personal information is a type of private information that can be
mined to identify a specific end device or user in the network. Edge caching servers and service
providers can obtain various types of personal information from users, depending on the specific
context and implementation of the edge caching system. Typical examples of personal information
that can be compromised in edge caching include the following. The first is identifier information
such as pseudonyms and IP addresses. In particular, through IP addresses, we can identify a user’s
ISP, approximate location, and other information, with which the EC can carry out sensitive oper-
ations, such as integrity verification [75] and cache admission control [95, 96]. The second is device
information such as the operating system, connection type, browser type, and version, which is
also essential for ESs to provide high-performance edge caching and tailored content to users [16,
113]. The third is account-related information such as email address, gender, age, payment, and
social relation, which can be captured by ECs or service providers when a user logs in or creates
an account to access the service, potentially revealing more personal privacy [17, 113].

Excessively exposing personal information by edge caching can result in annoying tracking and
profiling. When personal information is collected, edge caching servers and service providers can
create detailed user profiles, encompassing browsing habits and interests. By identifying specific
users or user groups, service providers can accurately predict future requests, allowing for content
prefetching to reduce latency and improve QoS. Additionally, detailed profiles facilitate targeted
advertising and personalized recommendations, potentially increasing revenue. However, these
practices raise ethical concerns [16, 113], including the potential for manipulation or discrimina-
tion against certain user groups. In addition, malicious nodes and attackers can take advantage of
excessive disclosure of personal information to gain unauthorized access to user accounts [95, 96]
and pull off cache tampering attacks [16, 17, 75], resulting in financial losses and other harms.

2.1.3  Location. Location information is a critical type of privacy data carrying location, spa-
tial coordinates, and the current time of moving objects. In edge caching systems, there are two
fundamental types of location information: users’ location information and Points of Interest
(POIs). When users access edge caching systems, they may unconsciously expose private location
information in the following processes. First, a user’s geographic location can be exposed to the
EC when accessing content or services directly from the EC [18]. Second, CPs and edge caching
providers can proactively collect users’ geographic location information to provide better content
distribution services, such as predicting user moving patterns [116]. Third, in location-based ser-
vices (LBSs), users may provide their private geographic information and POIs to search for their
interests in the EC [3, 18, 25, 56]. This information can be abused, resulting in undesired tracking
and profiling or even more severe consequences, such as location-based attacks.

Location information is sensitive and can be utilized to learn an individual’s daily routine and
movements. Service providers can use this information to deliver more relevant advertisements
and cached content to users, potentially boosting profits. Yet, if malicious attackers obtain loca-
tion information, it can put users at risk of physical harm. Malicious attackers can use location
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information to track a user’s movement trajectories and potentially cause harm, particularly in
the case of stalking or other criminal activities.

2.2 Content Privacy

Content privacy refers to privacy information contained by the content stored and transmitted
through edge caching systems, mainly including private content and content popularity.

2.2.1 Private Content. Private content refers to sensitive and confidential data that is stored and
potentially cached by edge systems. We name such sensitive content data in edge caching systems
as private content. Given its sensitive nature, private content requires strict privacy protections to
prevent unauthorized access and misuse. This type of content includes but is not limited to video
clips, photos, social media, and textual data from users, copyrighted materials, confidential busi-
ness documents, and government secrets. For example, in mobile social networks, each user can
be regarded as a CP who can produce fresh content desiring that their content can be efficiently
and accurately delivered to consumers [94, 122]. In this case, edge computing is a feasible archi-
tecture for caching and delivering the content. Consumers in proximity [93, 116] or with close
social relations [81] to a particular user CP in social networks are more likely to request this con-
tent. Thereby, using an ES to cache and deliver content in mobile social networks can diminish
bandwidth costs, which however raises privacy leakage risks.

Briefly speaking, private content privacy can be infringed in several ways. First, ESs are not
trustworthy and can expose cached content to the public. Second, malicious and unauthorized
users at the edge network can access cached content during transmission or processing between
end users and the EC or between different ECs. For instance, in cache side-channel attacks [42,
71], attackers attempt to access cached content by sending targeted requests, potentially allowing
them to view sensitive information. For another instance, attackers can lodge cache tampering by
injecting malicious content into the cache to exploit vulnerabilities in end user systems or steal
sensitive information [17, 61, 75].

2.2.2 Content Popularity. Content popularity can be defined as the relative frequency of a par-
ticular content to be requested by users. It indicates the level of popularity of content among
users. The popularity information is broadly utilized in improving caching efficiency, and caching
the most popular content can effectively lower the content delivery cost. However, the popularity
information is sensitive, unveiling the private preference information of users [17, 101]. Besides,
it is possible that content popularity information can reveal sensitive information about CPs, such
as their financial success and strategic direction, which should be kept confidential [7, 17].

The popularity information is crucial for making effective edge caching decisions but is highly
susceptible to leakage. First, popularity information may be leaked during cooperative caching
decision-making processes among ECs. For instance, as the number of records owned by a single
ES is limited, CPs may need to provide supplementary information [7]. Additionally, edge caching
servers may exchange popularity information to optimize caching decisions across the entire sys-
tem [17, 101]. Privacy leakage can occur because ESs might be untrusted, or the edge environment
itself may be vulnerable to attacks [17]. Second, popularity information can also be compromised
through well-decided caching content. For example, through broadcasting cached content lists [14,
54] or timing attacks [71, 113], malicious entities can infer which content is more popular. This
sensitive information, once exposed and tampered with, can be exploited to obtain illegal benefits,
manipulate cache performance [17, 75], or even launch cache tampering attacks [17, 93]. Espe-
cially, as content popularity can describe specific content attributes and serve as key knowledge
to improve caching efficiency, we consider it a unique type of information that intersects both
content privacy and knowledge privacy, as shown in Figure 1.

ACM Comput. Surv., Vol. 57, No. 5, Article 114. Publication date: January 2025.



114:8 X. Zhang et al.

Monitoring Attack  Cache Side- Channel Attack  Cache Tamperlng Attack Data Mining Attack ::it:acf(};

)rzonall Location i@ | : Content Populanfy ' : Brtracted Knowledige | Sfensitive
e e S e s S e e e e e = Information

User Privacy Content Prlvacy Knowledge Privacy

Request Trace

Fig. 2. The possible privacy attacks on different sensitive information in edge caching systems.

Sensitive Information

Mitigation Method User Privacy Mitigation Method
Noise- Communication Cryptology—
Based Based

Methoce

Blockchains

P ) . o
Sl PEDRS - ECCEEE | LV [ ma ] TDC
: : ) Based
Methods Access Control '. e e e 47 _ Methods

3
Methods ’
\ R

Know/edge Privacy

Fig. 3. The corresponding defense methods for enhancing different private information in edge caching
systems.

2.3 Knowledge Privacy

Knowledge privacy refers to the insights, patterns, and parameters derived from datasets processed
by machine learning models, typically owned by ECs or other service providers. Unlike user pri-
vacy and content privacy, which focus on data directly linked to users or content, knowledge
privacy involves higher-level abstractions extracted from these data sources. In edge caching, ser-
vice providers are particularly interested in the knowledge extracted from original datasets, as
it is valuable for improving caching performance. For example, by leveraging prediction models
based on this extracted knowledge, providers can make effective caching decisions in dynamic
scenarios [51, 98], leading to significant improvements in edge caching performance [20, 47, 113,
114, 116]. Learning-based methods offer a feasible framework for making effective edge caching
decisions, but they also pose risks of private information leakage during model training and pre-
diction phases. Therefore, it is crucial to carefully consider and mitigate these privacy risks when
employing learning-based methods for edge caching.

3 Overview of Attack and Defense Methods

This section is divided into two parts: an overview of attack methods targeting each type of sen-
sitive information in edge caching systems and a summary of defense methods against each type
of attack. In Figures 2 and 3, we present a relational map that illustrates the connections between
potential privacy attacks, defense methods, and sensitive information in edge caching systems. In
the rest of this section, we briefly discuss each type of attack and defense methods as depicted in
Figure 2 and Figure 3, respectively.

3.1 Privacy Attack in Edge Caching Systems

There are mainly four types of privacy attacks in edge caching systems, which are monitoring at-
tacks, data mining attacks, cache side-channel attacks, and cache tampering attacks. We introduce
these attacks with potential risk entities in this subsection.

3.1.1  Monitoring Attack. Monitoring attacks, also known as eavesdropping attacks, can be di-
vided into two main categories. The first is sniffing attacks on network communications—that is,
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an adversary sniffs on network traffic through the edge caching node to read or intercept private
information in network packets [113]. For example, the EC can monitor user requests during the
caching service process. In other words, the edge caching operator can monitor users’ requests in-
tended to responding end users’ requests and improve the caching efficiency. Through subsequent
data analysis, edge caching managers can improve the caching efficiency and reduce the transmis-
sion delay of the requested content. However, a user request may contain private information, such
as personal content preference [14, 66, 104], location [116], content popularity [14], and other per-
sonal information [34, 95, 96]. Therefore, edge caching systems should take both caching efficiency
and privacy preservation into account. Entities that can implement sniffing attacks in network
communications include edge caching managers (e.g., CPs [14], location service providers [116],
ISPs or a base station [104], edge devices [14, 66, 75, 94, 122]), malicious end devices [14, 55, 95,
96], and external adversaries [113]. The second type of monitoring attack is supervisory attacks on
cached content—that is, attackers conduct improper monitoring, replacement, pollution, and other
privacy attack activities on cached content. By leveraging the illegal cache access, adversaries can
obtain private data or information such as content popularity [4, 7, 17], user preferences [61], and
other private information [17, 75]. If the cached content is not protected prudently, the user’s pri-
vacy can be seriously compromised by ECs, which are often deployed by honest but curious third
parties (e.g., ISPs [4, 7], ESs [17, 61, 75], and end devices [17, 61]).

3.1.2  Data Mining Attacks. Data mining attacks usually occur when an edge caching entity ap-
plies a learning-based caching algorithm to explore sensitive data for making caching decisions.
Due to the high dynamics and complicated access patterns driven by users’ interest [51, 98], de-
signing an intelligent edge caching algorithm is essential to improve the caching performance.
Commonly, learning-based methods make caching decisions by exploiting historical information
to train a prediction model. It is necessary to feed the model training with private and sensitive
data related to users, and thus users may be reluctant to share. Since edge caching decisions are
generated by learning algorithms, edge caching becomes a tradeoff problem between caching per-
formance and privacy protection level. As a consequence, learning-based methods in edge comput-
ing assisted caching are usually vulnerable to two types of privacy risks: (1) exploratory, in which
adversaries investigate vulnerabilities (e.g., the training dataset, model parameters, and gradient
data) without changing the training process, and (2) causative, in which attackers manipulate and
inject misleading training datasets to alter the machine learning model’s training process [76].
Additionally, previous research has shown that model parameters [70] and gradients [1, 117] of
the machine learning model can be utilized to recover original sensitive and private information.
Learning-based methods provide a practical framework for making edge caching decisions but are
susceptible to privacy risks that can compromise user privacy. The potential adversaries to launch
data mining attacks include edge caching managers (e.g., CPs [14, 62], ISPs [84], edge devices [45,
62, 80]) and malicious end devices [81].

3.1.3  Cache Side-Channel Attacks. In cache side-channel attacks, attackers can learn privacy in-
formation about users and cached content by observing and measuring activities relevant to edge
caches such as response time, power consumption, and return faults [2, 42, 71, 85]. Through the
edge caching service, users can conveniently upload their content to ESs or download requested
content from ESs. Due to the open accessibility of ECs [54], adversaries can easily access content
cached by ESs. Adversaries can target a particular victim user by identifying content requested
by the victim. The attacker may know the victim’s content consumption habits or other specific
characteristics to distinguish the victim from other users. One of the main types of cache side-
channel attacks is cache-timing attacks, which allows attackers to determine whether specific con-
tent has been cached by comparing response times. Previous works (e.g., [2, 42, 71]) have explored
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cache-timing attacks in edge caching systems. An attacker can conduct the precise timing mea-
surement to distinguish cache hits from misses, which can identify what content is cached at
the ES. A cache hit means that a nearby user has requested the content (or has a high caching
value), whereas a cache miss means that the content has not been requested (or has been ejected
from the cache). A knowledgeable attacker can further determine whether the request is served
by the provider or by a router somewhere along the provider’s path [42]. The main risk enti-
ties to launch cache side-channel attacks include malicious end devices [2, 42, 85] and external
adversaries [71, 113].

3.1.4 Cache Tampering Attacks. A cache tampering attack is a form of cyber-attack in which an
adversary aims to alter content stored at an EC to gain unauthorized access, introduce illicit con-
tent, and disrupt the caching system’s regular operation. Within an edge network, a caching server
offers a temporary storage area, holding frequently accessed content to expedite distribution. How-
ever, cache tampering attacks can transpire when an attacker modifies content cached in the ES
or deceives the user to gain unauthorized content. The main risk entities to implement cache tam-
pering attacks include ESs [61, 75], malicious end devices [17, 61], and external adversary [17, 61].

A typical instance of cache tampering attacks is cache poisoning, where an attacker manipulates a
CDN or ES’s cache to store and deliver malicious content or information [17, 75, 113]. For example,
an attacker can exploit the vulnerability of the caching system by requesting a legitimate image
with a specially crafted HTTP header. This header may contain malicious code that tricks the
cache into storing a different image the attacker controls rather than the legitimate one. The next
time a user requests the original image, it will instead receive the attacker’s image, which could
contain harmful content such as malware or phishing links.

A variant of the cache tampering attack is the cache deception attack, wherein an adversary
gains access to private information by misleading and influencing a privileged user [24, 49, 50].
This process consists of two primary steps [24]. Initially, the attacker prompts the privileged user
to request sensitive content and cache it in the ES. Subsequently, the adversary submits an identical
request to the EC and retrieves the sensitive content. For example, in named data networking [38],
an attacker creates a URL request targeting a victim user’s private content by attaching a tag of a
widely used image. The victim is then enticed to make that request using its privilege [49]. Upon
retrieval, the cloud server disregards the invalid suffix and returns legitimate privacy content.
The caching node retains the privacy content as the popular image’s content. In this manner, the
attacker can make the same request to access the identical privacy content in the EC, enabling them
to acquire private content they are not authorized to access, potentially resulting in the victim’s
private content being leaked [49, 50]. The preceding kinds of cache tampering attacks give rise to
unbearable privacy risks for users in edge caching systems.

3.2 Mitigation Methods to Preserve Privacy in Edge Caching Systems

In the following subsection, we will provide a concise introduction to a range of methods that can
effectively mitigate privacy leakage in content caching systems, which can be mainly classified into
four types of methods: noise-based methods, trusted distributed computing (TDC), cryptology-
based methods, and other approaches. The specific solutions corresponding to each privacy miti-
gation approach are detailed in Sections 4 through 6. For easy reference, we also present a classi-
fication matrix for the solutions introduced in this survey based on countermeasures and privacy
data in the realm of edge caching in Table 2 in the appendix.

3.2.1 Noise-Based Methods. Noise-based methods represent the most prevalent approaches for
preserving privacy within edge caching systems. These methods introduce disturbances to the
real and genuine information before its exposure and interaction, effectively safeguarding privacy.
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Within the domain of edge caching, three specific types of methods are commonly employed:
differential privacy (DP), confusion, and anonymization.

DPis a data-sharing technique that allows data owners to share only some statistical character-
istics of a database while withholding individual-specific information [2, 71]. There are two ways
to add noise in the DP mechanism. The traditional one is to add noise to the public database at the
time of data release. However, the data collection agency is not always reliable, and thus a local
differential privacy (LDP) mechanism is also leveraged by data owners to distort original data
before submitting private data. The use of DP in edge caching systems can introduce distortion
to the actual user or content information during the collection or release of sensitive data. DP is
introduced to protect request traces [71, 81, 111, 116, 122] personal information [105, 124], and
machine learning models [101] in edge caching systems.

Confusion mainly has two ways to enhance privacy in edge caching. The first one is cache obfus-
cation (e.g., proactive cache [55, 61], off-path cache [85], and request hit delay [42]), which can be
used to protect users’ requests when retrieving the content from monitoring or timing attacks in an
untrusted or semi-trusted network environment. The second one is spatial confusion [3, 25, 110],
which is to protect the location information when users enjoy LBSs. For instance, many pseudo
requests for POIs can be attached to the genuine request when retrieving content from the EC.

Anonymous methods are the last category of privacy risk mitigation measures. Anonymity is
the act of not being named or using an alias, as opposed to the act of having a real identity [18].
In particular, a set of public data satisfies K-anonymity if the information of any entity cannot
be distinguished from at least K — 1 other entities. The K-anonymity method is often used to en-
hance geographical [30, 56, 99] and personal privacy identity information [18, 67] in edge caching
systems. In addition, the anonymity group technology is used in protecting users’ identity infor-
mation [53, 95, 96, 113].

3.2.2 TDC-Based Methods. TDC methods encompass three primary mitigation frameworks—
FL, secret sharing (SS), and blockchain technology-to safeguard privacy in the context of edge
caching.

FL is a distributed machine learning technique that trains a learning-based algorithm across
multiple decentralized devices or ESs locally holding data samples without exposure [9]. The FL
framework is one of the most essential methods to preserve private data during the machine learn-
ing process. It is common that the FL framework [40, 45, 83, 84, 100, 102, 103] trains learning models
by exposing model parameters or gradients. Instead, traditional machine learning methods need
to collect raw data for the learning process. However, model parameters or gradients are also pri-
vate assets of users since attackers can infer and recover users’ private information from exposed
model information. In addition, model information may have significant economic benefits, which
will compromise the self-interest of model owners if they are exposed directly. A number of works
[11, 16, 80, 101] have contributed to upgrading the FL framework by injecting noise or other in-
terference to model information prior to exposure.

SS, also known as secret splitting, is a kind of secure multi-party computation and storage
method in which each party gets a part of the secret, called a secret share. The secretly shared
information cannot be recovered unless a sufficient number of secret shares can be collected. A
single share cannot restore the original secret. For example, the (¢, n)-threshold scheme is the most
straightforward SS scheme. In this scheme, there are a total of n players, each receiving only one
secret share. The secret can be recovered if at least ¢ players cooperate, where ¢ is the safety thresh-
old parameter. In edge caching scenarios, secret data may include private content generated and
stored by users and historical data required for edge caching decisions (e.g., request traces [2],
user preferences [66], and content popularity information [6]). While introducing SS may increase
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computational load, it significantly raises the cost for attackers attempting to obtain private infor-
mation from the edge, reducing the risk of data breaches. Moreover, it enhances the fault tolerance
of distributed caching systems.

Blockchain is a technical solution that does not rely on third parties to carry out network data
storage, verification, transmission, and communication through its own distributed nodes. The
blockchain mechanism can automate the following four steps. First, when a new blockchain trans-
action occurs, all participants can competitively record that transaction as a data block. Second,
following the rule of consensus, most participants on the blockchain network must vote for a valid
recorded transaction. Depending on the type of network, the consensus mechanism of agreement
can vary but is typically established at the start of the network. Third, once participants have
reached a consensus, transactions on the blockchain are written into blocks appended to a crypto-
graphic hash that links blocks together as a chain. Fourth, the blockchain system finally updates
and broadcasts a copy of the latest ledger to all participants. Blockchain can be used to enhance
the protection of user preferences [61], personal information [19, 38, 44, 77], and machine learning
data [16] in edge caching systems.

3.2.3  Cryptology-Based Methods. Cryptology-based methods, as a vital category of mitigation
approaches, play a significant role in preserving privacy within edge caching systems. These meth-
ods employ cryptographic techniques to safeguard sensitive content or information, ensuring con-
fidentiality, integrity, and authentication. Within the realm of edge caching, three specific types of
methods are leveraged: encryption communication, homomorphic encryption (HE), and pri-
vate information retrieval (PIR).

Encryption communication is divided into two steps to protect the security and privacy of com-
munication data. The first step is to encrypt communication data as follows. The sender encrypts
the content by an encryption algorithm and the receiver’s public key to obtain the ciphertext.
The receiver, once getting the ciphertext, conducts decryption through the decryption algorithm
and the private key to recover the original data. Encryption communication is commonly used to
protect the security of user request records and other data in Internet communications. There are
three main approaches for encryption in edge privacy-enhanced caching systems. One is symmet-
ric encryption, which mainly uses DES (Data Encryption Standard, AES (Advanced Encryption
Standard) [59, 104], or SE (Searchable Encryption) [17]. Second, asymmetric encryption mainly
includes RSA (Rivest-Shamir-Adleman) [94], ABE (Attribute-Based Encryption) [59], and ECC (El-
liptic Curve Cryptography) [14, 113]. Finally, there are hashing algorithms [94, 95, 96], which are
sometimes used in blockchain [16, 38]. However, there are also three significant concerns with the
use of cryptographic methods in edge caching systems. First, due to the existence of encryption,
third-party ECs often cannot directly use encrypted requests to retrieve related content, which
may lead to the unavailability of ECs. Second, introducing encryption technology may pose com-
putational pressure on the resource-constrained edge and end devices. Last, encryption commu-
nication may fail to prevent record privacy from CPs or service providers, who have the key to
decrypt request information. Therefore, how to introduce cryptology-based techniques into edge
caching systems is still a challenging problem. In addition, as a special communication encryp-
tion method, the digital signature [11, 32, 34] is often used in edge caching systems to verify user
identity and data reliability.

HE is a form of encryption by which each party co-computes the result of a specific objective
function concerning their private data without a trusted third party (TTP). Each party cannot
unveil private data from other parties even if the computation is completed. In other words, it
allows a participant to perform operations such as searching and multiplying encrypted data to
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produce correct results without decrypting it during calculation. HE can be used to protect user
preferences [14] and information [34] when searching the EC.

PIR is mainly used to protect a user’s request record information [36, 75] in the edge caching
system. When obtaining sensitive data, request records likely expose important privacy informa-
tion of users. PIR can help users with query needs to complete private data retrieval from the
EC under the condition that the query privacy information is not leaked. In other words, the PIR
technology can prevent attackers from obtaining precise query information and content items in
cache retrieval or other sensitive queries. At the same time, PIR can let users obtain desired private
content.

3.24 Other Methods. Optimization-based methods and access control are two of the main
approaches to enhancing the effectiveness of privacy protection in edge caching systems. In
optimization-based methods, metrics such as privacy exposure [4, 71] and credibility [10, 94, 121]
are mathematically modeled. The quantified metrics are then regarded as the objective function
or constraint variables of the cache optimization problem. Finally, the optimal privacy protection
decisions are deduced by solving the optimization problem [27, 28, 69, 93]. Access control is an
enforcing control method that allows or denies a user’s access to a specific network resource (e.g.,
private content in the EC) based on the user’s account or group. Without a defined authorization
mechanism, access to system resources will have no restrictions, and thus illegal device operations
can be easily launched. The EC can implement strict access control to filter out unauthorized or
illegal accesses into the caching space for privacy protection. Access control methods have been
applied to protect personal information [17, 38, 113] and content privacy [95, 96] in edge caching
systems. In the next section, we dive into the details of defense methods for protecting each type
of sensitive information.

3.25 Summary. In conclusion, privacy-preserving methods in edge caching systems can be
broadly classified into four categories. Noise-based methods are among the most prevalent tech-
niques for safeguarding privacy. These methods are particularly effective in preventing monitoring
attacks and cache side-channel attacks but may negatively impact the utility and performance of
edge caching systems. For instance, DP is employed to add noises to data before or during its
release, protecting user request traces, personal information, and machine learning models from
privacy breaches. However, due to the limited privacy budget, strategic account [1] or allocation
mechanisms [88] are required to mitigate the adverse influence of noises on utility. Noise-based
methods typically introduce an acceptable level of computational overhead, providing adaptive
protection in real-time edge systems where capacity is limited.

TDC-based methods refer to techniques that organize distributed devices for collaborative com-
putation and storage while ensuring data privacy and security, such as FL, SS, and blockchain tech-
nology. FL is valuable for protecting the privacy of machine learning models by enabling decen-
tralized training without exposing raw data. These methods help mitigate the risk of data mining
attacks, where adversaries might otherwise exploit original request traces or model parameters to
infer private information. However, TDC-based methods, regarded as a form of adaptive protec-
tion, also need integrate with some strict privacy-preserving methods and may introduce commu-
nication and computational complexity due to the need for synchronization and consensus across
multiple nodes, which can affect scalability and deployability.

Cryptology-based methods utilize cryptographic techniques to ensure the confidentiality and
integrity of sensitive information. For example, HE allows computation on encrypted data without
needing to decrypt it first, protecting user preferences during data processing. In addition to pre-
venting request information from being monitored by external attackers, these methods are crucial
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Fig. 4. A brief timeline of solutions aimed at enhancing user privacy, including request traces, personal
information, and location, in the EC. Each solution is accompanied by its main mitigation approach.

for preventing cache tampering attacks, where attackers might alter cached content to gain unau-
thorized access or disrupt system operations. Despite offering stringent protection, cryptology-
based methods generally incur high computational complexity, particularly in scenarios involving
encryption and HE, which can become bottlenecks for resource-constrained edge devices.

Last, other methods, including optimization-based techniques and access control, enhance pri-
vacy by mathematical modeling and enforcing access restrictions to sensitive resources. The com-
plexity of privacy-preserving methods in edge caching systems varies significantly depending on
the approach.Optimization-based methods involve solving complex mathematical models, with
computational intensity heavily dependent on the formulations and solving algorithms. This com-
plexity may be particularly high when optimizing multiple privacy metrics simultaneously or un-
der complex constraints. Therefore, selecting appropriate privacy-preserving methods requires a
careful balance between the desired level of privacy and the performance cost. For easy refer-
ence, we also present a classification matrix for the solutions introduced in this survey based on
countermeasures and privacy data in Table 2 in the appendix.

4 Enhancing User Privacy in Edge Caching Systems

User privacy is the most important privacy in edge caching systems, which has attracted tremen-
dous research efforts dominating the research on privacy preservation in edge caching systems.
We discuss these defense methods based on three types of user privacy: request traces, personal
information, and location.

4.1 Privacy of Request Traces in the EC

Request traces are the most critical privacy information in the EC, from which adversaries can
obtain user preferences [81]. We summarize methods to protect user request records from four as-
pects, which are noise-based methods, TDC-based methods, cryptology-based methods, and other
methods. A brief timeline of solutions for enhancing the privacy of request traces is presented
in Figure 4. The solutions for enhancing other user privacy, such as personal information and
location, are also summarized in Figure 4 for the sake of brevity.
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4.1.1  Noise-Based Methods. The initial class of methods to protect request records are noise-
based methods, which can be categorized into two main approaches. The first approach involves
adding noises generated by mechanisms such as DP to protect information [26, 81, 82, 105, 106,
111, 122, 124]. The second approach includes cache obfuscation methods (e.g., proactive cache [55,
61], off-path cache [85], and request hit delay [42]) to protect users’ requests from monitoring
or timing attacks in untrusted or semi-trusted network environments. We will elaborate on these
methods in the following sections.

Differential Privacy. CPs often utilize edge caching nodes at the edge network and collect
users’ private access records to predict user preference to improve delivery efficiency. However,
directly collecting users’ profiles can lead to privacy breaches. Additionally, in highly dynamic
scenarios, the entities of the EC (e.g., ENs [122] and ESs [124]) collect user request records in real
time and make dynamic decisions to improve the efficiency of edge caching. This real-time data
collection process also poses a risk of privacy leakage, where DP-based methods can be employed
to mitigate the risk.

Zhou et al. [122] proposed a privacy-preserving and online distributed multimedia content re-
trieval system. Each EN in the system is modeled as an online learner to exploit user requests with
a context that includes their background information (e.g., age, gender, location, social profile, and
query criteria). The ENs can collaboratively make multimedia content recommendations and cache
at the edge network. When an EN needs extra context information to make a retrieval scheme, the
TTP sends noisy records to ENs by deploying the DP mechanism. A trust mechanism is also pro-
posed to identify and remove malicious ENs. Zhu et al. [124] studied the tradeoff between privacy
protection and caching efficiency in edge caching systems. When a user generates a content rat-
ing vector, Gaussian noises are added to the original rating vector, then the distorted rating vector
is transmitted to the ES for privacy protection. In the global aggregation information stage, the
ES calculates the eigenvalues and eigenvectors of collected data based on the lightweight-level
calculation algorithm. Then, the ES broadcasts the results to all users. Xiong et al. [90] presented
a novel network traffic shaping framework for protecting privacy in IoT networks by integrat-
ing DP with constrained optimization. They developed a tunable DP model that shapes encrypted
IoT traffic to protect against monitoring attacks, particularly eavesdropping on packet sizes and
timing. This approach not only safeguards IoT traces from privacy breaches but also enhances
the resilience of IoT systems against traffic analysis attacks by dynamically adapting to changing
network conditions and heterogeneous user demands.

In collaborative edge caching, managers exchange sensitive information, such as user records
or preferences [105, 122], and routing records [105], to improve caching efficiency. However, pro-
tecting privacy often in collaborative ECs may rely on a centralized TTP, which is challenging
to obtain in practice and places more pressure on network bandwidth. Moreover, if the central-
ized TTP is attacked, it may pose a more serious privacy breach risk. Zeng et al. [105] proposed
a distributed method to develop network caching and routing strategies for SBSs. The scheme
adds a DP noise in the routing information (i.e., the portion of the requested content served by
each SBS) during the exchange process to protect the privacy of SBSs and mobile users (MUs).
It defines an optimization problem that minimizes the global cost, which is solved by a distributed
protocol. Guo et al. [26] introduced a blockchain and DP-based decentralized edge-thing system
for privacy preservation and fair utilization of edge computing resources. The proposed system
employed blockchain technique to deal with transactions and smart contracts’ tempering issues
caused by the malicious auctioneer node. Moreover, an exponential mechanism-based DP is ap-
plied to the double auction scheme to tackle the inference attack on auction results saved in the
blockchain.
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Hits on the user’s local cache can provide the best service experience for users. However, it is
challenging for end devices that rely on a user’s personal historical information to make accurate
prefetching decisions solely. Collaborative efforts between users are necessary, but such informa-
tion exchange is risky, and the recorded history must be protected when disclosed. Wang et al.
[81] presented a mobile video prefetching strategy based on DP and distributed online learning
algorithms. They formulated the prefetching problem as an online optimization problem consid-
ering user preferences, video popularity, and social connections. The problem is then decomposed
into two subproblems, which are solved and swapped at each terminal by a distributed method
to obtain the optimal global solution. The DP mechanism is added in exchanging user-sensitive
information during each round of iteration to protect user privacy.

Cache Obfuscation. In an ICN, users can directly access desired content from edge routing
nodes. However, edge routing nodes are often vulnerable to cache side-channel attacks, which
can result in the exposure of requested record privacy. Liang and Liu [42] designed a method to
defend against timing attacks in Content-Centric Networks. According to the privacy protection
degree for requested content and the honesty degree of requested nodes, evaluated by the historical
information, the caching node calculates the delay in responding to requests to defend against
timing attacks. Further, Wu et al. [85] designed a multi-path caching strategy for ICN based on
random linear network coding. The strategy encodes different video chunks into the same block
for efficient content delivery. When the block is delivered along the path, it can only serve all
routing nodes with related video chunk requests and keep unavailable to irrelevant nodes. It adopts
a random forwarding method that increases the diversity of routing paths, thereby increasing the
size of anonymity sets and the cost of inferring user privacy.

In addition, proactive caching of redundant and obfuscated content at the edge can interfere
with an attacker’s ability to access the user’s actual request records. Qian et al. [61] proposed a
privacy-aware content caching architecture for cognitive IoV networks with proactive caching
and blockchain technology. In this system, RSUs and smart vehicles can cache content in advance,
which can provide the cached content in the form of a broadcast to meet the content needs of
other vehicles. Therefore, a vehicle only needs to obtain content from broadcast data without fur-
ther requests, which can reduce user privacy exposure. At the same time, blockchain technology
is introduced to ensure a more secure and reliable transaction mode to guarantee the reliabil-
ity of the content. Additionally, Nikolaou et al. [55] proposed two cache placement strategies for
the joint caching of users. The first strategy considers the graph network structure between user
terminals, and the second one focuses on the workload change of the server. However, trans-
mitting requested videos between clients will leak privacy for both sides. The requested user
proactively fetches and caches obfuscated content. At the same time, the server adds randomly
obfuscated addresses when sending feasible retrieval address lists to reduce the risk of privacy
exposure.

4.1.2 TDC-Based Methods. The second category of TDC-based methods aim at safeguarding
request records primarily comprises SS, a secure multi-party computation technique, that can ef-
fectively prevent attackers from acquiring valued request records. Acs et al. [2] proposed two
timing attack defense methods for the edge router cache in the ICN. For interactive traffic-type
communication, random naming and SS are used for privacy protection to prevent attackers from
obtaining specific traffic information. In view of the content distribution traffic, a method of in-
creasing artificial delay is proposed to protect privacy, and a certain delay is added to the private
content that is hit by the router cache to prevent adversaries from determining the hit status of
private-sensitive content.
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4.1.3  Cryptology-Based Methods. Cryptology-based methods have been widely used to protect
the security and privacy of user request records and other information in Internet communications.
However, there are also three challenging problems when using cryptographic methods to protect
the privacy of request records in edge caching systems. First, due to the existence of encryption,
third-party ECs probably cannot directly use encrypted requests to retrieve related content, leading
to the unavailability of ECs [37, 104]. Second, introducing encryption technology may pose heavy
computational pressure on the resource-constrained edge and end devices. Last, cryptology-based
methods fail to prevent the leakage of record privacy from CPs or service providers, who have
the key to decrypt requests. Therefore, how to apply cryptology-based techniques to edge caching
systems is still a challenging problem.

Encryption Communication. To prevent the monitoring of users’ request records by ISPs,
efforts have been made to encrypt request records and the corresponding transmitted data using
encryption algorithms while ensuring the availability of the cache within the ISP. Yuan et al. [104]
designed a system to achieve efficient encrypted video delivery in the ISP network. The content
cached in the network is encrypted and distributed in the ISP network. This system can efficiently
and safely locate and retrieve related content from the ISP network with a proposed encrypted
content fingerprint index for a given encrypted request.

To improve privacy in the CDN, Cui et al. [17] proposed a novel encrypted method that combines
SE and a multi-CDN strategy to achieve both content delivery performance and security in edge
CDN nodes. The work introduces the SE method to realize content security and searchability. In
addition, a semantically secure algorithm is used to encrypt user requests so that the same query
can correspond to different request content. To further protect user preference privacy, a one-
time nonce will also be used for secondary encryption, which will be transmitted together with
the content transferred between CDN node clusters. For each request, the node must receive the
nonce to search, and after the search hits, the nonce must be regenerated and re-encrypted before
continuing to deliver the content.

Homomorphic Encryption. In previous works, HE has been introduced to protect the privacy
of vehicles’ request records in the IoV while collaborating with RSUs to improve the efficiency of
edge caching. Cui et al. [14] proposed a cooperative download scheme in the IoV network, con-
sidering the security and privacy protection of request traces. This scheme uses edge computing
architecture to reduce transmission delay. It uses lightweight encryption methods, such as ECC,
the Tesla broadcast authentication, and additive HE, to protect user privacy and content security.
The strategy proposed in this work is composed of two phases: the non-accelerated phase and the
accelerated phase, the details of which can be found in the work of Cui et al. [14].

Kong et al. [34] utilized an invertible matrix to construct multiple content requests sent by
different vehicles such that the RSUs can recover each request without being associated with a
specific car. Specifically, when a vehicle needs to initiate a request, it will first generate a k * k
random invertible matrix and send secret information required for HE to k vehicle users within
a unified range. Then, in the response, a collaborative request group is randomly selected for the
requested vehicle. Other vehicles in the group first generate the requested information according
to the Paillier HE algorithm and send it to the RSU, returning the HE information to the requested
vehicle. That vehicle completes the corresponding HE according to the returned information and
the invertible matrix. Finally, it sends the encrypted request to the RSU to retrieve the private
content without exposing its privacy.

Private Information Retrieval. By utilizing PIR methods, users are able to obtain the
content they desire while preventing potential leaks of their private interests. Kumar et al. [36]
were the first to introduce a PIR strategy based on encoding cache into wireless edge caching.
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Erasure-correcting codes are used to encode cached content, and different bit rates can be selected
for videos with varying popularity to conserve backhaul bandwidth usage. Additionally, the
scheme is based on general Reed-Solomon coding to safeguard user privacy from SBSs that may
collude with one another. Furthermore, ensuring the integrity of content in the EC is essential
for maintaining a stable edge caching system. This is particularly important because edge devices
owned by individuals or small organizations are susceptible to cache tampering attacks and
internal hardware failures. However, verifying the integrity of the content can compromise its
privacy, especially when third-party verifiers are involved. To address this issue, Tong et al. [75]
proposed an integrity-checking protocol for edge storage based on provable data possession to
verify the integrity of cached content on a single EN. The protocol employs a PIR scheme and
homomorphic verifiable tags to prevent the disclosure of sensitive information (e.g., user request
traces, edge download schemes, and private content) to verifiers.

4.1.4  Other Methods. Other methods, such as optimization-based methods, are also introduced
to enhance the privacy of request traces or user preferences in EC. Sivaraman and Sikdar [71]
used game theory to formulate an off-path and cooperative caching problem in the edge of the
ICN, where users can choose their optimal routers at the edge network to cache content. Con-
straints in the problem include network latency, caching cost, and the amount of exposed user
privacy. Two different privacy measures (i.e., mutual information and DP) are used as constraints
in the work. Finally, it is proved that a Nash equilibrium point exists in the game, which can be
solved by an iterative method. In addition, to mislead adversaries eavesdropping on ECs, Has-
sanpour et al. [27, 28] proposed caching approaches aimed at enhancing privacy and reducing
communication costs in edge networks. The solution presented one work by Hassanpour et al.
[27] employs an e-constraint optimization approach to balance the tradeoff between minimizing
the average delivery load and maximizing context-oriented privacy. By optimizing cache place-
ment probabilities, the approach in another work by Hassanpour et al. [28] utilizes chunk-based
joint probabilistic caching (JPC) to increase adversarial errors while maintaining the desired
privacy levels. Furthermore, to address the exponential growth of the feasible solution set in the
JPC optimization problem, they proposed a scalable JPC strategy to solve the linear programming
optimization problem efficiently.

Furthermore, Cao et al. [10] studied the reliable and efficient performance of multimedia trans-
mission services between base stations and MUs through a two-stage joint optimization. In the first
stage of optimization, a service reliability evaluation mechanism is designed to evaluate the cred-
ibility of the base station to ensure the security of user privacy information. Then, the price and
reliability competition among base stations and the strategic interaction of all players are modeled
by the Stackelberg game [29]. A resource allocation problem is further proposed in the second
stage to coordinate multiple MUs serving on the same base station. The potential game model
is used to improve the transmission service performance. Additionally, Shi et al. [69] proposed
a model for the cache placement problem in wireless edge caching, considering a multi-attacker
scenario where both benign users’ and attackers’ locations follow a homogeneous Poisson point
process. An optimization problem is formulated to determine the probability of each caching file,
considering the average probability of successful eavesdropper attacks and transmissions at the
wireless edge network. Finally, the genetic algorithm is used to maximize the secure transmission
performance of the system.

4.2 Privacy of Personal Information in the EC

Personal identity information is also sensitive in the network, which can be used by the EC
for carrying out sensitive operations such as permission control and cache admission control.
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However, excessive disclosure of users’ personal identity information makes it convenient for
malicious nodes and attackers to spam users with advertisements and recommendations and
attack ESs by polluting cached content.

4.2.1 Blockchain-Based Methods. Previous works mainly employ blockchain to protect users’
identity information [19, 38, 44, 77]. Specifically, Vu et al. [77] proposed a blockchain-based
CDN (B-CDN) architecture for content delivery, which enables anonymous operations on users.
The B-CDN leverages intelligent contracts to maintain the blockchain and provide CPs with users’
registration and subscription functions while ensuring user privacy. Additionally, the B-CDN can
reduce the cost of CP management by utilizing a public database of requested traces, which al-
lows CPs to estimate users’ preferences with virtual identities and maximize the efficiency of their
caching services.

The Named Data Network (NDN) is a variant of the ICN, where content can be retrieved
by the content name. Lei et al. [38] introduced a blockchain-based security architecture for
improving the security and privacy of NDN-based vehicular edge computing systems. This
work deploys blockchain nodes in ESs and ISP nodes, where a delegated consensus algorithm is
designed to enhance the efficiency of the blockchain. A three-layer management framework and
an access control strategy are proposed for key management based on blockchain verification
and vehicle attributes, respectively. A resource requester needs to prove to blockchain consensus
nodes that it satisfies the access condition according to the access policy of the resource owner.
Dai et al. [19] designed a content caching mechanism based on the permissioned blockchain
technology to address the problem of privacy and security in the vehicle edge computing
network. A new block validator selection method is proposed to achieve a fast and efficient
blockchain consensus mechanism. In addition, this work presents a deep reinforcement learn-
ing based vehicle content caching algorithm. Liu et al. [44] designed a decentralized caching
framework empowered with blockchain credentials to tackle the challenges of content data
verification and edge device authentication. In the designed system, it is possible to trace each
transaction at an active edge network without a central manager. A cache order matching
technique is devised to use the cache resources efficiently. Further, data integrity verification
is done with the help of a content trading mechanism that helps data sharing among the
edge devices of the edge network and ensures the efficiency of trading in the edge cashing
system.

4.2.2  Other Methods. The access control is also exploited to protect users’ identity information
[53, 95, 96, 113]. Xue et al. [95, 96] proposed SEAF, a secure and efficient network access
framework for cache resources at the edge of ICN. SEAF provides several security and privacy
features, including content confidentiality, user privacy protection, user privilege revocation,
countability, and efficiency. In SEAF, routers at the edge network authenticate user requests to
separate access control from content provisioning. Only authenticated requests can enter the
network; thus, authorized users can only access the bandwidth and cache resources inside the
ICN. Meanwhile, to protect privacy, users can verify their identity to the edge router by generating
a valid group signature, thereby maintaining users’ anonymity to the edge router. Zhang et al.
[113] focused on the security issues of cache-based software-defined networks, using the Tesla
protocol to achieve fast authentication of the cache of vehicles and fog nodes. Besides, the
Pedersen commitment mechanism is used to directly authenticate vehicles and fog nodes without
exposing user identity privacy. Considering the limited computing power and delay-sensitive
characteristics of the IoV, the author designed a set of cryptographic mechanisms supporting batch
verification.
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4.3 Privacy of Location in the EC

The location information is a kind of critical privacy of a high value, including moving trajectory
[39, 86, 116], spatial coordinates [110], and other unique features [116]. Noise-based methods
comprise the primary class of techniques employed to enhance location privacy as illustrated in
Figure 4.

4.3.1 Noise-Based Methods. As such, noise-based methods are mainly introduced to protect
location privacy, including geographic DP [116], spatial confusion [3, 25, 110], and k-anonymity
[18, 56, 67, 99, 110], among others.

Differential Privacy. With the increasing mobility of users and the constant threat of malicious
attacks from third parties, there is a growing risk of privacy breaches in mobile edge caching. To
address this issue, Zhang et al. [116] proposed a DP-based method for improving the video QoE for
MUs while protecting their location and preference privacy in mobile edge caching. The proposed
scheme utilizes a privacy-preserving approach for computing the location transfer model and ag-
gregating user preferences, achieving a balance between caching service efficiency and privacy
protection at mobile edge networks. Specifically, the Laplacian perturbation model is employed to
protect users’ location and preferences when submitting their information. Based on the perturbed
information, mobile edge caching nodes can evaluate the popularity of videos in the user’s area,
and Q-learning [73] is employed to achieve cache optimization goals combined with transcoding
technologies.

Spatial Obfuscation. Amini et al. [3] were one of the first to utilize devices’ cache to protect
users’ location information, where location-based content can be periodically prefetched to devices
in large geographic blocks before they are actually consumed. When content has been cached in a
user’s local area, the user can access it directly on their device without needing external network
services. This can effectively reduce privacy exposure risks for the user.

Additionally, privacy protection can be achieved through a distributed collaborative cache that
forms anonymous user groups within the vicinity. Zhang et al. [110] proposed a multi-level caching
strategy to reduce the number of users directly requesting LBS from the local service provider
(LSP). In turn, users can obtain the required services from the local cache, surrounding neighbor
caches, and trusted anonymizers. In this way, the interaction with untrusted LBS is reduced and
privacy exposure is mitigated. When the request is lost, it has to request the LSP by generating
a stealth zone and making a request to the LSP. The anonymizer will select the optimal K-space
anonymity to request content according to the prediction result (considering a user’s future ge-
ographic location, the caching contribution rate of each unit, and the freshness of the content in
the unit). However, the high communication overhead and computational energy consumption of
users collaborating as a group pose problems in protecting privacy. Moreover, the introduction of
centralized anonymizers is vulnerable to attacks, and if breached, all users’ private information
may be compromised. To address these limitations, Gu et al. [25] proposed a method that employs
the trusted ESs to preprocess user requests and blur their location information during the snapshot
query (i.e., one-shot query) of their POI The ESs cache the requested POI for further query, thus
minimizing the number of queries exposed to LBS providers and potential attackers. Additionally,
in continuous queries, fuzzy prediction queries are generated and correlated with the actual query
to enhance the queries’ utility while interfering with attackers.

Anonymity. The utilization of cache in edge devices, such as user devices [18, 56, 99], ESs
[67], and RSUs [30], can keep users’ transparency from LBS providers by reusing the users’ POI
within a specific region. This approach allows users to access the cached POI directly at the edge
network instead of relying on remote LBS service providers. Additional privacy protections (e.g., k-
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anonymity [30, 99, 109], [-diversity [18], anonymity groups [56, 67]) are exploited when resources
have to be obtained from LBS providers. As a result, the likelihood of exposing sensitive location
information to the service provider is reduced.

Zhang et al. [109] devised a CDKA (Caching-based Dual k-Anonymous) mechanism to preserve
location privacy. CDKA uses double anonymity and multi-level caching to reduce communication
overhead while providing location privacy. For this, an ES is used to intervene between the user
and the LBS server, and location privacy is ensured by making mobile clients and ESs anonymous.
The proposed mechanism is assessed for computational efficiency, communication overhead, and
cache hit ratio. Additionally, dealing with vehicles’ high-speed movement characteristics in vehic-
ular networks, Hu et al. [30] designed a privacy protection algorithm combining proactive caching
and the k-anonymity method. When a vehicle user requests a specific PO, it needs to send k — 1
obfuscated requests simultaneously. Besides, the corresponding request content will be obtained
through multiple passing RSUs to protect the user’s location information, including factual geo-
graphic and POL

Moreover, at the edge of the wireless network, Sen et al. [67] proposed a double cache strategy
to deploy a pair of caches for each region. Cache A records previous request results of users in
the region, and cache B caches all user requests and maintains cooperation between users. When
querying private content, a user queries cache A first. If it is not hit, the request will be redi-
rected to cache B for conversion. Finally, the converted request is sent to other users within the
region to request LBS together, and the received results may be maintained in cache A for further
queries.

To further prevent users’ location and personal information from being accessed by untrustwor-
thy EC and malicious users, Nisha et al. [56] proposed a caching scheme called the Group Collabo-
ration Scheme to request POI combining with spatial obfuscation. In this scheme, users who need
to find a POI in a specific area will modify the requested area according to the proposed random
area obfuscation algorithm and then register with the group authenticator to obtain virtual group
identity information and cooperative anonymous user groups. The collaboration is one-time, and
the anonymous group changes as the user moves. Users with request requirements will cooperate
with nearby users to query whether the cache of other users in the anonymous group meets the
request requirements. If the request POI is unavailable in the user group, the required content will
be requested in the name of the anonymous group.

4.3.2 Trusted Distributed Computing. To enhance the QoS, CPs collaborate with ISPs to deploy
edge caching resources as close to the users as possible. ISPs can support the EC by placing vir-
tual servers at the network’s edge and assigning them to CPs. However, CPs only possess the
request records of users, whereas ISPs only have access to their geographic location information.
In the caching process, CPs do not want to disclose all the requested information to the ISPs, and
vice versa. To deal with this challenge, Andreoletti et al. [5] proposed a secure multi-party com-
putation protocol to facilitate cooperation between ISPs and CPs without requiring either party
to disclose sensitive information. The protocol enables ISPs to obtain the number of requests for
specific video content in a given area at a low computational cost. Once the ISP has this infor-
mation, it can deploy virtual servers efficiently, and the CP can use these virtual servers to place
the EC, thereby minimizing the number of hops for content delivery and reducing communication
delays.

Despite the comprehensive introduction of major solutions, our discussion is not exhaustive.
Thus, we provide a supplementary introduction in Table 3 in the appendix, briefly introducing
other solutions to protect user privacy in edge caching systems that have not been discussed in
detail in Section 4.
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Fig.5. A brief timeline of solutions for enhancing content privacy, including private content data and content
popularity.

5 Enhancing Content Privacy in Edge Caching Systems

In this section, we move on to discuss defense methods that can preserve the second type of sensi-
tive information (i.e., content privacy) in edge caching systems. We present a timeline, as depicted
in Figure 5, summarizing the methods employed to safeguard content privacy, encompassing pri-
vate content data and content popularity.

5.1 Privacy of Content Data in the EC

Other than caching content for CPs, ESs are also able to cache private content generated by users.
However, due to the presence of incompletely trusted ESs [59, 94] or malicious and unauthorized
users [93, 94] at the edge network, stored content in the EC may face privacy leakage risks.

DP-based methods are used to upload local data in the network cache while preserving its pri-
vacy. For example, Wang et al. [78] proposed DP-DLCF (Differential Privacy-Preserving Peep
Learning Caching Framework) to deal with the privacy leakage problem of private content in
edge caching networks. The privacy budget is utilized adaptively to strike a tradeoff between the
privacy and accuracy of the prediction. In the proposed technique, users upload their data after
perturbing it with a randomized response technique based on LDP to preserve the privacy of their
local data. Next, the neighboring base station accumulates the uploaded data and transfers it to
the deep model for training. Moreover, the prediction accuracy of the model training is improved
by the bootstrap aggregation algorithm.

Cryptology-based methods can also be leveraged in protecting the private content in the EC. Pu
et al. [59] proposed a secure and privacy-aware content-sharing strategy to protect sharing data
stored and delivered by incompletely trusted ESs. To ensure the secure sharing of content, the
content generator first encrypts the content using the CP-ABE (Ciphertext-Policy Attribute-Based
Encryption) algorithm and calculates its signature based on its private key. Additionally, by
utilizing the public key cached at the nearest ES, the generator performs secondary encryption
of the content to the nearest ES. When the ES receives the encrypted content from the content
generator, it will first decrypt the content with its private key and check the security of the
content. According to the SS scheme, the ES randomly divides the content into n parts and
distributes the content parts to other n — 1 ESs to store the content. The proposed scheme can
effectively ensure the integrity and recovery ability of the content in case any EC node becomes
offline. The SS method was also integrated by Xiong et al. [89] to design an edge-assisted
privacy-preserving data-sharing framework for autonomous vehicles. This approach encrypts
raw data into two ciphertexts, which are processed by two ESs. Additionally, a privacy-preserving
convolutional neural network (P-CNN) was developed to ensure that the classification results are
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identical to those of the original convolutional neural network model, without any data leakage.
The framework effectively addresses threats such as potential data leakage and unauthorized
access to private content by malicious vehicles or ESs.

Optimization-based methods are introduced to enhance the privacy of content caching in ESs.
To prevent private content from leaking to the unreliable edges and make optimal caching deci-
sions for MUs, Xu et al. [94] used the multi-leader and multi-follower Stackelberg game to model
a multi-link cache scenario at the mobile edge network. In the scenario, edge computing small
base stations (ECSBS) act as leaders and, first, set pricing strategies in a non-cooperative game.
Then, a trust mechanism is proposed to evaluate the reliability of each ECSBS, which consists of
two parts: direct trust degree and indirect trust degree. Based on the caching reliability and pric-
ing offered by ECSBS, MUs can make their optimal caching decisions as followers. Additionally,
Xu et al. [93] proposed a Stackelberg game model to encourage edge cache devices (ECDs) to
provide secure caching services in both static and dynamic scenarios. The model takes into ac-
count the selfish and open nature of ECDs and employs a zero-payment mechanism to penalize
ECDs that provide poor services. The optimal strategies for the CP and ECDs in a static game
are analyzed, proving the existence of a unique equilibrium in the Stackelberg game. Besides,
in dynamic games with incomplete information, the Q-learning algorithm is used to solve the
problem.

5.2 Privacy of Content Popularity in the EC

Content popularity, which can be used as the key knowledge to improve caching efficiency, is
business-critical information for the CPs and edge caching managers (e.g., ISPs). Due to the limited
number of records in the service scope of the EC (e.g., serving a specific geographical location range
or a particular network level), edge caching suppliers may require CPs and other edge caching
entities to provide the critical content popularity information so that they can judiciously make
caching decisions so as to shrink bandwidth consumption of the core network.

Andreoletti et al. [4] improved the solution proposed in the work of Yuan et al. [104] by allowing
CPs to encrypt content and associate them with pseudonyms to prevent privacy leakage to edge
caching managers. ISPs only count the occurrences of these pseudonyms to infer content popular-
ity without examining the original content. The authors introduced the mathematical definition
of privacy and studied the tradeoff relationship among privacy and hit rate, retrieval latency, and
traffic load metrics. Additionally, Andreoletti et al. [6] proposed a protocol for spatial partitioning
of ISP caches based on the popularity of different CPs’ content, which aims to improve the QoS
of edge caching services while protecting CPs’ privacy of popularity information. The protocol
employs the Shamir SS scheme for CPs to share the popularity information between the ISP and
the regulator authority, which guarantees a fair subdivision of the cache storage and the preserva-
tion of privacy. The ISP can calculate the caching space requirement for each CP using the secret
information, thus protecting CPs’ privacy.

Similarly, Araldo et al. [7] proposed a caching space partitioning method that protects the pop-
ularity information of CPs while ensuring the efficiency of edge caching. The method divides the
ISP’s caching space into multiple slices and assigns each slice to different CPs using the stochastic
dynamic cache partitioning algorithm. The algorithm takes an initial slice allocation as input and
iteratively optimizes the slice allocation scheme by testing the cache miss rate of the allocation
scheme in each round. However, unlike the partitioning method proposed by Andreoletti et al.
[6], this method does not depend on the private information of CPs’ popularity. Additionally, this
architecture also supports a transparent cache of encrypted content deployed at the edge of the
ISP network.
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Fig. 6. A brief timeline of solutions for enhancing knowledge privacy.

6 Enhancing Knowledge Privacy in Edge Caching Systems

In this section, we discuss defense methods that can preserve privacy for the last type of privacy
(i.e., knowledge privacy) in edge caching systems. All edge caching service providers have the
motivation to extract knowledge for improving caching performance, which gives rise to the
tradeoff between caching performance and privacy protection. Due to the high dynamics and
complicated access patterns driven by users’ interest [51, 98], it is essential to come up with
intelligent edge caching algorithms to improve the caching performance. Machine learning based
methods provide a feasible framework to extract user access patterns by exploiting collected
datasets related to users, which may contain sensitive information. For example, video request
access patterns are driven by users’ interest in different locations [20, 47]. Users may keep
dynamic moving [19], and their interests evolve over time [114]. Thus, it is necessary to make
edge caching decisions based on features which can be extracted from localized and private user
information by machine learning methods.

FL as a distributed machine learning framework is the most popular method to preserve knowl-
edge privacy. FL trains a learning-based algorithm across multiple decentralized devices or ESs
holding local data samples without exposing them. Additionally, we provide a comprehensive sum-
mary of the FL-based methods employed to safeguard knowledge privacy, presented in a timeline
illustrated in Figure 6. As well, Table 4 in the appendix offers a detailed classification of these
solutions based on the combination of methods used.

6.1 Enhacing Knowledge Privacy with FL Frameworks

The most common approach is to use an FL framework to train prediction models. Unlike tra-
ditional machine learning methods, FL does not collect raw data for model training [100, 102,
103]. This framework encourages models to be trained on local data, and all training works up-
load model parameters or gradients rather than sensitive raw data. Yu et al. [100] were probably
the first to propose a learning-based proactive content caching method following the FL frame-
work. This work proposes a hybrid filtering method based on the autoencoder to calculate the
user-content similarity and predict the content of a user’s interest. Yu et al. [103] also designed an
FL-based proactive caching method for vehicular networks. Considering the high mobility of ve-
hicles and dynamic content popularity in vehicular networks, RSUs integrate the mobility-aware
cache replacement policy to make proactive caching decisions. Following the FL framework, the
preceding three works [100, 102, 103] enable users to train machine learning models (e.g., autoen-
coder model) with their private datasets, locally and distributively, and upload trained models to
the corresponding parameter server for aggregation.
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Reinforcement learning can be realized in the FL framework to solve the complex dynamic con-
trol problem and mitigate the privacy leakage problem in edge caching systems [1, 40, 45, 62, 83,
84, 87] to improve the caching performance and privacy protection simultaneously. Wang et al.
[83] proposed an “In-EDGE AI” system with deep reinforcement learning in FL. It delegates the re-
inforcement learning training task to the device side to protect the private dataset and brings more
intelligence to edge systems. Liu et al. [45] proposed a privacy-preserving distributed deep deter-
ministic policy gradient scheme to make caching decisions for the EC. At the same time, to preserve
user privacy, the model only predicts content popularity by avoiding mining sensitive historical
information. The model training process is completed by FL to prevent users from leaking pri-
vacy to ESs. Qiao et al. [62] proposed an FL-based proactive content caching scheme to shorten
content retrieval latency and protect users’ private datasets. First, the edge computing architec-
ture reduces energy consumption and transmission overhead. The problems of client selection
and local iteration round selection in the FL process are modeled as an MDP, which is solved by
the deep reinforcement learning algorithm. The solution can alleviate the non-independent and
identically distributed (non-IID) data distribution problem and limited resources for end users.

In vehicular networks, PPEC nodes, such as at RSUs, can also be effectively achieved by combin-
ing FL and DRL frameworks. However, the high mobility of vehicles introduces additional chal-
lenges to edge caching efficiency and privacy security. To tackle these challenges, Wu et al. [86]
designed an asynchronous FL model to evaluate regional content popularity, taking into account
vehicle movement speed, RSU coverage, and network channel conditions. They modified the se-
lection of training vehicles and the aggregation function’s weight, assigning different weights to
vehicles with varying dwell times and channel conditions. They proposed a joint content place-
ment strategy based on dueling DRL to overcome the caching efficiency degradation caused by
high vehicle mobility. This strategy further reduces content transmission delay while ensuring
user data privacy and RSU joint caching efficiency in edge vehicle computing scenarios. Li et al.
[39] tackled the privacy and long-term training delay issues in high-precision map caching in in-
telligent connected vehicles by formulating a framework called F-DRL (Federated Deep Reinforce-
ment Learning). F-DRL is an MDP-based edge cooperative caching technique in which Dueling-
DON (Dueling-Deep-Q-Network) is employed to optimize the adaptive edge caching scheme with
an improved FL approach to preserve the privacy of the intelligent connected vehicle. For FL, re-
source provision and member vehicle selection are made using joint optimization to minimize the
delays in training and load in the EC.

6.2 Combining FL with Other Methods

Other than requiring sensitive data to train machine learning models, the edge caching system may
also need private information to make edge caching decisions. Therefore, some works [13, 60, 79,
120] have introduced additional privacy protection methods into the FL framework to enhance
data privacy during the model training process. Zheng et al. [120] proposed a privacy-preserving
FL model to predict popularity in an unsupervised manner. The prediction method introduces two
concepts: local and global popularity, considering both efficiency and privacy. Local popularity can
be evaluated by historical information by the LSTM model on users. In contrast, global popularity
can only be predicted by the information at the current moment, which will be erased immedi-
ately at the next moment. FL is applied to perform offline training and online popularity evaluation
with distributed information to avoid exposing privacy. Wang and Deng [79] proposed a private
FL-based caching scheme, which utilizes an FL framework and a pseudo rating matrix to collect
statistical characteristics of user groups. With this distorted information, the server can predict
the popularity of content and make caching decisions. The scheme also protects the privacy of
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individual users from being accessed by servers and other users. Saputra et al. [64] introduced
the HE method into the FL framework to protect the privacy of MUs with constrained computing
resources. The scheme allows MUs to upload encrypted training data to ESs, which can perform
additional training processes. The portions of the encrypted decision problem are modeled as a
multi-objective profit maximization problem considering both privacy and training costs. The op-
timization problem is proved to be a concave function that can be solved by the interior point
method. At the same time, the training data cached at the EN or the cloud node is HE based on the
Brakerski/Fan-Vercauteren, or BFV, method.

6.3 Combining Noise-Based FL with Other Methods

More parameters or gradients (representing knowledge extracted from user-related data) can ex-
pose user privacy because attackers can probably infer and restore user information from exposed
model information. In addition, model parameters may have a huge economic value, and directly
uploading model parameters will compromise the self-interest of model owners. Therefore, there
are works dedicated to upgrading the FL framework by adding noises [31, 46, 52, 101] or other
interference [11, 16, 80] to model information prior to exposure.

The FL framework has further employed DP-based noise to safeguard the parameters or gradi-
ents in previous works. Lu et al. [46] designed a differentially private asynchronous FL scheme to
share resources in vehicular networks. The proposed scheme uses LDP to perturb the local model
parameters with noise drawn from the Gaussian distribution. Moreover, a distributed random up-
date method is used to preserve the privacy of the global ML model during the update process.
Yu et al. [101] proposed an FL framework based on privacy protection so that the user dataset is
always kept locally. Further, the LDP mechanism is added while exchanging model parameters for
aggregation to protect user privacy. In addition, this work proposes a hierarchical joint caching
mechanism to combine the characteristics of local caching and global caching. A weighted aggre-
gation method is used to solve the data imbalance problem. Jiang et al. [31] developed a privacy-
preserving FL framework for industrial data processing. This framework works by compressing
adaptive gradients in the first place during model training at the edge terminal. Afterward, hybrid
DP is applied to optimize the FL framework, and the privacy-preserved gradients are transferred
in the industrial environment.

Furthermore, some efforts try to enhance privacy protection in edge caching systems by in-
tegrating the Generative Adversarial Network technique with FL. Wang et al. [80] combined FL
and WGAN (Wasserstein Generative Adversarial Network) to improve further the efficiency of
model training and accuracy of the popularity prediction model. With the fake data generated
by WGAN, the privacy of users’ real preferences can be enhanced. Besides, gradient clipping
and model parameter restriction are applied at the training time to protect model privacy and
security.

Privacy preservation in vehicular edge computing is demanded since new attack types are devel-
oped continuously. To cope with the situation, Chen et al. [11] proposed a novel edge computing
approach that utilizes unmanned aerial vehicle swarms as edge computing nodes to aggregate
model parameters and caches the model parameters, thereby reducing the communication cost of
the core network and protecting users’ dataset. To enhance the security and privacy protection
of cached model parameters, the authors designed a comprehensive protocol for model aggrega-
tion, storage, and transmission, which can effectively prevent potential security threats, such as
poisoning attacks, man-in-the-middle attacks, and eavesdropping attacks. Meanwhile, to defend
against pollution attacks, the cosine similarity between local parameters and its edge aggregation
parameters is calculated to exclude parameters uploaded by malicious nodes. Then, parameters are
re-aggregated, and the aggregated parameters are sent to the cloud servers for the final process. A
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Fig. 7. An outline for challenges and open issues section.

Schnorr signature is also added before uploading the aggregated model parameters to ensure the
reliability of the parameters.

In the IoT realm, edge computing architectures can expedite data processing, whereas edge
caching can accelerate file delivery speeds for IoT devices. To ensure the reliability and privacy of
data in IoT networks, Cui et al. [16] proposed a blockchain system comprising four contracts to pre-
dict content popularity, cache, and deliver sensitive content. Meanwhile, to improve the security
and throughput of the system, the Proof of Stake (PoS) consensus mechanism based on reputation
is modified and applied to reach consensus more efficiently. Besides, the FL algorithm based on
compressed gradients is used to protect the privacy information of ESs and reduce communication
overhead. The K-means algorithm filters important gradients that must be uploaded accurately.
These gradients are then quantified using a clustering-based quantization algorithm to reduce the
amount of data uploaded. Meanwhile, an averaged gradient value is uploaded to the server for
other gradients with a small value. Blockchain technique is also used to verify uploaded data. Re-
cently, the Internet of Medical Things has become popular. However, it is also prone to privacy
threats like other edge computing based approaches. To tackle these challenges for Internet of Med-
ical Things based big data analytics, Nair et al. [52] proposed an edge computing based FL scheme
called Fed_select, which ensures privacy and provides load reduction at the central FL server by
introducing an ES. To ensure privacy, Fed_select performs user anonymity at the ES by employing
hybrid encryption techniques with client and attribute selection performed at the ES. Moreover,
DP with Laplace noise is applied to the shared gradients to make them private during transfer.

Due to limited space, we briefly present an overview of additional solutions for safeguarding
knowledge privacy in edge caching systems in Table 5 in the appendix, which covers methods not
fully discussed in Section 6.

7 Open Challenges and Future Research Directions

In this section, we discuss open challenges and future research directions worth exploring in PPEC.
As shown in Figure 7, we elaborate on the challenges and open issues from three major perspec-
tives in PPEC: collaboration, efficiency, and efficacy.

7.1 Tradeoff between Collaboration and Privacy in PPEC

Due to the large scale of network applications, it is common to deploy multiple ESs for collabora-
tively caching content. To enable collaborations between ESs, critical information such as cached
content or other private information will be exchanged between ESs, which can expose user pri-
vacy and raise privacy concerns. We outline two open privacy concerns when multiple ESs share
sensitive information.

7.1.1  Content-Right Confirmation. Digital content can be easily copied and distributed, which
is a double-edged sword making content-right confirmation difficult. For instance, when social
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media content cached on a particular ES is accessed by other ESs, the ES completely loses con-
trol of cached social media content because other ESs can easily copy and redistribute this social
media content [7, 17, 104]. Content-right confirmation is essential for content owners to maintain
availability and accountability when using edge caching services to preserve content privacy. On
the one hand, with content-right confirmation, it is easy to determine content ownership. Privacy
strategies can be implemented to ensure that only authorized parties can access the content cached
in an ES. On the other hand, content-right confirmation is the basis of content accountability. With
content-right confirmation, the content right can be authenticated when the content is used once,
with the right changed accordingly.

Challenges. However, realizing content-right confirmation in edge caching systems is non-
trivial due to several challenges. First, the distributed nature of edge caching systems makes it
difficult to maintain a centralized and trusted authority for content ownership verification. Sec-
ond, edge devices’ dynamic and heterogeneous nature introduces complexity in implementing
content-right confirmation mechanisms, which must be scalable and adaptable to different devices.
Furthermore, the use of encryption and privacy-enhancing technologies in edge caching systems
further complicates content-right confirmation. Although these technologies are essential for pro-
tecting the privacy of cached content, they may also prevent content owners from verifying the
use of their content in the cache.

Future Directions. The challenges of realizing content-right confirmation in edge caching sys-
tems call for future work in several directions. First, new verification mechanisms are needed that
can handle the distributed nature, dynamics, and heterogeneity of edge devices. To overcome these
challenges, several approaches have been proposed in the literature, such as blockchain-based so-
lutions [38, 77]. However, these mechanisms are short in scalability and the ability to adapt to
different edge devices. Second, privacy-preserving verification methods that can coexist with en-
cryption and other privacy-enhancing techniques should be explored. One possible solution is to
leverage secure multi-party computation [5] to enable verification while preserving the privacy
of cached content. Finally, standardization efforts are needed to ensure interoperability between
different edge caching systems and CPs. For example, the trust management mechanisms [94, 121]
are proposed to enable content-right confirmation in ISP and D2D edge caching. Thus, promoting
the adoption of content-right confirmation mechanisms and facilitating the collaboration between
different stakeholders in different edge caching scenarios need to be further discussed.

7.1.2 Coalition Mechanism Design. Collaborative edge caching is essential for enhancing
QoS. However, many ECs are deployed on leased nodes provided by profit-oriented third-party
providers, which are often decentralized [17], unreliable [37], or self-interested [17]. For instance,
edge caching routers can be unreliable [17, 37] in a CDN, whereas RSUs and vehicles can be semi-
trust [30, 32, 61, 113] or self-interested [14, 19, 34] in the edge IoV caching network. Similarly,
in social media networks, ESs can be self-interested [93, 94]. To enable privacy-preserving ap-
plications and technology cooperation among edge caching systems, coalition mechanisms are
required. These mechanisms involve designing an incentive and allocation model that encourages
participants in edge caching systems to join the coalition and maximize their benefits through a
reasonable selection. Additionally, punishment mechanisms should be considered when there are
untrustworthy or dishonest nodes in the system. Hence, incentive and allocation mechanisms can
be designed in a thoughtful manner to foster participation and cooperation among edge caching
systems.

Challenges. However, designing coalition mechanisms for PPEC is complicated because it is
necessary to balance several conflicting objectives. On the one hand, the mechanisms should en-
courage participants to contribute their resources to the coalition, ensuring that the costs and
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benefits of participants are distributed fairly [5]. On the other hand, they must incentivize par-
ticipants to prioritize the interests of the coalition over their individual interests and punish il-
legal strategies [93], which is challenging when participants are profit oriented with conflicting
goals [94].

Future Directions. Game theory is a powerful mathematical framework for investigating
decision-making processes, as well as interactions among rational individuals or entities in coali-
tion mechanisms. Its applications can optimize edge caching, capturing interactions among CPs,
network operators, and end users. Various game-theoretic models, such as the non-cooperative
game [71], Stackelberg game [10, 93, 94], coalition games, and potential games [10], can analyze
the interaction among participants in edge caching systems. For instance, in a Stackelberg game,
one player acts as the leader while the others follow. In the context of edge caching, the CP can be
modeled as the leader while network caching operators are the followers [93]. Similarly, the EC
can act as the leader, followed by end users [94]. Nevertheless, game theory based approaches with
complete information [93, 94] can not be directly applied in privacy-preserving scenarios since the
information is likely incomplete to players in edge caching systems. Besides, it is impractical to
assume that every player is benign at an open-access edge network. There may exist semi-honest
and even malicious players. Therefore, it is necessary to conduct further investigations into the
coalition mechanisms when analyzing the complex interactions between different kinds of players
in collaborative PPEC.

7.2 Limited Capacity for Running Privacy-Enhancing Caching Algorithms

Challenges. Edge devices are becoming increasingly crucial in edge caching networks. However,
these devices are typically limited in processing power, memory, caching space, and energy capac-
ity, which present challenges for running privacy-enhancing algorithms. First, limited computing
power and memory pose a significant challenge on implementing complex privacy-preserving al-
gorithms on edge devices [54]. To address this challenge, the development of lightweight privacy-
preserving algorithms is desired to protect user privacy without compromising caching perfor-
mance. Lightweight HE [14], identity authentication [75, 95, 96, 113], and DP [2, 71] are prospec-
tive approaches that can reconcile privacy protection and computational efficiency. Additionally,
it is vital to ensure that the developed algorithms are robust and productive, meeting the needs of
edge devices. Second, with regard to energy constraints, edge devices such as autonomous vehi-
cles and smartphones are often battery powered [48], which can limit the ability of caching [64]
and communication [16], and hence lower the performance of privacy-preserving algorithms [62,
64]. To address this challenge, energy-efficient caching management techniques should be devel-
oped to minimize the energy consumption of PPEC approaches. Techniques such as data com-
pression [16] and optimization models [62] can be adopted to reduce the consumption of caching
and communication to minimize energy usage. For instance, an energy-aware client selection and
communication method for FL was proposed in the work of Qiao et al. [62] that reduced energy
consumption by up to 50% compared to traditional FL methods when protecting the privacy of
data sources. Third, cache space is another significant constraint for edge caching systems due to
the limited storage capacity compared to the vast amount of content that can be cached. However,
research has shown that only a small fraction of content is popular, whereas the majority of users
concentrate their access on popular content, implying a long tail distribution of content popularity
[47, 81]. Therefore, it is crucial to determine which content should be cached based on popular-
ity and user preferences while considering privacy concerns. PPEC approaches need to tradeoff
between privacy protection and caching performance.

Future Directions. Implementing privacy-preserving algorithms can complicate the system,
which adversely impacts caching performance [42]. Conversely, simplifying the system may
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increase the risk of privacy breaches. Challenges associated with PPEC include balancing the
complexity of protection algorithms with caching performance [95, 96, 124] or limited resources
[16, 71, 75], and ensuring user privacy while enabling efficient content distribution [14, 104]. To
sum up, an in-depth understanding of the limitations of edge devices and designing practical and
feasible solutions are vital in enhancing PPEC.

7.3 Tradeoff between Efficacy and Privacy in PPEC

7.3.1  Privacy-Enhancing Intelligent EC. Machine learning based methods have become a pow-
erful tool for optimizing edge caching performance and developing intelligent caching algorithms
[45, 62]. However, there has been some controversy regarding privacy violations in edge caching.
Privacy concerns arise when edge caching providers analyze and manage content in their cache
since the storage spaces of the EC are limited, and the content scale is growing rapidly [81]. To pro-
vide intelligent edge caching, providers may be curious about the content stored in their cache (e.g.,
popular content [7, 14, 17]) and the confidential information about consumers (e.g., request record
[55, 85, 104], identifiable information [53, 95, 96, 113]). Providers may use monitoring and infer-
ence attacks to compromise consumers’ privacy to improve caching efficiency and gain economic
benefits. Additionally, the rise of generative Al applications can further complicate this landscape.
Generative Al can be leveraged to design more sophisticated caching algorithms that model user
behavior and more accurately anticipate content popularity [74]. Furthermore, by caching pre-
trained foundation models at the edge network [92], various multimedia enhancement techniques,
such as super-resolution, can be deployed to effectively improve user QoE and reduce transport
delays. However, these improvements may also come with increased privacy risks, as these mod-
els might require more granular user data for fine-tuning at ESs, potentially exposing sensitive
information. Therefore, developing effective privacy-preserving mechanisms in intelligent edge
caching algorithms is crucial to address these problems.

Challenges. However, the open-edge network provides an ideal entrance or interface for at-
tackers to obtain private data or knowledge from machine learning methods designed for edge
caching systems. Therefore, reconciling privacy and efficiency in intelligent caching methods at
the open-edge network is challenging for several reasons. First, the diversity of user requirements
and content in machine learning based edge networks can be more significant than traditional
caching systems [122], which makes it difficult to apply traditional privacy-enhancing mecha-
nisms directly. Second, the edge network is usually open, and multi-access [94], implying that
it is difficult to control the access of the cache so as to preserve privacy. Finally, the semi-trust
or unreliable third-party caching service providers exacerbate the challenge to the design of pro-
tection method [7, 45, 62, 95, 96]. For instance, the introduction of generative Al models could
intensify these challenges, as these models may require ongoing access to real-time data for train-
ing content-specific generative models [92], thereby creating new vectors for privacy breaches.
Therefore, designing intelligent caching methods that can well balance privacy and efficiency is
challenging.

Future Directions. The FL framework is one of the essential methods to preserve private
data in the machine learning process [83, 84]. Based on the FL framework, different parties may
distributedly predict the critical information, such as content population [45, 62, 120] or user
location migratory pattern [86], for intelligent caching decisions at the edge network. However,
some parties may be dishonest and malicious. In particular, malicious users in FL may bring
poisoned data to affect the overall computing of the global model. For example, dishonest parties
may back-infer their partners’ model by collecting their gradients to infer private information
[16, 101]. These attacks can lead to the disclosure of critical privacy information or destroy
caching performance. Additionally, some adversaries even deliberately provide incorrect model
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parameters during lateral FL to disrupt the overall computation and impact model performance
[80]. The security of private computing in the FL framework is also a challenging open topic
for edge caching. Furthermore, generative AI could introduce new methods for obfuscating
or anonymizing data before it is cached [80], thereby adding an additional layer of privacy
protection. Similarly, with FL or other distributed learning frameworks, a lightweight generative
model can be fine-tuned or trained with local data, stored, and run on edge devices, providing
personalized and customized AIGC services in real time while maintaining user privacy [91].

7.3.2  Reconcile Efficacy and Privacy in Advanced Edge Networks. Traditional edge caching algo-
rithms often rely on pre-determined and suboptimal caching policies, which may not be effective
in dynamic network environments where conditions [107] and user behavior [47] can change
rapidly over time. In modern network systems, resource access patterns are highly dynamic and
complex [114, 119]. Additionally, factors such as user interests, geographical locations, and IoT
device connectivity in edge scenarios are also highly dynamic, making one-time trained models
less adaptable to these evolving conditions [12]. Some existing works propose high-cost training of
machine learning models, which may not be feasible for resource-constrained edge or terminal de-
vices [15]. Furthermore, advanced network infrastructures, such as NDNs and ICNs, are becoming
more prevalent in edge networks, introducing new challenges for privacy preservation.

Challenges. Several open challenges exist in designing privacy-preserving algorithms for ad-
vanced network systems. One challenge is to balance the privacy protection strength and the ac-
curacy of the model prediction. The decision-making process in online scenarios is already highly
challenging, and the introduction of privacy protection methods, such as noise perturbation, can
further compromise the algorithm’s performance or even make it unusable. Another challenge is
to develop privacy-preserving algorithms that are computationally efficient and can be easily de-
ployed in dynamic network environments. Moreover, advanced network architectures inherently
focus on data rather than specific endpoints, leading to new vulnerabilities. For instance, in the
NDN and ICN, content is named and cached throughout the network, which could increase pri-
vacy risks if sensitive data is cached without proper safeguards [17, 71, 95]. The ability to cache
and retrieve data based on content names rather than IP addresses can expose more granular user
preferences and access patterns, making it easier for adversaries to infer sensitive information. Ad-
ditionally, these architectures may complicate the implementation of privacy-preserving caching
strategies, as they require more sophisticated mechanisms to control data access and ensure data
integrity across distributed caches.

Future Directions. Online learning algorithms, such as reinforcement learning [87] and con-
tinuous learning, has become increasingly popular for solving complex problems in various fields,
including edge caching in dynamic network environments [12, 15, 35, 107]. However, online learn-
ing algorithms can also pose a risk to user privacy when collecting and processing sensitive user
data. Therefore, how to safely use the latest historical information to make efficient online caching
decisions is a problem worthy of discussion. There are little efforts to address the privacy concerns
associated with online learning algorithms. The FL may be a possible framework to allow multi-
ple parties to process data jointly without revealing their raw datasets in dynamic scenarios [35].
Additionally, DP techniques can be used to add random noises to the data in advanced caching
systems to obscure individual information [123].

7.3.3  Privacy Quantification for PPEC. Privacy quantification is a critical aspect of PPEC sys-
tems, as it allows for the measurement and assessment of privacy protection levels provided by
these systems [2, 71, 85, 97]. However, most current work on privacy-enhanced intelligent edge
caching lacks specific privacy metrics. Rather than developing clear and effective privacy metrics,
researchers often combine existing privacy protection schemes and claim that their works can
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protect privacy. Unfortunately, without clear quantification of the privacy protection effect, it fails
to identify weaknesses for improving privacy protection [2, 97].

Challenges. One of the primary challenges in privacy quantification is developing an accurate
and consistent metric for measuring privacy protection levels. It is a complicated task to propose
a universal method to measure different types of data leakage in the EC. Therefore, an appropri-
ate privacy quantification method with a formalized definition should be established to guide the
design of PPEC systems. For instance, in intelligent caching algorithms based on reinforcement
learning models, a good privacy exposure quantitative index can guide the model’s reward design
and help the agent make better caching decisions [93]. Various privacy metrics have been pro-
posed in the literature, such as the information-theoretic converse bound [97] and the size of the
anonymity set [85]. However, each metric has its limitations and may not be suitable for general
PPEC systems. Evaluating the privacy protection degree in dynamic network environments is an-
other challenge in PPEC. Edge caching systems operate in a constantly changing environment,
and various factors can impact privacy protection levels, which makes it challenging to determine
an accurate and consistent privacy metric that can be applied in a dynamic environment.

Future Directions. To address these challenges, researchers can explore the use of online algo-
rithms [41, 58] to predict privacy protection levels in real time based on network traffic patterns and
user behavior. This approach can help to dynamically adjust privacy protection levels in response
to changes in the network environment and improve the effectiveness of PPEC. Future work for
designing privacy metrics (similar to the privacy budget in DP [2, 71] and mutual information in
information theory [71]) is desired. An innovative definition of privacy measurement applicable in
intelligent edge caching scenarios [116] should be designed to guide PPEC. Finally, exploring the
integration of blockchain technology in PPEC could offer new avenues for ensuring data integrity
and transparency [16, 61]. Blockchain can be used to create an immutable record of data access
and modifications, thus providing a reliable audit trail that enhances trust and accountability in
edge caching systems.

8 Conclusion

Edge caching has shown significant potential for improving network performance and resource
utilization, but privacy concerns must be considered when deploying ECs. This article analyzed
and summarized the most prominent privacy issues in edge caching systems from a sensitive infor-
mation perspective, based on which a comprehensive classification has been proposed. The recent
countermeasures for alleviating the exposed threats of different private information were retro-
spectively reviewed. The article concluded with lessons learned and highlights open challenges
for future research in PPEC. Further investigations are needed to ensure the privacy and perfor-
mance of edge caching while also reconciling the tradeoff between privacy protection and caching
performance optimization.
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