
SELF-SERV: A Platform for Rapid Composition of Web

Services in a Peer-to-Peer Environment

Quan Z. Sheng1 Boualem Benatallah1 Marlon Dumas2 Eileen Oi-Yan Mak1

1 School of Computer Science & Engineering 2 Centre for Information Technology Innovation
The University of New South Wales Queensland University of Technology

Sydney NSW 2052, Australia GPO Box 2434, Brisbane QLD 4001, Australia
{qsheng, boualem, eileenm}@cse.unsw.edu.au m.dumas@qut.edu.au

1 Introduction

The automation of Web services interoperation is gain-
ing a considerable momentum as a paradigm for ef-
fective Business-to-Business collaboration [2]. Estab-
lished enterprises are continuously discovering new op-
portunities to form alliances with other enterprises, by
offering value-added integrated services.

However, the technology to compose Web services
in appropriate time-frames has not kept pace with the
rapid growth and volatility of available opportunities.
Indeed, the development of integrated Web services is
often ad-hoc and requires a considerable effort of low-
level programming. This approach is inadequate given
the size and the volatility of the Web. Furthermore,
the number of services to be integrated may be large,
so that approaches where the development of an in-
tegrated service requires the understanding of each of
the underlying services are inappropriate. In addition,
Web services may need to be composed as part of a
short term partnership, and disbanded when the part-
nership is no longer profitable. Hence, the integration
of a large number of Web services requires scalable
and flexible techniques, such as those based on declar-
ative languages. Also, the execution of an integrated
service in existing approaches is usually centralised,
whereas the underlying services are distributed and
autonomous. This calls for the investigation of dis-
tributed execution paradigms (e.g., peer-to-peer mod-
els), that do not suffer of the scalability and availability
problems of centralised coordination [3].

Motivated by these concerns, we have developed the
SELF-SERV platform for rapid composition of Web

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 28th VLDB Conference,

Hong Kong, China, 2002

services [1]. In SELF-SERV, Web services are declara-
tively composed, and the resulting composite services
are executed in a peer-to-peer and dynamic environ-
ment. In the following sections we overview the design
and implementation of the SELF-SERV system, and
sketch the proposed demo.

2 SELF-SERV Overview

SELF-SERV distinguishes three types of services: ele-
mentary services, composite services, and service com-
munities. An elementary service is an individual Web-
accessible application (e.g., a Java program) that does
not explicitly rely on another Web service.

A composite service aggregates multiple Web ser-
vices which are referred to as its components. SELF-
SERV relies on a declarative language for composing
services based on statecharts: a widely used formal-
ism in the area of reactive systems that is emerging as
a standard for process modeling following its integra-
tion into the Unified Modeling Language (UML). An
operation of a composite service can be seen as hav-
ing input parameters, output parameters, consumed
and produced events, and a statechart glueing these
elements together.

SELF-SERV exploits the concept of service commu-
nity in order to address the issue of composing a poten-
tially large number of dynamic Web services. Service
communities are essentially containers of alternative
services. They provide descriptions of desired services
(e.g., providing flight booking interfaces) without re-
ferring to any actual provider (e.g., UA flight-booking
Web service). At runtime, when a community receives
a request for executing an operation, it delegates it to
one of its current members. The choice of the dele-
gatee is based on the parameters of the request, the
characteristics of the members, the history of past ex-
ecutions and the status of ongoing executions.

The execution of a composite service in SELF-
SERV is coordinated by several peer software compo-
nents called coordinators. Coordinators are attached



to each state of a composite service. They are in
charge of initiating, controlling, monitoring the as-
sociated state, and collaborating with their peers to
manage the service execution. The knowledge required
at runtime by each of the coordinators involved in a
composite service (e.g., location, peers, and control
flow routing policies) is statically extracted from the
service’s statechart and represented in a simple tabu-
lar form called routing tables. Routing tables contains
preconditions and postprocessings. Preconditions are
used to determine when a service should be executed.
Postprocessings are used to determine what should be
done after service execution. In this way, the coordina-
tors do not need to implement any complex scheduling
algorithm.

3 Implementation

The SELF-SERV architecture (Figure 1) features a
service manager and a pool of services. All of them
have been implemented in Java. Services communi-
cate through XML documents. These documents are
exchanged through Java sockets. Oracle’s XML Parser
2.0 is used for parsing XML documents.

SELF-SERV Service Manager

is registered
with

service discovery

Pool of
Services

Elementary
services

Communities

UDDI Registry

Composite
services

is composed of

Service  Editor

Service Deployer

                                                                            Internet

Coordinator.1 Coordinator.2 Coordinator.n

Wrapper

Legend

workflow database applications web-accessible programs

Service Discovery Engine

C1 C2 C3

CS1 CS2

ES1 ES2 ES3 ES4

service advertisement

routing tables

Figure 1: Architecture of SELF-SERV.

The service manager consists of three modules,
namely the service discovery engine, the service editor,
and the service deployer. The service discovery engine
facilitates the advertisement and location of services.
It is implemented using the Universal Description, Dis-
covery and Integration (UDDI), the Web Service De-
scription Language (WSDL), and the Simple Object
Access Protocol (SOAP). Service registration, discov-
ery and invocation are implemented as SOAP calls.
When a service registers with a discovery engine, a
UDDI/SOAP request containing the service descrip-
tion in WSDL is sent to the UDDI registry. After a
service is registered in the UDDI registry, it can be

located by sending a UDDI/SOAP request (e.g., busi-
ness name, service type, etc.) to the UDDI registry.
In the implementation, we make extensive use of the
IBM Web Services Toolkit 2.4 (WSTK2.4) [4], which
is a showcase package for Web services emerging tech-
nologies. Details about the implementation of the dis-
covery engine are presented in [5].

The administrator of the registered service has to
download and install a pre-existing class, namely Co-
ordinator, implementing the concept of coordinator.
The administrator is also required to build a wrap-
per for the service by downloading and configuring a
class Wrapper provided by the SELF-SERV platform.
The only infrastructure required to install and con-
figure these classes are standard Java libraries and a
JAXP-compliant XML parser. By default, the XML
documents containing the routing tables are stored in
plain files, so that there is no need to have a DBMS
in the site where the installation is performed. Still,
the platform can be configured to rely on a DBMS if
required.

The service editor provides facilities for defining
new services and editing existing ones. A service is
edited through a visual interface, and translated into
an XML document for subsequent analysis and pro-
cessing by the service deployer. The service deployer
is responsible for generating the routing tables of ev-
ery state of a composite service statechart, using the
algorithms presented in [1]. The input of the programs
implementing these algorithms are statecharts repre-
sented as XML documents, while the outputs are rout-
ing tables formatted in XML as well. Once the tables
are generated, the service deployer assists the service
composer in the process of uploading these tables into
the hosts of the corresponding component services. It
also assists the composer in the deployment of the
wrapper of the composite service.

4 Demo Scenario

A travel scenario has been developed using the SELF-
SERV platform. The scenario involves several Web
services including: domestic flight booking, interna-
tional flight booking, travel insurance, accommodation
booking, attractions search, and car rental. The travel
scenario works as follows: (i) a traveller books a do-
mestic flight or an international flight, as well as an
accommodation, (ii) a search for attractions is per-
formed in parallel with the flight and accommodation
bookings, and (iii) when the search and the bookings
are done, a car rental is performed if the major attrac-
tion is far from the booked accommodation.

The SELF-SERV platform provides an integrated
environment where (i) service providers can register
their Web services, download, and install the classes
Coordinator and Wrapper, (ii) service composers can
edit and deploy composite services, and (iii) end users
can locate Web services and execute their operations.



Car Rental
(CR)

Attractions Search
(AS)

Accommodation
Booking

(AB)

Domestic Flight Booking
(DFB)

International Travel
Arrangements

(ITA)

[domestic(destination)]

[not domestic(destination)]
[near(major_attraction, accommodation)]

[not near
(major_attraction,
accommodation)]

Figure 2: Defining services in SELF-SERV.

We will demonstrate: (i) how to define a composite
service for the travel scenario, (ii) how to deploy and
register the service, and (iii) how to locate and execute
the service using the SELF-SERV platform.

Defining a composite service. The Service Editor
offers a graphical user interface (GUI) (Figure 2) al-
lowing composers to define composite services. Prior
to defining a composite service, the service composer
has to search the UDDI registry and find the Web ser-
vices that will be used as the component services. This
is done through the Service Discovery Engine.

A composite service is defined by drawing a stat-
echart diagram (top panel of Figure 2). The infor-
mation associated with each state or transition (e.g.,
state ID, state name, input/output parameters of the
Web service associated with the state, ECA rule of
transition) can be defined in the bottom left panel of
Figure 2. After the definition is completed, the service
is translated into an XML document (bottom right
panel of Figure 2). The composite service of the travel
scenario is defined as shown in Figure 2. The com-
ponent services referenced in the composite service
are assumed to have been previously registered with
the Discovery Engine. During this registration pro-
cess, the Coordinator and Wrapper classes have been
downloaded via the Service Deployer, and installed in
the hosts of the component services. Among the com-
ponent services, Accommodation Booking is a service

community, while others are elementary services.

Deploying and registering a composite service.

Once a composite service has been defined, the Service
Deployer assists the composer during the deployment
process. This process takes as input the XML descrip-
tion of the composite service and involves two steps:
(i) generating the control-flow routing tables of each
state of the composite service statechart, and (ii) up-
loading these tables into the hosts of the component
services.

The composite service also needs to be registered
with the Service Discovery Engine so that it can be lo-
cated and executed. A service can be published with
the UDDI registry using the Publish panel offered by
the Service Discovery Engine. Before a service can
be published, its WSDL descriptions should be cre-
ated and deployed. This essentially means placing the
WSDL descriptions so that they can be retrieved us-
ing public URLs. The information of the service (e.g.,
service name, locations of WSDL descriptions) and of
the provider of the service (e.g., provider name, con-
tact data) is entered via the Publish panel. When the
Publish button is clicked, the Service Discovery En-
gine publishes the service details in the UDDI registry.

Locating and executing a composite service. An
end user can locate Web services from the UDDI reg-
istry using the Search panel offered by the Service Dis-
covery Engine (left panel of Figure 3). The user can



Figure 3: Locating and executing services.

search Web services by providers, service names or op-
erations (top left of the Search panel). The query
yields a list of service providers displayed in the bot-
tom left part of the Search panel. Each provider is
listed with all its services and each service is listed
with all its operations. The user can browse these lists
and view the detailed information of a given service or
operation (right part of the Search panel).

An end user can also execute a specific operation of
a service by clicking on the Execute button in the bot-
tom right of the Search panel. An execution window
is popped up (bottom left part of the Figure 3), which
enables the end user supplying values of the parame-
ters that are needed to execute the service (e.g., cus-
tomer name, departure date, return date of the travel
scenario). After that, the user can click on the Run but-
ton. An XML document storing the input values is cre-
ated and sent to the service using the binding details
of the WSDL service descriptions. When the wrap-
per of the composite service receives the document, it
sends a message to the coordinator of the state(s) in
the statechart which need(s) to be entered in the first
place. This/these coordinator(s) invoke their underly-
ing service(s) through the wrapper(s). From there on,
the orchestration of the composite service execution
is carried out through peer-to-peer message exchanges
between the coordinators. Eventually, the coordina-
tors of the states which are exited in the last place

send their notification of termination back to the com-
posite service wrapper. At this point, the results of
the execution are displayed in the Execution Result
panel. Details about the peer-to-peer coordination al-
gorithm of SELF-SERV can be found in [1].

References

[1] B. Benatallah, M. Dumas, Q. Sheng, and A. H.H.
Ngu. Declarative Composition and Peer-to-Peer
Provisioning of Dynamic Web Services. In Proc. of
18th Int. Conference on Data Engineering (ICDE),
pages 297–308, San Jose, USA, February 2002.

[2] F. Casati, D. Georgakopoulos, and M. Shan edi-
tors. Special Issue on E-Services. VLDB Journal,
24(1), January 2001.

[3] Q. Chen and M. Hsu. Inter-Enterprise Collabo-
rative Business Process Management. In Proc. of
17th Int. Conference on Data Engineering (ICDE),
pages 253–260, Heidelberg, Germany, April 2001.

[4] IBM WSTK Toolkit. http://alphaworks.ibm.
com/tech/webservicestoolkit.

[5] Q. Sheng, B. Benatallah, R. Stephan, E. Oi-Yan
Mak, and Y. Q. Zhu. Discovering E-Services Using
UDDI in SELF-SERV. In Int. Conference on E-
Business, Beijing, China, May 2002.


