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Many statistical applications in computational linguistics are plagued by sparse data. Exact
statistics can be used to avoid the inaccuracies of methods that rely on large sample approxi-
mations, but point estimators (even using exact statistics) suffer from high variance when used
with extremely small sample sizes. While the performance of any statistical method is limited by
the lack of information in a small sample, confidence set estimators provide a systematic way of
trading recall for precision, e.g., increasing the likelihood that an association actually exists, at
the cost of potentially ignoring many real associations.

1 Introduction

Statistical estimation plays an important role in modern computational linguistics. Be-
cause many linguistic phenomena obey a Zipf’s Law distribution where most types oc-
cur with low frequency, we often face estimation or inference problems with data drawn

from very small samples. These small sample sizes introduce two distinct problems:

1.Estimates from small samples have high variance, i.e., they are likely to be
unreliable. If the experiment were repeated again with new data very different

estimates might well be obtained.

2 Familiar statistical methods based on large sample approximations are likely to be
inaccurate on small samples. Informally, most statistical methods become more
accurate as n — oo, whereas n = 1 is perhaps the most common case in

computational linguistics.
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One standard method of dealing with these two problems is to fix a minimum sample
size (say, 5 occurences) and simply ignore any events that occur less frequently. This
method often works well in practice, but in some applications it is difficult to tell just
how to set this minimum size, and such an approach often results in discarding the bulk
of the data.

The second difficulty can be addressed by using statistical methods that are accu-
rate for small sample sizes. Recently various exact statistics have been developed which
are accurate for all sample sizes. These methods are often computationally intensive,
usually involving either randomization and resampling or explicit enumeration, but in
many applications they are quite feasible. Exact statistics are used in both the examples
discussed below.

Exact statistics do not address high variance of point estimates from small samples.
This difficulty is fundamental: small samples simply do not yield much information.
While this limitation cannot be avoided, sometimes we can minimize its effects by refor-
mulating our problem so it requires less information. Geman, Bienenstock, and Doursat
(1992) explain this in terms of what they call the bias/variance trade-off. The variance of
an estimator reflects the amount of variation in the estimated model from run to run;
all else equal we prefer estimators with lower variance because the estimates they pro-
duce are likely to contain less “noise”. The bias of an estimator is the difference between
the expected value of estimated models and the true model (conceptually, averaged
over many runs); informally, an unbiased estimator is one whose expected output is the
correct model. Geman et. al. point out that bias and variance are inextricably related:
reducing bias in general increases variance. Informally, with training data of fixed size,
a simpler, biased model may perform better than a more complex and potentially more
accurate model because the simpler model can be estimated more accurately from the

available data; i.e., by trading variance for bias, one may obtain better overall perfor-
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mance.

Since the variance of an estimated model is higher when the amount of training
data is smaller, trading variance for bias is often desirable when faced with sparse data.
Sometimes there are obvious ways to simplify a model in order to reduce variance at
the expense of introducing bias; e.g., in a neural network reducing the number of hid-
den units reduces the number of parameters to be estimated (and usually the overall
model variance), but may result in a network that cannot fit the data as well (Geman,
Bienenstock, and Doursat, 1992).

However, it is not always obvious how to trade off variance for bias in a given
type of model, especially when the model involves only a single parameter. This kind
of model is common in computational linguistics—the models of verb-object selection
and word pair association discussed below involve only a single parameter—so Geman
et. al.’s strategy of reducing the number of parameters cannot be applied here.

Instead, this paper shows how confidence set estimators provide a general way of
implementing a kind of bias/variance trade-off which can be applied even to single
parameter models. In contrast to the more well-known point estimators (which select a
particular model given training data), a confidence set estimator identifies a set of possible
models. Confidence set estimators provide a systematic way of trading recall for precision
in the computational linguistic applications involving association detection discussed
below. This trade-off is controlled by the user-specified confidence-level parameter a.
As « is lowered fewer associations are found, but it is more likely that the associations
are real, rather than due to statistical fluctuation. The details of how such confidence
sets are used to trade recall for precision is discussed in section 2.

The rest of this introduction briefly reviews some of the previous work on measures
of association especially relevant to the confidence set approach. I want to make clear

that this paper is not introducing a new measure of association; rather, it introduces a
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method of trading recall for precision which can in principle be used with any measure
of association, and should be relevant to other applications besides estimating associa-
tion.

There is no single standard measure of “degree of association” in the statistical lit-
erature (Press et al., 1992), and many different measures of association have been pro-
posed in computational linguistics. It seems plausible that a measure that works well in
one application may fare poorly in another application, so there may be no single “best”
measure of association.

It is important to distinguish the quantity we want to measure from estimators of
that quantity, which map training data to estimates of that quantity. For example, the
mutual information of a pair of binomial distributions is a function of their “success
probabilities”. If we have samples drawn from these two distributions we can estimate
the distributions” success probability parameters, and from these estimate the mutual
information of the pair of distributions. There are two quite distinct reasons why the

value produced by such an estimator might not be a good measure of association:

1.the estimate of the quantity is not close to the true value of the quantity

(because of small sample fluctuation, etc.), and

2.the (true) quantity itself is simply not a good measure of association, i.e., even
if it could be estimated accurately, the quantity simply is not closely correlated

with our (intuitive) concept of association.

To the extent to which this distinction is made, most of the computational linguistics
work on measures of association addresses (2) (correctly, in my view). This paper, on
the other hand, focusses on (1). In principle the confidence set approach is compatible
with a wide variety of the existing measures of association, and the particular measures

used below were chosen for their simplicity.
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Identifying associations is especially relevant as an application for the confidence
set method because several well-known approaches to identifying associations rely on
confidence sets at least conceptually. These approaches define the degree of association
of a pair of elements (e.g., words) to be the value of a statistic from a standard test of
independence, such as the ¢-test or the Chi-squared test of association in binary (2 x 2)
contingency tables (Church et al., 1991). Such an approach defines association to be re-
lated to how “surprising” the frequency of occurence of the associated pair is compared
to the frequency of its elements, or alternatively, how unlikely it is that the same distri-
bution generates both the observations of the pair and the individual elements: the idea
is that strongly associated pairs will be unlikely to be generated from the same distri-
butions as the elements that make them up. As Dunning (1993) points out, likelihood
ratio tests are often acceptably accurate for relatively small sample sizes and are easy
to calculate. Pedersen (1996) observes that Fisher’s exact test of independence (which is
closely related to the conditional odds ratio estimator discussed below) is accurate for
samples of any size.

Undoubtedly the best choice for a measure of association depends on the intended
application, and there is no reason to suppose that a single measure will be optimal for
all applications. However, for many applications statistics derived from tests of inde-
pendence are probably not the most appropriate measure of association. These statistics
measure how surprising the observations of a pair are given the null hypothesis of no
association. Informally, the same level of surprise can be obtained either by having a
moderate number of samples from very different distributions, or else by having an
enormous number of samples from only slightly different distributions: in both cases
we may be equally confident that the null hypothesis is false. In practice, this means that
the highest scores for these tests are obtained from very frequently occuring words, even

though intuitively these words may not be closely associated. A quick glance through
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Table 2 shows that the likelihood ratio test tends to rank highly extremely frequent pairs.
The corresponding confidence set approach seeks a lower bound on a measure of asso-
ciation (the odds ratio) and it turns out that we can be reasonably confident that a strong
association exists given a much more modest amount of information.

A second, technical, problem with adopting standard tests of independence is that
these tests are two-sided; e.g., a bigram scores highly if it occurs either more or less
frequently than would be expected given the distribution of each word individually.
For example, the bigram the the scores highly on a likelihood ratio test precisely because
it appears much less frequently than the frequency of the word the would lead us to

expect. (This problem could be avoided by using one-sided rather than two-sided tests).

2 Confidence set estimation

This section explains how confidence set estimators can be used to increase the precision
in identifying associations at the expense of reducing recall, or equivalently, introducing
a bias toward no association. This use of confidence set estimators is quite general, and
is applicable to other quantities besides measures of association.

A confidence set estimator maps a training data sample to a set S, of possible pa-
rameter values or models. One method of identifying a confidence set S, is as follows.
A model m is in S, iff m generates the observed sample datum x as well as all other
less likely possible sample data (w.r.t. m) with (cumulative) probability greater than or
equal to .. The confidence level « is a user-specified parameter. In more detail, let = be
the observed sample datum, Pr,,, () be the probability of « with respect to model m, D
be the set of possible sample data (e.g., all possible observations), M be the set of pos-
sible models (e.g., all possible values of model parameters), and « be a user-specified

confidence level. Define D,, . to be the set of possible sample data that are not more
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likely than the observed sample data x under m, i.e.,
Dy, = {2’ € D|Prj,(2") < Prj,(z)}
Then the confidence set S, contains all models m such that Pr,, (D, ») > o, ie.,

Sa = {m € M| Pr,,(2').dz’ > a} :
Dm,m

The quantity v we want to estimate is typically a function of the model or model pa-
rameters m, i.e., v = v(m). Given a confidence set S,,, we use the minimum value that v

takes on S, as our estimator _ of v. That is,

_ = argminv(m).
meSa

An example may make this clearer. Suppose we want to identify pairs (v,n) of verbs
v and nouns n such that n is likely to appear as the head of the direct object of v, e.g.,
v = evade,n = taxes. While many measures of association could plausibly be used, for
simplicity here we use the parameter § = Pr(N=n|V=v), the probability of seeing noun
n as the head of the direct object of verb v, as a measure of association. As explained
above, the confidence set approach is not restricted to using this measure of association;
nevertheless it is surprising how well such a simple quantity performs.

Given a corpus of verb-direct object pairs, the mean 6 = C(v,n)/C(v) is a well-
known point estimator for § = Pr(N=n|V=v), where C(n,v) and C(v) are the number of
times the (v, n) combination and v occured in the corpus respectively. As is well-known,
the mean is unreliable with extremely small sample sizes. For example, it reaches its
maximum possible value, 1, on verb-noun combinations where both the pair and the
verb occur exactly once in the corpus such as convicts congressman, even though convicts
does not strongly select congressman (although some might argue that this small sample
is representative).

Intuitively, we should “discount” the estimates for 6 when the sample size C'(v) is
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small, since in those cases a large value for f could have arisen by small sample fluctu-
ation, and not reflect a large value of 6. A confidence interval estimator provides a sys-
tematic way of performing this discounting. Specifically, we use the Clopper-Pearson
confidence interval estimator which maps the sample data counts C'(v,n) and C(v) to
the lower bound #_ of a confidence interval for the “true” model parameter 6. This
lower bound 6 is used as a “discounted” measure of association. The confidence level a
is a user-specified parameter which determines how sparse data should be discounted;
as o — 0 small samples are increasingly discounted. Calculating 6 is considerably
more complicated than 0; it involves numerical solution of a nonlinear equation (see
the appendix for downloadable software). Table 1 shows the results of such an analysis
applied to counts from the U. Penn Wall Street Journal treebank (Marcus, Santorini, and
Marcinkiewicz, 1993); at oo = 0.1 pairs with small sample sizes are ranked highly, while
the pairs ranked most highly at o = 0.0001 involve considerably higher larger samples.
A large value of §_ indicates that the true model parameter = Pr(N=n|V=v)
is itself likely to be large, but a small value of §_ could be due either to the true §
being small, or a small sample size. Thus by reducing « one effectively trades recall for
precision in identifying association: the pairs identified as associated are more likely to
in fact be associated, but fewer associated pairs with small samples will be detected.
This can also be viewed as an implementation of Geman et. al.’s bias-variance trade-
off in the following sense. The mean 0 = C(v,n)/C(v) is an unbiased estimator of § =
Pr(N=n|V=v) that is optimal in a certain statistical sense; if one must estimate 6 on the
basis of the counts C'(v,n) and C(v) alone in general it is not be possible to find a better

estimator than the mean.! On the other hand, the lower bound & _ of the confidence

1 Note that in the verb-object selection application we do have additional information concerning how
other verbs select for their objects, and it might be reasonable to assume that most verbs have similiar
distributions of selected objects. This information might be incorporated into prior in a Bayesian
approach.
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a=0.1 a = 0.0001
k/n 6 verb object k/n 6 verb object
157/220  0.670947 yield % 157/220  0.590458 yield %
4/4 0.562341 evade taxes 12/23 0.166661 controls %
4/4 0.562341 dilute earnings 13/27  0.160536 sustained damage
3/3 0.464159 bribed officials 13/27 0.160536 indicating coupon

7/10 0.448269 override veto 35/118  0.157075 owns %

8/12 0.440997 yielding % 8/12 0.156923 yielding %
4/5 0.416110 exercises option 7/10 0.143361 override veto
4/5 0.416110 dominates market 12/35 0.100922 carries warrant

12/23 0.370116 controls % 21/86 0.100765 holds %

13/27 0.344807 sustained damage 4/4 0.100000 evade taxes

13/27  0.344807 indicating coupon 4/4 0.100000 dilute earnings
4/6 0.333194 solving problems 8/17 0.099233 veto bill
4/6 0.333194 revoke license 18/70  0.097530 totaled shares
4/6 0.333194 narrows return 22/100  0.092343 earned cents
3/4 0.320461 ruining market 10/28 0.090052 compares profit
2/2 0.316228 underperform stocks 10/29 0.086480 financing order
2/2 0.316228 subpoena papers 9/27 0.074914 post loss
2/2 0.316228 strengthens links 12/46 0.074273 losing money
2/2 0.316228 spraying dispersant 6/12 0.073668 obtaining financing
2/2 0.316228 sever ties 9/28 0.071865 lower rates
2/2 0.316228 reserve right 4/5 0.067813 exercises option
2/2 0.316228 rescinding order 4/5 0.067813 dominates market
2/2 0.316228 pave way 7/18 0.067044 killing people
2/2 0.316228 overhanging market 6/13 0.066672 filling vacancy
2/2 0.316228 outlawing abortion 10/40 0.060257 lowered ratings
2/2 0.316228 inducing immunity 15/84 0.058461 signed agreement
2/2 0.316228 impede trade 13/66  0.058373 own %

2/2 0.316228 grounding airline 43/403  0.057890 reported loss

2/2 0.316228 footing bill 10/43  0.055663  represent transactions
2/2 0.316228 fatten cattle 11/53 0.053717 played role

2/2 0.316228 exonerated trading 12/62 0.053703 return calls

2/2 0.316228 corner market 21/156 0.053621 posted loss

2/2 0.316228 bucking trend 6/16 0.051947 withdrew offer
2/2 0.316228 booking revenue 6/16 0.051947 solve problems
2/2 0.316228 bashing government 4/6 0.051901 solving problems
2/2 0.316228 averting strike 4/6 0.051901 revoke license
2/2 0.316228 abandons efforts 4/6 0.051901 narrows return

8/17 0.297257 veto bill 41/423  0.051589 buy shares

6/12 0.288172 obtaining financing 19/142  0.050299 reached agreement

6/13 0.263730 filling vacancy 23/192  0.049891 filed suit
3/5 0.246636 weighs pounds 9/39 0.049676 pursue interests
3/5 0.246636 seizing assets 3/3 0.046416 bribed officials
3/5 0.246636 equal % 14/95  0.045398 changed hands
3/5 0.246636  computerizing operations 11/62 0.045397 play role
3/5 0.246636 calculating tax 6/18 0.045302 repay debt

35/118  0.241466 owns % 6/18 0.045302 owning %
4/8 0.239662 assessing damage 5/12 0.043940 stabilizing level

12/35 0.235379 carries warrant 6/19 0.042583 plays role

10/28 0.235018 compares profit 11/66 0.042475 reach agreement
7/18 0.231390 killing people 9/46 0.041531 obtain financing

10/29 0.226415 financing order 9/46 0.041531 declared dividend

5/12 0.218681 stabilizing level 10/58 0.040313 involving losses

9/27 0.212218 post loss 12/86 0.037957 holds stake

6/16 0.210413 withdrew offer 17/156  0.037923 included gain

6/16 0.210413 solve problems 8/40 0.037370 lowered rating
4/9 0.210396 project image 5/14 0.036631 export feet
4/9 0.210396 maximize value 6/22 0.036091 raises questions
4/9 0.210396 laying groundwork 4/8 0.035583 assessing damage

9/28 0.204201 lower rates 30/403 0.034782 reported earnings
3/6 0.200909 terminate contract 11/80 0.034666 provides services

Table 1
Verb and direct object pairs sorted by lower bound 6_ of confidence interval estimates of the
binomial parameter 6, at confidence levels a = 0.1 and a = 0.0001.



Mark Johnson Trading Recall for Precision

interval is in general a biased estimator of 6, i.e., its expected value is not §.% By using 6
as a measure of association (rather than 6) the rate of false positives is decreased; in this

sense the confidence interval estimator trades variance for bias as o« — 0.2
3 Confidence interval estimators for binomial distributions

This section describes the Clopper-Pearson method for estimating confidence inter-
vals for binomial distributions. Formally, we observe an event occuring k times in m
Bernoulli trials from a binomial distribution, and we wish to estimate a confidence in-
terval for the unknown success probability 6. For any 6 besides 0 and 1 there is a non-
zero likelihood of observing any number & of events in m trials, so it is not possible
to find a non-trivial hard bound on 6. The best one can hope for is an interval such
that if § lies outside of this interval it is unlikely (but not impossible) for events such
as the one observed to occur. Now the likelihood of observing i events in m trials is
Pr, (i) = ()67 (1 — 0)™ . Given a confidence level o, we seek a lower bound 6_ such

that:
D Pr g (i) = (1=0)/2 M)
Thus, if § < 0 _ then the likelihood of observing k or more events in m trials is less than
or equal to (1 — )/2. Figure 1 depicts the relationship between k, o and 6_.
A lower bound 6 can be calculated exactly as follows. The cumulative binomial
distribution with event probability  is related to the incomplete beta function Iy in the
following way:

i (7) 0'(1—-0)""" = Ig(k,m—k+1)

i=k

2 However, the lower bound 6_ is a consistent estimator of 6, since §_ — 6 as the sample size C'(v) — oo
for0 <a <1
3 The variance of _ may not decrease as o — 0.

10
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v

mO_ k

Figure 1

Calculation of an a-level confidence interval [, 1] for the binomial parameter 6. k is the
number of times the event was actually observed in m trials. The area contained in each of the
shaded area above k is (1 — «) /2.

Thus the required bound is the solution of the following equation:
Iy (k,m—k+1) = (1-a)/2 ()

Equation (2) can be solved numerically using standard techniques. Press et al. (1992)
explain how to efficiently calculate the incomplete beta function. Hollander and Wolfe
(1999) discusses exact and asymptotic approximations for confidence intervals for the

binomial parameter 6.

4 Confidence intervals for the odds ratio

The previous two sections described how to estimate confidence intervals for binomial
distributions. Sometimes it is necessary to compare two different binomial distributions,
and this section explains how the odds ratio can be used to do this. For example, one
might say that the word bigram wqws is strong associated if Pr(W7 = w1 |W2 = wy) is
markedly greater than Pr(W; = wq|Wa # ws); the odds ratio quantifies such a relation-
ship. The odds ratio is especially appropriate if one wants to estimate a confidence set,
since an exact confidence set for the odds ratio can be calculated (Agresti, 1992), and it
possesses several other desirable properties (Lloyd, 1999). But as noted above, this sec-

tion’s primary goal is to demonstrate how confidence sets can be used to trade recall for

11
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precision rather than to argue for any particular measure of association.

Suppose we have two binomial distributions, with “success probability” parame-
ters 61 and 5. (In the bigram association application 61 = Pr(W; = wq|W2 = w2) and
0> = Pr(W1 = w1|Wa # ws)). The corresponding odds o1, 0, of these distributions are:

o = or = 2
! R

Then the odds ratio A is the ratio of the odds of the two distributions, i.e.,

01 (1 —6)

Albr02) = 5 (1—61).

®)

The odds ratio varies from zero to infinity. If #; > 65 then A > 1, while if §; < 6 then

A < 1. The odds ratio is symmetric, i.e.,
A(Pr(X = a]Y =), Pr(X = Y #1)) = APr(Y = y|X = 2), Pr(Y = y| X #2)).

It seems reasonable that a measure of bigram association should be symmetric as there
is no particular reason why Pr(w-|w2) should be more informative than Pr(ws|w1). (If
there is in some application, then the binomial estimator discussed in the last section
might be more useful).

Suppose we have two binomial samples, arranged in the rows of a 2 X 2 contingency

table as follows:

i1 Ni2
n21  N22

In our bigram application, n1; is the number of times the bigram w;w, was observed,
ni2 is the number of times wy was observed not preceded by wj, n2; is the number of
times w; was observed not followed by ws, and ny; is the number of times a pair was
observed whose first element was not w; and whose second element was not ws.

The maximum likelihood estimator A for the odds ratio is given by substituting the
corresponding sample means for 6; and 65 in (3), i.e.;

11 N22

A:

n21 N12

12
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However, this estimate A is unreliable when the sample size is small. Using bigram data
from the same Penn WSJ treebank corpus as earlier, A achieves its maximum possible
value (infinity) on bigrams such as accidentally smother and wrongfully imprisoning which
occur once in the corpus, and have the property that their constituent words do not
occur elsewhere (i.e.,, no; = ni2 = 0). These bigrams do not seem especially highly
associated, and it is likely that the high value of A is due to the small sample fluctuation.
Following the general strategy for trading recall for precision proposed in this paper, we
use the lower bound A _ of a confidence interval for the odds ratio as a “discounted”
estimator for the odds ratio A.

There are several ways in which this can be done, and the reader is referred to
Agresti (1992), Hollander and Wolfe (1999) and Lloyd (1999) for details of asymptotic
approximations and exact methods for calculating confidence intervals for the odds
ratio. The exact method, which is used to produce the results shown in Table 2, in-
volves conditional inference. That is, it involves conditioning not only on the row totals
n11 +niz and nay + nog, but also on the column totals 11 +n2; and nia + nge. While this
may be questionable in some applications (see Lloyd (1999) for discussion) it seems rea-
sonable in the bigram association application, since it amounts to conditioning on the
number of occurences of w; as well as w». The software provided in the appendix calcu-
lates the lower bound of the conditional odds ratio by numerically solving a nonlinear
equation involving the sum of the hypergeometric distribution.

Table 2 contains the highest ranked bigrams according to the lower bound A _ of the
odds ratio at confidence levels 0.1 and 0.0001, and by the likelihood ratio test statistic
popularized by Dunning (1993) as well. The likelihood ratio statistic is one of the more
popular measures of bigram association in computational linguistics. It tests the null hy-
pothesis that the two binomial samples are drawn from the same distribution, so higher

scores are generally produced by extremely frequent bigrams, as explained earlier. (The

13
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exception are bigrams such as the the, which are presumably highly surprising because
they occur much less frequently than expected). The reader may initially be surprised
to discover that the bigrams ranked highest by the “discounted” odds ratio A  consist

largely of relatively ideosyncratic names, but on reflection this seems quite reasonable.
5 Conclusion

This paper’s primary goal was to show how confidence set estimates provide a system-
atic way to trade recall for precision in a systematic way. This trade-off of precision and
recall can be seen as related to the bias-variance trade-off described in Geman, Bienen-
stock, and Doursat (1992).

A second point made in the paper is that it may be valuable to conceptually distin-
guish the question of whether a particular measure or quantity actually measures what
we are interested in from the question of whether a particular statistic accurately esti-
mates that quantity. The confidence interval lower bounds reported in this paper were
calculated using exact methods, which are accurate even at small sample sizes. This pa-
per makes no claims concerning whether the quantities that were so estimated actually
correspond to association.

Finally, it seems that this approach may be fruitfully extended in several ways. The
most well-known exact confidence interval estimators are obtained by conditioning on
the sufficient statistics for the other parameters in the model (this is why a conditional
odds ratio estimator was used in the previous section), but this can only be done for
certain measures (such as the odds ratio). It would seem that confidence sets could also
be calculated using Bayesian methods, and these methods would offer greater flexibility
in the kinds of measures to be estimated as well as permitting one to incorporate prior

information into the model.

14
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Likelihood ratio a=0.1 a = 0.0001

ni1 w1 w3 nii w1 w3 nii w1 W2
874 New York 29 Du Pont 124 Hong Kong
4969 of the 58 Navigation Mixte 58 Navigation Mixte
3930 in the 124 Hong Kon 29 Du Pont
2758 L 20 COMMERCIAL PAPER 34 Freddie Mac
1682 , Which 17 Della Femina 20 COMMERCIAL PAPER
1089 a share 34 Freddie Mac 137 Los Angeles
2202 L 14 Guzman Cabrera 17 Della Femina
616 more than 12 Polly Peck 14 Guzman Cabrera
784 will be 17 Khmer Rouge 45 Burnham Lambert
1169 , but 10 MERRILL LYNCH 28 Las Vegas
296 Stock Exchange 10 LATE EURODOLLARS 17 Khmer Rouge
853 said it 10 INTERBANK OFFERED 24 K mart
567 has been 10 BANKERS ACCEPTANCES 12 Polly Peck
695 ” says 9 TREASURY BILLS 19 Palo Alto
322 vice president 137 Los Angeles 46 Fannie Mae
474 don’t 19 Palo Alto 28 Dean Witter
242 Wall Street 28 Las Vegas 19 Puerto Rico
1180 the company 7 Zoete Wedd 10 MERRILL LYNCH
243 San Francisco 7 Pitney Bowes 10 LATE EURODOLLARS
1535 on the 7 H.F. Ahmanson 10 INTERBANK OFFERED
1062 to be 19 Puerto Rico 10 BANKERS ACCEPTANCES

9 the the 24 K mart 9 TREASURY BILLS
473 have been 28 Dean Witter 19 L.J. Hooker
378 did n't 10 READY ASSETS 243 San Francisco
278 chief executive 10 Fulton Prebon 69 Lehman Hutton
421 “ We 10 LYNCH READY 10 READY ASSETS
442 this year 10 HOME LOAN 10 Fulton Prebon

1 .. 10 CALL MONEY 10 LYNCH READY
329 doesn’t 6 Kuala Lumpur 10 HOME LOAN
1074 , or 6 IG Metall 10 CALL MONEY
242 net income 6 Dalkon Shield 16 De Beers
181 Dow Jones 6 Bare-Faced Messiah 7 Zoete Wedd
309 year earlier 6 Aga Khan 7 Pitney Bowes
234 York Stock 46 Fannie Mae 7 H.F. Ahmanson
181 real estate 9 us 9 US
1645 for the 45 Burnham Lambert 10 negotiable C.D.s
223 third quarter 5 Wastewater Treatment 10 ASSETS TRUST
445 would be 5 Peat Marwick 242 Wall Street
243 won't 5 gon na 105 Merrill Lynch
277 at least 5 Chez Panisse 6 Kuala Lumpur
476 cents a 19 L.J. Hooker 6 1G Metall
747 the U.S. 10 negotiable C.D.s 6 Dalkon Shield
344 such as 10 ASSETS TRUST 6 Bare-Faced Messiah
137 Los Angeles 16 De Beers 6 Aga Khan
243 compared with 4 Wedding Song 26 Costa Rica
617 from $ 4 PRECIOUS METALS 20 Harris Upham
260 & Co. 4 Nissho Iwai 8 Nimitz Freeway
405 “1 4 Nihon Keizai 12 Kleinwort Benson
124 Hong Kong 4 Exporting Countries 10 Marlin Fitzwater
298 last year 4 Cobb Parkway 5 Wastewater Treatment
526 company ’s 4 Castle Harlan 5 Peat Marwick
150 Big Board 4 Bonwit Teller 5 gon na
314 according to 6 Rupert Murdoch 5 Chez Panisse

8 of , 6 Hang Seng 874 New York
230 last week 8 Nimitz Freeway 20 Wells Fargo
175  composite trading 5 Violin Concerto 6 Rupert Murdoch
173 executive officer 5 Tan Sri 6 Hang Seng
193 can't 5 Hun Sen 13 Backer Spielvogel
607 a year 10 Marlin Fitzwater 19 Bankruptcy Code

16 to, 3 Won Sohn 16 Beverly Hills

Table 2

Bigrams w; w; sorted by likelihood ratio, and lower bound A_ of a confidence interval estimate
of the odds ratio, at confidence levels a = 0.1 and o = 0.0001. n11 is the number of times the
bigram occured in the corpus.
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Obtaining software for computing confidence intervals

Programs for computing exact lower bounds on the success probability of a binomial
distribution and on the conditional odds ratio respectively can be downloaded for re-
search purposes from http://www.cog.brown.edu/ m,;.
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