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This s a paper I posted on my Web site several months ago. While the basic idea
15 valid, I realize now that the discussion here is incomplete. There are many
good statistics books on this topic: Agresti (1996), Cox and Snell (1989), and
Lloyd (1998) are good places to start. I intend to post an updated version of this
paper Soon.

Yes, I know that the code at the back of this paper does not work! When I wrote
this paper I used routines from the wonderful “Numerical Recipies in C” book (if
you don’t have this book, get it!), which are unfortunately copyright. In earlier
versions of this paper I included code based on approximations from Abramowitz
and Stequn—uwhich I threw together after the fact so I could provide something
to the Web public legally—and which didn’t work (my bugs, not theirs!). Several
helpful people corrected that bug, but I really wanted to provide the more accurate
code based on the Numerical Recipies routines. It looked as if I would have to
write my own versions of the Numerical Recipies routines, which I naturally put
off doing. Since then, I have discovered the publically-available library CEPHES
on

http://www.netlib.org/cephes/
which is clatmed to calculate the inverse incomplete Beta function very accurately
(I have not checked this!). I have recoded my code to use the CEPHES routines,
which I can distribute. So download the code from my Web site

http://wuw.cog.brown.edu/"mj

and tell me if it works!

Thanks, and happy computing!
Mark Johnson



Abstract

Sparse data causes errors in the maximume-likelihood estimates of event probabilities
that are often large enough to render measures of association such as pointwise mutual
information useless for small sample sizes. This squib describes a procedure for esti-
mating event probabilities that produces a confidence interval estimate rather than a
point estimate. Using these confidence intervals in calculations of measures of associa-
tion results in reasonable association strength rankings even if the data is drawn from
very small sample sizes.

1 Introduction

In computational linguistics one often wants to identify strongly associated pairs of items
from a corpus and compare the strength of their association with that of other pairs. Find-
ing word collocations is an obvious example of such a problem, where one seeks strongly
associated pairs of adjacent words, but formally similiar problems abound. Measures of
association based on estimates of the relative likelihoood of the items appearing together,
particularly information-theoretic measures such as (pointwise) mutual information, would
seem to be natural ways of quantifying such associations. (There is no generally agreed
mathematical definition of association, and different measures may be appropriate in differ-
ent applications.) However, the sample sizes of many linguistically interesting events can be
very small, and consequently there is extremely high variance in the estimated likelihoods
and hence also in the association measures. This high variance means that the estimated
association measures for such events may be much higher than their “true” value, leading to
a large number of “false positive” association pairs.

Pointwise mutual information is a measure of association that is affected in this way. As
explained in section 3, the pointwise mutual information of words w; and w, is

MI(U)l, U}Q) = logQ(Pr(Wl = w1|W2 = U)Q)/PI'(Wl = wl)) (1)

where W, and W, are random variables ranging over the first and second words of word
pairs respectively. Now in sections 2-21 of the Penn WSJ corpus the words “accidentally”
and “smother” once in the pair “accidentally smother”, and that is the only time either
appears. Suppose we take the maximum likelihood estimates for the probabilities in (1).
The maximum likelihood estimate of Pr(W; = “accidentally”|WW, = “smother”) is 1.0, and
since there are 950,028 words in this corpus, the maximum likelihood estimate of Pr(W; =
“accidentally”) is approximately 107¢, so the pointwise mutual information for this pair is
approximately 20. Further, this is the maximum pointwise mutual information for any word
pair from this corpus: in (1) it is impossible to find a numerator greater than 1, and no
smaller non-zero denominator can be found for this corpus. Yet this seems quite wrong:
“accidentally” and “smother” do not appear particulary strongly associated.

A number of remedies have been suggested in the literature, to which Manning and
Schiitze (1999) provides a good introduction. For example, one can simply ignore all samples
of less than a certain size, say, 5 events. Alternatively, one can compute other kinds of
statistics which are accurate for smaller sample sizes. For example, organizing the data as a



contingency table, one can apply statistical tests of independence and take the significance
level at which the independence assumption is rejected as a measure of association. Chi-
squared is probably the most well-known of such tests, but Dunning (1993) argues that a
likelihood ratio test yields better performance with small sample sizes.

However, while these tests of independence avoid the problem of low sample sizes, they
are arguably biased towards pairs with large sample sizes. A test for independence measures
how surprising it would be to observe the data if the two variables are in fact independent.
Informally, one could obtain equally surprising data either by drawing a small sample from
strongly dependent variables, or else by drawing a large sample from weakly dependent
variables. Thus even though in both circumstances one might be equally certain that the
samples were not drawn from a distribution in which the variables are independent, it seems
reasonable to say that in the first case the variables are more strongly associated. Intuitively,
strength of association should not depend on sample size.

For example, while Dunning’s likelihood ratio statistic assigns low frequency pairs such
as “accidentally smother” a reasonably low score, the pairs it assigns a high significance
score to typically consist of high frequncy words. Table 3 lists the highest ranked word pairs
using this statistic. Note that the second highest ranked pair is “of the”; this is a very high
frequency pair, but these words do not seem particularly closely associated.

Further, tests for independence do not distinguish cases where the pair occur significantly
less frequently than would be expected if the variables were independent, yet in this case
one would probably want to say that the variables are disassociated rather than associated.
For example, the 21st ranked pair according to the likelihood ratio statistic is “the the”; in
this case, the pair (presumably a typo) is much less frequent than would be expected if the
words were independently distributed. Again, this seems counter-intuitive.

We can avoid the “false positive” problem of the likelihood based measures of associa-
tion by replacing the point likelihood estimates with an interval estimate in which we are
reasonably confident that the true likelihood actually lies. We use the bounds on this in-
terval to obtain a conservative estimate of the strength of association, reducing the number
of false positives by in effect trading recall for precision. The next section describes how
this confidence interval can be estimated, and the following section compares the results of
this method with Dunning’s likelihood ratio for finding pair collocations in the Wall Street
Journal corpus.

2 Confidence Intervals on Likelihood Estimates

Suppose one observes an event occuring k times in n Bernoulli trials from a binomial dis-
tribution, and we wish to estimate a confidence interval [f_, #,] in which the unknown true
event probability # lies. For any # besides 0 and 1 there is a non-zero likelihood of observing
any number k of events in n trials, so it is not possible to find a non-trivial hard bound
on . The best one can hope for is an interval such that if # lies outside of this interval
it is unlikely (but not impossible) for events such as the one observed to occur. Now the

likelihood of observing i events in n trials is Pr, 4(i) = (’;) 0'(1 — 0)"*. Given a confidence
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Figure 1: The confidence interval [#_,60.] on the binomial parameter 6. k is the number of
times the event was actually observed in n trials. The area contained in each of the shaded
areas above and below k£ is (1 — s)/2.

level s, we seek a lower bound #_ and an upper bound 6, such that:
S Proo (i) = (1-5)/2 2)
i=k

;anm (1) = (1-9)/2 3)

Thus, if # < 6_ then the likelihood of observing k£ or more events in n trials is less than or
equal to (1 — s)/2; similarly if § > 6, then the likelihood of observing k or fewer events in
n trials is greater than or equal to (1 — s)/2. Figure 1 depicts the relationship between £, s,
f_ and 0,.

The confidence interval parameters #_ = 6_(n, k) and 6, = 6, (n, k) can be calculated
as follows. The cumulative binomial distribution with event probability 6 is related to the
incomplete beta function Iy in the following way (Abramowitz and Stegun, 1965):

f:(fl)&"(l—ﬁ)"—i = Iy(k,n—k+1)

i=k \"
Thus the required bounds are the solutions of the following equations:

I (kn—k+1) = (1—s)/2 (4)
Lo (n—kk+1) = (1—s)/2 (5)

The results presented below were obtained by numerically solving these equations using
Brent’s method for zero finding: the program is essentially “glue” code that calls the routines
for the incomplete beta function and Brent’s method given in Press et al. (1992). It is also
possible to directly compute the confidence interval using the approximation to the inverse
beta function given in Abramowitz and Stegun (1965); this method is faster but less accurate
than the numerical method just described.



Rank | Likelihood Ratio Mutual Information
1 New York TREASURY BILLS
2 of the MERRILL LYNCH
3 ,  which LATE EURODOLLARS
4 , 7 INTERBANK OFFERED
5 in the BANKERS ACCEPTANCES
6 a share Zoete Wedd
7 7 Pitney Bowes
8 more than H.F. Ahmanson
9 will be Kuala Lumpur
10 , but IG Metall
11 has been Dalkon Shield
12 said it Bare-Faced Messiah
13 7 says Aga Khan
14 the company Polly Peck
15 Stock Exchange READY ASSETS
16 San Francisco Fulton Prebon
17 vice president Guzman Cabrera
18 do n’t U S
19 Wall  Street negotiable C.D.s
20 to be gon na
21 the the Wastewater Treatment
22 have been Peat Marwick
23 “ We Chez Panisse
24 chief executive Della Femina
25 - LYNCH READY
26 this year HOME LOAN
27 , or CALL MONEY
28 did n’t Violin Concerto
29 on the COMMERCIAL PAPER
30 year earlier Khmer Rouge
31 net income Wedding Song
32 York Stock PRECIOUS METALS
33 real estate Nissho Iwai
34 at least Nihon Keizai
35 does n’t Exporting Countries
36 Dow Jones Cobb  Parkway
37 would be Castle Harlan
38 the U.S. Bonwit Teller
39 third quarter Palo Alto
40 “ 1 Rupert Murdoch

Table 1: Rank ordered lists of most significant word pairs using the likelihood ratio statistic
(Dunning 1993) and the point-wise mutual information statistic defined in equation (8) at a
s = 0.99 confidence level.
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3 Finding strongly associated word pairs

The previous section described how to estimate a confidence interval [#(n, k)_,6(n, k)] for

a binomial parameter  given a confidence level s and data consisting of k£ observations of an

event in n trials. This section examines how this confidence interval can be used to provide

a conservative estimate of pointwise mutual information, which seems to provide a more

intuitive measure of the strength of association of word pairs than do significance tests.
The pointwise mutual information of a pair of words w; wy is defined as:

MI =1
(w1, we) 082 Pr(Wy = w;)Pr(Wa = wy)

PI‘(Wl = w1‘W2 = ’U)Q)

= log, Pr(IW; = wi) (6)
PI‘(WQ = ’wg‘Wl - wl)
1
082 PI"(WQ = ’UJQ) (7)

Suppose that in our corpus the pair of words w; we occurs nio times, that w; and w, each
appear n; and ny times respectively, and that the total number of words in the corpus is n.
Based on equation (6) we conservatively estimate the pointwise mutual information of w; wy
as follows:

(8)

This statistic conservatively estimates the pointwise mutual information by using a lower
bound in the numerator and an upper bound in the denominator. This reduces the number
of false positive association pairs, effectively trading recall for precision.

Table 3 lists the word pairs ranked highest by this statistic at the s = 0.99 confidence
level and by the likelihood ratio test described by Dunning (1993). The corpus used was
sections 2-21 of the Penn WSJ treebank; no preprocessing was used to remove punctuation
or normalize capitalization.

A striking feature of the conservative pointwise mutual information statistic is that it
ranks multiword names and titles extremely highly. This is not just a property of the first
entries in the rank ordered list: approximately 70% of the 1,000 most highly ranked pairs
are names of one kind or another. Presumably this reflects the fact that the words making
up such names are truly very strongly associated.

The estimator becomes more conservative as the confidence level approaches unity, which
in effect reduces the value of the statistic for lower frequency items. For example, at the
s = 0.999 confidence level the three most highly ranked pairs are “Guzman Cabrera”, “Polly
Peck” and “MERRILL LYNCH?”, each of which occurs more than 10 times in the corpus.

Finally, it is worth noting that while pointwise mutual information is a symmetric mea-
sure, the conservative estimate is not. That is, the statistic based on equation (7), namely:

9)

MI(wy,wy) = 10%207

v 4 0_ (7112, 711)
MI =1 _—
(wla w?) 089 0+ (n2, n)

is in general not the same as (8).! In practice, however, the MI and MT statistics produce

!Note that the likelihood ratio statistic proposed by Dunning (1993) is asymmetric in this sense also.



very similiar ranks: the first 15 pairs on the rank ordered lists are identical, for example.

4 Conclusion

This squib has shown how confidence intervals can provide a way of conservatively estimat-
ing the strength of association between pairs of elements that is robust in the presence of
extremely small sample sizes, effectively trading recall for precision. The pointwise mutual
information statistic based on these confidence intervals does not show an obvious bias toward
either low or high frequency pairs, and the confidence level s provides an effective means
of adjusting the precision/recall tradeoff. Finally, it is straightforward to use confidence
interval estimators to obtain conservative versions of other statistics also.
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