Features of Statistical Parsers

Mark Johnson
Microsoft Research

Joint work with
Eugene Charniak, Matt Lease and David McClosky
Brown University

MSR-UW Computational Linguistics Colloquium, October 2006
Talk outline

• Why rerank the output of generative parsers?
• Features of a reranking parser
• Reranking and self-training
Let us take Tuesday the 15th
Parsing in the late 1990s

- Parsers for hand-written grammars (LFG, HPSG, etc)
 - linguistically rich, detailed representations
 - uneven / poor coverage of English
 - even simple sentences are highly ambiguous
 - only ad hoc treatment of preferences
 - could not be learnt from data

- Generative probabilistic parsers
 - systematic treatment of preferences
 - learnt from treebank corpora
 - simple constituent structure representations
 - wide (if superficial) coverage of English

- Could the two approaches be combined?
Generative statistical parsers

- Generative statistical parsers (Bikel, Charniak, Collins) generate each new node in parse conditioned on the structure already generated: $P(\text{price} | \text{NN, NP, raised, VBD, VP, S})$

- They assume each node is independent of all existing structure except for nodes explicitly conditioned on \Rightarrow simple “relative frequency” estimators (smoothed \diamondsuit)

- Re-entrancies in LFG and HPSG violate these independence assumptions
Abandoning independence assumptions

• Mathematically straight-forward to define models in which nodes are not assumed independent (Abney 1997)
 – Maximum Entropy, log-linear, exponential, Gibbs, ...

• Once we have abandoned feature independence,
 – parses need not be trees
 * feature structures, minimalist derivations, ...
 – features can be any computable function of parses

• But simple “relative frequency” estimators no longer work
 – estimating grammar from a corpus is a computationally very difficult problem
Generative parsers as log-linear models

- Define a feature $f_{x,c}$ for all possible nodes x and conditioning contexts c

\[f_{(\text{price}, \text{NN}, \text{NP}, \text{raised}, \text{VBD}, \text{VP}, \text{S})}(t) \text{ is the number of times} \]
\[(\text{price}, \text{NN}, \text{NP}, \text{raised}, \text{VBD}, \text{VP}, \text{S}) \text{ appears in parse} \ t \]

- Let weight $w_{x,c} = \log P(x|c)$

\[w_{(\text{price}, \text{NN}, \text{NP}, \text{raised}, \text{VBD}, \text{VP}, \text{S})} = \]
\[\log P(\text{price}|\text{NN}, \text{NP}, \text{raised}, \text{VBD}, \text{VP}, \text{S}) \]

- Then weighted sum of features is log probability of parse
Conditional estimation

- Maximum likelihood joint estimation (used in generative parsers) adjusts weights to make corpus parses score higher than all other parses.

- Without independence assumptions, requires summing over all possible parses of *all possible sentences* (partition function).
 \[\Rightarrow \text{estimation is computationally intractible} \]

- But for parsing we only need *conditional distribution* \(P(t|s) \) of parses given strings.
 - “only” requires parses for strings in training corpus.
 \[\Rightarrow \text{computationally tractable} \]
Conditional estimation

<table>
<thead>
<tr>
<th>s</th>
<th>$f(\hat{t}(s))$</th>
<th>feature vectors of other parses for s</th>
</tr>
</thead>
<tbody>
<tr>
<td>sentence 1</td>
<td>(1, 3, 2)</td>
<td>(2, 2, 3) (3, 1, 5) (2, 6, 3)</td>
</tr>
<tr>
<td>sentence 2</td>
<td>(7, 2, 1)</td>
<td>(2, 5, 5)</td>
</tr>
<tr>
<td>sentence 3</td>
<td>(2, 4, 2)</td>
<td>(1, 1, 7) (7, 2, 1)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- Treebank tells us correct parse $\hat{t}(s)$ for sentence s
- Parser produces all possible parses for each sentence s
- Adjust feature weights $w = (w_1, \ldots, w_m)$ to make $\hat{t}(s)$ score as high as possible relative to other parses for s
Conditional vs joint estimation

\[P(t, s) = P(t|s)P(s) \]

- Joint MLE maximizes probability of training trees \(t \) and strings \(s \)
- Conditional MLE maximizes probability of trees given strings
 - Conditional estimation uses less information from the data
 - learns nothing from distribution of strings \(P(s) \)
 - ignores unambiguous sentences (!)
- Joint estimation should be better (lower variance) if your model correctly relates \(P(t|s) \) and \(P(s) \)
- Conditional estimation should be better if your model incorrectly relates \(P(t|s) \) and \(P(s) \)
Linguistic representations and features

- Probability of a parse t is completely determined by its feature vector $(f_1(t), \ldots, f_m(t))$

- The actual linguistic representation of parse t is *irrelevant* as long as it is rich enough to calculate features $f(t)$

- Feature functions define the kinds of generalizations that the learner can extract
 - parses with the same feature values will be assigned the same probability
 - the choice of feature functions is as much a linguistic decision than the choice of representations

- Features can be arbitrary functions \Rightarrow the linguistic properties they encode *need not be directly represented in the parse*
Reranking a generative parser’s parses

- Parses only need to be rich enough to recover the features
 - WH-movement, raising and control need not be explicitly marked in parses, just so long as we can identify them if required

- LFG and similar parsers have problems with coverage and implementation

- Generative parsers are reliable, and their parses are rich enough to identify many linguistically interesting features

⇒ *Why not work with a generative parser’s output instead?*
(Collins 2000)
Talk outline

• Why rerank the output of generative parsers?
• Features of a reranking parser
• Reranking and self-training
Linear reranking framework

• Generative parser produces \(n \) candidate parses \(T_c(s) \) for each sentence \(s \)
• Map each parse \(t \in T_c(s) \) to a real-valued feature vector \(f(t) = (f_1(t), \ldots, f_m(t)) \)
• Each feature \(f_j \) is associated with a weight \(w_j \)
• The highest scoring parse

\[\hat{t} = \arg\max_{t \in T_c(s)} w \cdot f(t) \]

is predicted correct
Features for ranking parses

• Features can be any real-valued function of parse trees

• In these experiments the features come in two kinds:
 – The logarithm of the tree’s probability estimated by the Charniak parser
 – The number of times a particular configuration appears in the parse

• *Which ones improve parsing accuracy the most?* (can you guess?)
Experimental setup

- Feature tuning experiments done using Collins’ split: sections 2-19 as train, 20-21 as dev and 22 as test
- $\mathcal{T}_c(s)$ computed using Charniak 50-best parser
- Features which vary on less than 5 sentences pruned
- Optimization performed using LMVM optimizer from Petsc/TAO optimization package
- Regularizer constant c adjusted to maximize f-score on dev
f-score vs. n-best beam size

- F-score of Charniak’s most probable parse = 0.896
- Oracle f-score (f-score of best parse in beam) of Charniak’s 50-best parses = 0.965 (66% redn)
- Charniak parser’s most likely parse is the best parse 41% of the time

- Reranker picks Charniak parser’s most likely parse 58% of the time
Evaluating features

- The feature weights are not that indicative of how important a feature is
- The MaxEnt ranker with regularizer tuning takes approx 1 day to train
- The \textit{averaged perceptron} algorithm takes approximately 2 minutes
 \[\Rightarrow\] used in feature-comparison experiments here
Lexicalized and parent-annotated rules

- Rule features largely replicate features already in generative parser
- A typical Rule feature might be (PP IN NP)
There are at least two sensible notions of head (c.f., Grimshaw)

- **Functional heads**: determiners of NPs, auxiliary verbs of VPs, etc.
- **Lexical heads**: rightmost Ns of NPs, main verbs in VPs, etc.

- In a log-linear model, it is easy to use both!
n-gram rule features generalize rules

- Breaks up long treebank constituents into shorter (phrase-like?) chunks
- Also includes relationship to head (e.g., adjacent? left or right?)
Word and WProj features

- A Word feature is a word plus n of its parents (c.f., Klein and Manning’s non-lexicalized PCFG)

- A WProj feature is a word plus all of its (maximal projection) parents, up to its governor’s maximal projection
Rightmost branch bias

- The RightBranch feature’s value is the number of nodes on the right-most branch (ignoring punctuation) (c.f., Charniak 00)
- Reflects the tendency toward right branching in English
- Only 2 different features, but very useful in final model!
Constituent Heavyness and location

- Heavyness measures the constituent’s category, its (binned) size and (binned) closeness to the end of the sentence.
Coordination parallelism

- A CoPar feature indicates the depth to which adjacent conjuncts are parallel.
Tree n-gram

- A tree n-gram feature is a tree fragment that connect sequences of adjacent n words, for $n = 2, 3, 4$ (c.f. Bod’s DOP models)

- lexicalized and non-lexicalized variants
Edges and WordEdges

- A Neighbours feature indicates the node’s category, its binned length and j left and k right lexical items and/or POS tags for $j, k \leq 2$

```
ROOT
      S
      NP VP
      WDT VBD PP
That went IN NP
      over NP
      DT JJ NN IN NP
      the permissible line for ADJP NNS
      warm CC JJ feelings
```

$> 5 \text{ words}$
Adding one feature class to baseline parser

Sections 20-21
Section 22

- Rule
- NGram
- Word
- WProj
- RightBranch
- Heavy
- NgramTree
- HeadTree
- Heads
- CoPar
- CoLenPar
- Edges
- WordEdge
Removing one feature class from reranker
Feature selection is hard

- Greedy feature selection using *averaged perceptron* optimizing f-score on sec 20–21
- All models also evaluated on section 24
Results on all training data

- Features must vary on parses of at least 5 sentences in training data
- In this experiment, 1,333,863 features
- Exponential model trained on sections 2-21
- Gaussian regularization $p = 2$, constant selected to optimize f-score on section 22
- On section 23: recall = 91.0, precision = 91.8, f-score = 91.4
- Available from www.cog.brown.edu
Talk outline

• Why rerank the output of generative parsers?
• Features of a reranking parser
• Reranking and self-training
Self-training for discriminative parsing

- Improves performance from 91.3 to 92.1 f-score
- Self-training without the reranker does not improve performance
- Retraining the reranker on new first-stage model does not further improve performance
- Would reparsing the NTC with improved parser further improve performance?
First-stage oracle scores

<table>
<thead>
<tr>
<th>Model</th>
<th>1-best</th>
<th>10-best</th>
<th>50-best</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>89.0</td>
<td>94.0</td>
<td>95.9</td>
</tr>
<tr>
<td>WSJ×1 + 250k</td>
<td>89.8</td>
<td>94.6</td>
<td>96.2</td>
</tr>
<tr>
<td>WSJ×5 + 1,750k</td>
<td>90.4</td>
<td>94.8</td>
<td>96.4</td>
</tr>
</tbody>
</table>

- Self-training improves first-stage generative parser’s oracle scores
- First-stage parser also became more decisive: mean of $\log_2(P(1\text{-best}) / P(50\text{th-best}))$ increased from 11.959 for the baseline parser to 14.104 for self-trained parser
Which sentences improve?

Graphs show the distribution of sentences with various metrics:
- Unknown words
- Number of INs
- Number of CCs
- Sentence length

Each graph compares the number of sentences categorized as Better, No change, or Worse.
Self-trained WSJ parser on Brown

<table>
<thead>
<tr>
<th>Sentences added</th>
<th>Parser</th>
<th>WSJ-reranker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline Brown</td>
<td>86.4</td>
<td>87.4</td>
</tr>
<tr>
<td>Baseline WSJ</td>
<td>83.9</td>
<td>85.8</td>
</tr>
<tr>
<td>WSJ+50k</td>
<td>84.8</td>
<td>86.6</td>
</tr>
<tr>
<td>WSJ+250k</td>
<td>85.7</td>
<td>87.2</td>
</tr>
<tr>
<td>WSJ+1,000k</td>
<td>86.2</td>
<td>87.3</td>
</tr>
<tr>
<td>WSJ+2,500k</td>
<td>86.4</td>
<td>87.7</td>
</tr>
</tbody>
</table>

- Adding NTC data greatly improves performance on Brown corpus (to a lesser extent on Switchboard)
Self-training vs in-domain training

<table>
<thead>
<tr>
<th>First-stage</th>
<th>First stage alone</th>
<th>WSJ-reranker</th>
<th>Brown-reranker</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSJ</td>
<td>82.9</td>
<td>85.2</td>
<td>85.2</td>
</tr>
<tr>
<td>WSJ+NTC</td>
<td>87.1</td>
<td>87.8</td>
<td>87.9</td>
</tr>
<tr>
<td>Brown</td>
<td>86.7</td>
<td>88.2</td>
<td>88.4</td>
</tr>
</tbody>
</table>

- Both reranking and self-training are surprisingly domain-independent

- Self-trained NTC parser with WSJ reranker is almost as good as a parser/reranker completely trained on Brown

38
Summary and conclusions

- (Re)ranking parsers can work with just about any features
- The details of linguistic representations don’t matter so long as they are rich enough to compute your features from
- The choice of features is extremely important, and needs linguistic insight
- Self-training works with reranking parsers (why?)
- Both reranking and self-training is (surprisingly) domain-independent
Sample parser errors

He will not be shaken out by external events, however surprising, alarming or vexing:

...
Soviet leaders said they would support their Kabul clients by all means necessary -- and did.
Kia is the most aggressive of the Korean Big Three in offering financing.
Two years ago, the district decided to limit the bikes' use on fire roads in its 65,000 hilly acres.
The company also pleased analysts by announcing four new store openings planned for fiscal 1990, ending next August.
But funds generally are better prepared this time around.