Attention Shifting for Parsing Speech

Keith Hall and Mark Johnson

Brown University

ACL 2004

July 22, 2004
Attention Shifting

• Iterative best-first word-lattice parsing algorithm

• Posits a complete syntactic analyses for each path of a word-lattice

• Goals of Attention Shifting
 – Improve accuracy of best-first parsing on word-lattices
 (Oracle Word Error Rate)
 – Improve efficiency of word-lattice parsing
 (Number of parser operations)
 – Improve syntactic language modeling based on multi-stage parsing
 (Word Error Rate)

• Inspired by edge demeriting for efficient parsing
 Blaheta & Charniak demeriting (ACL99)
Outline

- Syntactic language modeling
- Word-lattice parsing
- Multi-stage best-first parsing
Noisy Channel

\[P(A, W) = P(A|W)P(W) \]

- Speech recognition: Noise model = Acoustic model

\[\arg \max_W P(W|A) = \arg \max_W P(A, W) \]
Syntactic Language Modeling

- Adding syntactic information to context (conditioning information)
 \[P(W) = \prod_{i=1}^{k} P(w_i | \pi(w_k, \ldots, w_1)) \]
- \(n \)-best reranking
 - Select \(n \)-best strings using some model (trigram)
 - Process each string independently
 - Select string with highest \(P(A, W) \)

- Charniak (ACL01), Chelba & Jelinek (CS&L00,ACL02), Roark (CL01)
Parsing word-lattice

- Compress lattice with Weighted FSM determinization and minimization (Mohri, Pereira, & Riley CS&L02)
- Use compressed word-lattice graph as the parse chart
- Structure sharing due to compressed lattice
 VP → NN VB covers string *man is*
 VP → VBZ covers string *mans*
I WOULD NOT SUGGEST ANYONE MAKE A DECISION ON WHO TO VOTE FOR BASED ON A STUDY LIKE THIS (160 arcs, 72 nodes)

- compressed NIST '93 HUB-1 lattices
 - average of 800 arcs/lattice (max 15000 arcs)
 - average of 100 nodes/lattice (max 500 nodes)
• Bottom-up best-first PCFG parser
• Stack-based search technique based on figure-of-merit
• Attempts to work on “likely” parts of the chart
• Ideal figure-of-merit: $P(edge) = \text{inside}(edge) \times \text{outside}(edge)$

details in (Hall & Johnson ASRU03)
Word-lattice Parsing

- First stage: best-first bottom-up PCFG parser
- Second stage: Charniak Parser Language Model (Charniak ACL01)
- Parsing from lattice allows structure sharing
- Combines search for candidate lattice paths with search for candidate parses
Multi-stage Deficiency

- First-stage PCFG parser selects parses for a subset of word-lattice paths
- Lexicalized syntactic analysis not performed on all of the word-lattice
- Covering entire word-lattice requires excessive over-parsing
 - 100X over-parsing produces forests too large for lexical-parser
 - additional pruning required, resulting in loss of lattice-paths
- Attention shifting algorithm addresses the coverage problem
• Iterative reparsing
 1. Perform best-first PCFG parsing (over-parse as with normal best-first parsing)
 2. Identify words not covered by a complete parse (unused word has 0 outside probability)
 3. Reset parse Agenda to contain unused words
 4. If Agenda $\neq \emptyset$ repeat

• Prune chart using inside/outside pruning
• At most $|A|$ iterations ($|A|$ = number of arcs)
• Forces coverage of word-lattice
Experimental Setup

- PCFG Parser trained on Penn WSJ Treebank f2-21,24 (speech-normalization via Roark’s normalization)
 - Generated at most 30k local-trees for second-stage parser

- Lexicalized parser: Charniak’s Language Model Parser (Charniak ACL01)
 - trained on parsed BLLIP99 corpus (30 million words of WSJ)
 - BLLIP99 parsed using Charniak string parser trained on Penn WSJ
Evaluation

- Evaluation set: NIST ’93 HUB-1
 - 213 utterances
 - Professional readers reading WSJ text

- Word-lattices evaluated on:
 - n-best word-lattices using Chelba A* decoder (50-best paths)
 - compressed acoustic word-lattices

- Metrics
 - Word-lattice accuracy (first-stage parser): Oracle Word Error Rate
 - Word-string accuracy (multi-stage parser): Word Error Rate
 - Efficiency: number of parser agenda operations
Results: \(n \)-best word-lattices

- Charniak parser run on each of the \(n \)-best strings (reranking) (4X over-parsing)

- \(n \)-best word-lattice: pruned acoustic word-lattices containing only \(n \)-best word-strings

- Oracle WER of \(n \)-best lattices: 7.75

<table>
<thead>
<tr>
<th>Model</th>
<th># edge pops</th>
<th>Oracle WER</th>
<th>WER</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)-best (Charniak)</td>
<td>2.5 million</td>
<td>7.75</td>
<td>11.8</td>
</tr>
<tr>
<td>100x LatParse</td>
<td>3.4 million</td>
<td>8.18</td>
<td>12.0</td>
</tr>
<tr>
<td>10x AttShift</td>
<td>564,895</td>
<td>7.78</td>
<td>11.9</td>
</tr>
</tbody>
</table>
Results: Acoustic word-lattices

- Compressed acoustic lattices

<table>
<thead>
<tr>
<th>Model</th>
<th># edge pops</th>
<th>Oracle WER</th>
<th>WER</th>
</tr>
</thead>
<tbody>
<tr>
<td>acoustic lats</td>
<td>N/A</td>
<td>3.26</td>
<td>N/A</td>
</tr>
<tr>
<td>100x LatParse</td>
<td>3.4 million</td>
<td>5.45</td>
<td>13.1</td>
</tr>
<tr>
<td>10x AttShift</td>
<td>1.6 million</td>
<td>4.17</td>
<td>13.1</td>
</tr>
</tbody>
</table>
Conclusion

• Attention shifting
 – Improves parsing efficiency
 – Increases first-stage accuracy (correcting for best-first search errors)
 – Does not improve multi-stage accuracy

• Pruning for second-stage parser constrains number of edges

• Useful for best-first word-lattices parsing