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Abstract

This paper provides a brief introduction to recent work in sta-
tistical parsing and its applications. We highlight successes
to date, remaining challenges, and promising future work.

Introduction
The study of syntax in linguistics seeks to uncover the un-
derlying recursive structure governing human language us-
age – the infinite ways words combine to form phrases, and
how those phrases in turn combine to eventually form sen-
tences. In addition to explaining what strings do and do not
constitute valid uses of language, syntax also plays a more
significant role: most syntactic theories define a systematic
relationship between syntactic structure and meaning, and
at minimum it seems we must know which words modify
which other words to get the correct interpretation. For ex-
ample, inJane saw the man with the binoculars, alterna-
tive readings vary whether the prepositional phrasewith the
binocularsmodifies the verb (i.e. the binoculars are being
used to see) or the noun after it (i.e. the man has the binoc-
ulars). Consequently, accurate recovery of syntax (i.e. pars-
ing) is widely viewed as a necessary precursor to building
systems capable of understanding natural language.

Most work in statistical parsing has centered on the Penn
Treebank (PTB), a collection of about two million words
from newspaper text and telephone conversations manually
annotated for syntax (Marcuset al. 1993). This resource
provides a valuable testbed for developing and evaluating
statistical methods for parsing, and the best performing sys-
tem to date achieves about 92% f-measure1 in matching
manually annotated syntax (McClosky, Charniak, & John-
son 2006). While the holy grail of fully understanding lan-
guage remains largely elusive, parsing has in the meantime
been usefully applied to a variety of tasks in natural language
processing (NLP).

This paper briefly describes our statistical parsing model
before going on to highlight a few successes to date in ap-
plying parsing to various NLP tasks. The goal of our pre-
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sentation is to improve community familiarity with parsing
and how it can be usefully applied in NLP, and we welcome
readers to download our parser2 for use in their own work.

The Parsing Model
This section describes our parsing model. The first stage
consists of a lexicalized probabilistic context-free grammar
(PCFG) (Collins 1997; Charniak 2000). Parsing accuracy
has been subsequently improved by adding a second-stage,
maximum-entropy model to rerank candidates produced by
the PCFG (Charniak & Johnson 2005). Most recently, use of
semi-supervised learning has further improved parsing accu-
racy (McClosky, Charniak, & Johnson 2006).

The PCFG
The lexicalized PCFG (Charniak 2000) uses maximum like-
lihood to estimate probabilities for the various syntactic
rules seen in the training data. Lexicalized conditioning
enables the parser to learn, for example, that whereasgive
commonly takes two arguments (e.g.give a dog a bone), the
verb donaterarely if ever occurs in such a context. Use of
lexicalization has led to significantly improved performance
over early non-lexical models (Charniak 1997).

A parseπ consists of a hierarchy of syntacticconstituents
in which we assume each constituent has a singleheadword
most representative of the entire constituent’s syntacticfunc-
tion. Our model can be understood as a top-down process of
generating for each constituentc first the head word’s part-
of-speech (POS) tagt, then the head wordh itself, and fi-
nally c’s expansione into sub-constituents given its labell
(e.g. is it a noun or verb phrase) and relevant historyH (in-
formation outsidec deemed to be important). Thus we have

p(π) =
∏

c∈π

p(t | l,H) · p(h | t, l,H) · p(e | l, t, h,H)

where c is an implicit subscript of all terms. All distri-
butions here are heavily backed off and smoothed using
Chen’s method (1996) and lightly pruned to remove unhelp-
ful statistics. To find the most likely parse for a given sen-
tences, one just selects theπ that maximizes the conditional
probability ofπ givens. On the Wall Street Journal (WSJ) in
PTB, the PCFG achieves about 90% f-measure in matching
(hand-annotated) labelled constituent structure.

2ftp://ftp.cs.brown.edu/pub/nlparser



The Reranker
Using the efficientk-best parsing algorithm described
in (Jimenez & Marzal 2000; Huang & Chang 2005), the
PCFG is modified to propose a set of ak parse can-
didates instead of the single mostly likely analysis. A
reranker(Collins 2000; Charniak & Johnson 2005) then se-
lects from this setT = {t1, . . . tk} the parset? ∈ T with the
highest f-measure (in comparison to a hand-annotated refer-
ence). This reranking paradigm is useful in allowing us to
incorporate other interesting syntactic relationships that are
more difficult to express in the PCFG’s generative model.

A feature-extractor converts each candidate parse
t ∈ T into a vector of real-valued featuresf(t) =
(f1(t), . . . , fm(t)) (e.g., the valuefj(t) of the featurefj

might be the number of times a certain syntactic structure
appears int). The reranker training procedure associates
each featurefj with a real-valued weightλj , andλ′ · f(t)
(the dot product of the feature vector and the weight vector
λ) is a single scalar weight for each parse candidate. The
reranker employs a maximum-entropy estimator that selects
the λ that minimizes the log loss of the highest f-measure
parset? conditioned onT (together with a Gaussian regu-
larizer to prevent over-fitting). Informally,λ is chosen to
make high f-measure parses as likely as possible under the
(conditional) distribution defined byf andλ.

In terms of performance, the reranker achieves about 91%
f-measure in matching hand-annotated syntax on WSJ.

Semi-Supervised Learning
In recent work (McClosky, Charniak, & Johnson 2006), the
reranking-parser is used to automatically parse the North
American News Corpus3 which consists of about 24 mil-
lion sentences drawn from various news sources (sentence
boundaries were induced by a simple discriminative model).
For each sentence, the most likely parse produced by the
reranking-parser was then combined with the original train-
ing data (with weighting) and used to retrain. This improved
parsing accuracy on WSJ to just over 92%.

Genre Portability
As might be expected, a parser trained on one genre of
text (e.g. WSJ) tends to perform less accurately when
evaluated on a different genre. Since we cannot expect
millions of words to be manually annotated as training
data in every genre of interest, there has been significant
work in studying how parsers can be made more portable
across genres (Sekine 1997; Gildea 2001; Steedmanet al.
2003). Somewhat surprisingly, the semi-supervised model
just discussed isnot over-trained on the newspaper genre,
but in fact achieves significantly improved parsing accuracy
across genres4, making parsing both more accurate and more
portable than ever.

Language Modeling
This section introduces the language model (LM), which as-
signs to a sequence of words a probability estimating the

3Linguistic Data Consortium (LDC) Catalog ID LDC95T21
4A full description of these findings is currently in submission.

Perplexity
Model Alone +Trigram WER
Trigram ≈ 167 – 13.7
Xu, Chelba & Jelinek 151.2 144.2 12.3
Roark 152.3 137.3 12.7
Charniak 130.2 126.1 11.9

Table 1: Perplexity (thebase2 antilog of per-word cross-
entropy) results of syntax-based language models on a
“speech-like” version of WSJ (smaller is better). Word Error
Rate (WER) is for n–best list rescoring on HUB–1 lattices.

likelihood of the sequence’s occurrence in practice (rela-
tive to all other possible sequences). We describe how a
parsing language model operates and compare performance
to n-gram methods. Next, we introduce the noisy-channel
paradigm and discuss its use in NLP. Finally, we cite several
noisy-channel type tasks in which improved performance
has been achieved by using a parser LM instead of n-grams.

N-gram vs. Parsing Language Models
N-gram LMs, in various smoothed and backed-off incarna-
tions, have dominated LM usage to date (Goodman 2001).
We focus attention here on the widely used Knesser-Ney
(KN) smoothed trigram. KN is one of the most success-
ful smoothing techniques known, though one whose efficacy
only recently has begun to be really understood (Goldwater,
Griffiths, & Johnson 2006; Teh 2006).

An alternative (or complementary) approach to n-gram
modeling is to employ a generative parser LM (Charniak
2001), which estimates the probability of a strings by sum-
ming over a large sample of its likely parses

p(s) =
∑

π

p(π, s)

Table 1 compares language modeling accuracy on a speech-
like version of WSJ of three syntactic language mod-
els (Charniak 2001; Roark 2001; Xu, Chelba, & Jelinek
2002) compared to a KN-smoothed trigram. Word error
rate (WER) of corresponding automatic speech recognition
(ASR) on HUB–1 (read WSJ) lattices is also shown. In all
cases, syntactic models outperform the n-gram, and interpo-
lating the two yields further improvement.

While these results show parsing language models to be
complementary if not superior given an equivalent amount
of training data (a million words here), web corpora have
now enabled n-grams to be trained on half a billion words,
for example, and no syntactic model has yet been trained on
anything close to this much data (nor will there ever likely
be half a billion words manually annotated for syntax).

However, we have shown that unannotated datacan im-
prove both the perplexity and word-error rates of our first-
stage PCFG parsing language model (Hall & Johnson 2003).
Moreover, the semi-supervised model discussed earlier (Mc-
Closky, Charniak, & Johnson 2006) will directly improve
our ability to automatically annotate new data for training
our parsing language model. Future experiments will study
precisely how the model scales to very large corpora.



As a closing remark, KN smoothing was recently sur-
passed (and rather dramatically) by a novel use of random
forest (RF) modeling (Xu & Jelinek 2004). As with syn-
tactic models, however, scalability is again an issue. In this
case, computational complexity is demanding, and if one has
to choose between RFs with less data and KN smoothing
with more data, the latter wins. If RFs can be made more
efficient, however, it may benefit syntactic models as well
by better smoothing their internal probability distributions.

Noisy-Channel Modeling
Given some observed dataO, it is often useful to imagine it
has an underlying source formS about which we have some
prior knowledge (easily expressed via Bayes Rule):

ŝ = argmax
S

P(S|O) = argmax
S

P(O|S)P(S)

In NLP, this noisy-channelsetup has been widely used to
model an underlying string of words being transformed into
some other observable form: acoustics for speech recogni-
tion (Hall & Johnson 2003), words in a foreign language for
machine translation (Charniak, Knight, & Yamada 2003),
a disfluent transcript to be cleaned (Johnson & Charniak
2004), a long paraphrase to be shortened (Turner & Char-
niak 2005), etc. While thechannel modelP(O|S) differs
for each task, what remains constant isP(S), the LM. In this
framework, a better prior directly implies an improved pos-
terior, and all of the tasks cited here have shown improved
accuracy from using a parser LM instead of n-grams.

Tasks
Speech Recognition: the acoustic channel model identi-
fies words based on sound, but similar sounding words and
phrases are often confused (e.g.a, uh, andthe, or as a more
colorful example,recognize speechandwreck a nice beach).
However, given such possibilities to choose between (via a
lattice or n-best lists from the acoustic model), the LM can
help us discriminate between alternatives by providing prior
knowledge on the probability of each path though the lat-
tice, penalizing with low probability word sequences that
are unlikely to occur in practice. Table 1 compares WER
achieved using syntactic and n-gram language modeling on
this task (Hall & Johnson 2003).

Machine Translation (MT) : the channel model trans-
lates a foreign language string into English, and given mul-
tiple possibilities for the translation, the LM again helps
choose between alternatives. One study found that by mov-
ing from an n-gram to a parsing language model, human
judges deemed 50% more of translations to be perfect, 200%
more to be grammatically correct, and an equivalent num-
ber to semantically correct (Charniak, Knight, & Yamada
2003). Despite these findings, output produced using the
n-gram LM received higher scores fromBLEU, a popular n-
gram based metric for automatic evaluation of MT output.
The difference observed here between human judgements
andBLEU scores suggest closer agreement may be possible
by incorporating syntactic information into evaluation.

Disfluency Modeling: we observe a possibly disflu-
ent utterance in conversational speech and want to find a

“cleaned” fluent version indicating what the speaker meant
to say. For example, in an observed utteranceI want a
flight to Boston, uh, I mean Denver, we assume the speaker
meant to say simplyI want a flight to Denverbut inad-
vertently inserteduh I meandue to cognitive and practi-
cal constraints. While an engaged listener can usually fil-
ter out disfluencies subconsciously, disfluencies have been
shown to negatively impact both the readability of tran-
scribed speech (Joneset al. 2003) and the accuracy of auto-
mated analysis performed on it (Charniak & Johnson 2001;
Harperet al. 2005). To model disfluencies in the noisy-
channel paradigm, disfluency insertion is handled by the
channel and the LM estimates the string probabilities of
proposed cleaned versions. For this task, the parsing LM
yielded a 3% f-measure improvement (12.5% error reduc-
tion) over an n-gram model (Johnson & Charniak 2004).

Sentence Compression: this task involves finding a
“equivalent” shorter paraphrase or summary of a sentence
(at a finer level of granularity, proposing various shortened
alternatives according to a length vs. information loss trade-
off). Under the noisy-channel rubric, the channel model pro-
poses portions of the sentence to remove, and the LM es-
timates the acceptability of the remaining words. Using a
parsing LM rather than an n-gram, 10% more compression
(i.e. shorter paraphrases) is achieved with no loss in gram-
maticality or information (Turner & Charniak 2005).

Direct Use of Syntax
This section describes tasks in which syntactic features de-
rived from parser output have been directly applied.

Information Extraction (IE): Parsing has been used in a
variety of information extraction (IE) systems. In Miller et
al. (2000), simple entity and relation annotations were added
on top of syntax, and the parser was trained to recover both
in parallel. In MUC-7, the system finished second in two
tasks (the winning system was hand-crafted). In Surdeanu et
al. (2003), predicate-argument structures were induced from
parse trees with trivial rules mapping predicate arguments
to domain-specific template slots. Again the system per-
formed quite well though was bested by one hand-crafted
for domain-specific pattern matching. Recently there has
been fast growing interest in performing IE on biomedical
research papers for automatic database curation, and pars-
ing is being increasingly applied here as well (Park 2001).

NL Database Queries: Natural language interfaces have
the potential to simplify our interactions with devices and
software. A recent study annotated logical form on surface-
level queries (e.g.what states border Texas?) and auto-
matically learned a mapping between surface and logical
forms via induced syntax (Zettlemoyer & Collins 2005). For
two domains, 87% f-measure was achieved in mapping NL
queries to correct logical form.

Comma Detection: Syntactic features derived from
parser output have been used to automatically detect where
commas should be inserted into text (Shieber & Tao 2003).
Results achieved about 73% f-measure and showed detec-
tion accuracy increased smoothly and incrementally as pars-
ing accuracy improved. In addition to being useful in tasks
like generation and MT, this is particularly compelling for



annotating transcribed speech. As discussed earlier, ASR
output alone does not produce readable transcriptions (Jones
et al. 2003), and parsing studies have shown the presence
of commas, which commonly indicate constituent bound-
aries, significantly improves parsing accuracy on transcribed
speech (Gregory, Johnson, & Charniak 2004).

Sentence Boundary Detection: In a similar vein, sen-
tence boundary detection is also important for automatic
speech transcription to improve both its readability (Joneset
al. 2003) and the accuracy of automatic analysis performed
on it (Harperet al. 2005). Recently, syntactic features ex-
tracted from parser output have been used to rerank output of
a state-of-the-art sentence boundary detection system, and
accuracy was improved for both the best-case of manually
transcribed (reference) words and the fully-automatic case
of ASR output (Harperet al. 2005).

Machine Translation: Early work in MT sought an inter-
lingua which could serve as a nexus in translating between
all language pairs. At the opposite extreme, statistical MT
systems have primarily translated at the word-level. Recent
work has begun investigating syntactic-transfer as a com-
promise between these two poles (Knight & Marcu 2005);
unlike interlingua, we have concrete syntactic representa-
tions that have been broadly applied, and syntax provides a
deeper understanding of linguistic structure and commonal-
ities shared across languages than we get from words alone.

Conclusion
We have provided a brief introduction to recent work in sta-
tistical parsing and its applications. While we have already
seen parsing usefully applied to a variety of tasks, really we
are only beginning to scratch the surface in developing sys-
tems capable of deep understanding of natural language.
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