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Summary

e Background on word segmentation and phonology

» Liang et al and Berg-Kirkpatrick et al MaxEnt word segmentation models
> Smolenksy's Harmony theory and Optimality theory of phonology
» Goldwater et al MaxEnt phonology models

e A joint MaxEnt model of word segmentation and phonology

> because Berg-Kirkpatrick's and Goldwater's models are MaxEnt models, and
MaxEnt models can have arbitrary features, it is easy to combine them
» Harmony theory and sign constraints on MaxEnt feature weights

e Experimental evaluation on Buckeye corpus

> better results than Borschinger et al 2014 on a harder task
» Harmony theory feature weight constraints improve model performance
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Word segmentation and phonological alternation

Overall goal: model children’s acquisition of words

Input: phoneme sequences with sentence boundaries (Brent)

Task: identify word boundaries in the data,
and hence words of the language
jousw,a,n, t,t,u,s,i.0,.9.b,u.k
ju want tu si &9 buk
“you want to see the book”
But a word's pronunciation can vary, e.g, final /t/ in /want/ can delete

» can we identify the underlying forms of words
> can we learn how pronunciations alternate?



Prior work in word segmentation

e Brent et al 1996 proposed a Bayesian unigram segmentation model

e Goldwater et al 2006 proposed a Bayesian non-parametric bigram
segmentation model that captures word-to-word dependencies

e Johnson et al 2008 proposed a hierarchical Bayesian non-parametric model
that could learn and exploit phonotactic regularities (e.g., syllable structure
constraints)

e Liang et al 2009 proposed a maximum likelihood unigram model with a
word-length penalty term

e Berg-Kirkpatrick et al 2010 reformulated the Liang model as a MaxEnt model



The Berg-Kirkpatrick word segmentation model

» each utterance w; = (s 1, .- ., Si.m,) is a sequence of (surface) phones

e The model is a unigram model, so probability of word sequence w is:

V4
Pwle) = > T]Ps16)
Jj=1

S1...5
S.t.sy..syg=w

e The probability of a word P(s | 8) is a MaxEnt model:

P(s|8) = %exp((% - f(s)), where:
zZ = Z exp(6 - (s)
s'eS

e The set S of possible surface forms is the set of all substrings in D shorter
than a length bound



Aside: the set S of possible word forms

P(s|8) = %exp(& f(s)), where:
Z = > exp(6-f(s)
s'eS

e QOur estimators can be understood as adjusting the feature weights 6 so the
model doesn’t “waste” probability on forms s that aren't useful for analysing
the data

e In the generative non-parametric Bayesian models, S is the set of all possible
strings

o |n these MaxEnt models, S is the set of substrings that actually occur in the
data

e How does the difference in S affect the estimate of 67

e Could we use the negative sampling techniques of Mnih et al 2012 to estimate
MaxEnt models with infinite §7



The word length penalty term

e Easy to show that the MLE segmentation analyses each sentence as a single
word

» the MLE minimises the KL-divergence between the data distribution and the
model’s distribution

= Liang and Berg-Kirkpatrick add a double-exponential word length penalty
P(w | 6) Z l_[P5J|9e><p—|s,|)
stsl sf W
= P(w | 0) is deficient (i.e., >, P(w|6) < 1)

» because we use a word length penalty in the same way, our models are deficient
also

e The loss function they optimise is an L, regularised version of:

[ [P(wil6)
=1



Sensitivity to word length penalty factor d
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Phonological alternation

e Words are often pronounced in different ways depending on the context

e Segments may change or delete

> here we model word-final /d/ and /t/ deletion
»eg,/wanttu/=[want y

e These alternations can be modelled by:
> assuming that each word has an underlying form which may differ from the
observed surface form
> there is a set of phonological processes mapping underlying forms into surface

forms
» these phonological processes can be conditioned on the context

— e.g., /t/ and /d/ deletion is more common when the following segment is a
consonant
> these processes can also be nondeterministic
— e.g., /t/ and /d/ deletion doesn’t always occur even when the following segment
is a consonant
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Harmony theory and Optimality theory

Harmony theory and Optimality theory are two models of linguistic phenomena
(Smolensky 2005)
There are two kinds of constraints:

> faithfulness constraints, e.g., underlying /t/ should appear on surface
> universal markedness constraints, e.g., *tC

Languages differ in the importance they assign to these constraints:

> in Harmony theory, violated constraints incur real-valued costs
> in Optimality theory, constraints are ranked

The grammatical analyses are those which are optimal
» often not possible to simultaneously satisfy all constraints
> in Harmony theory, the optimal analysis minimises the sum of the costs of the

violated constraints
> in Optimality theory, the optimal analysis violates the lowest-ranked constraint

— Optimality theory can be viewed as a discrete approximation to Harmony theory
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Harmony theory as Maximum Entropy models

e Harmony theory models can be viewed as Maximum Entropy a.k.a. log-linear
a.k.a. exponential models

Harmony theory MaxEnt models
underlying form u and surface form s event x = (s, v)

Harmony constraints MaxEnt features f(s, v)
constraint costs MaxEnt feature weights 8
Harmony —6- f(s,u)

P(u,s) = %exp—e-f(s,u)



Learning Harmonic grammar weights

e (Goldwater et al 2003 learnt Harmonic grammar weights from
(underlying,surface) word form pairs (i.e., supervised learning)

> now widely used in phonology, e.g., Hayes and Wilson 2008
e Eisenstadt 2009 and Pater et al 2012 infer the underlying forms and learn
Harmonic grammar weights from surface paradigms alone

e Linguistically, it makes sense to require the weights —6 to be negative since
Harmony violations can only make a (s, u) pair less likely (Pater et al 2009)



Integrating word segmentation and phonology

Prior work has used generative models
> generate a sequence of underlying words from Goldwater’s bigram model
» map the underlying phoneme sequence into a sequence of surface phones

Elsner et al 2012 learn a finite state transducer mapping underlying phonemes
to surface phones
» for computational reasons they only consider simple substitutions

Borschinger et al 2013 only allows word-final /t/ to be deleted

Because these are all generative models, they can't handle arbitrary feature
dependencies (which a MaxEnt model can, and which are needed for Harmonic
grammar)
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A joint model of word segmentation and phonology
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Possible (underlying,surface) pairs

e Because Berg-Kirkpatrick's word segmentation model is a MaxEnt model, it is
easier to integrate it with Harmonic Grammar/MaxEnt models of phonology
e P(x) is a distribution over surface form/underlying form pairs x = (s, u)
where:
» s € S, where S is the set of length-bounded substrings of D, and
» s=uors e p(u), where p € P is a phonological alternation
— our model has two alternations, word-final /t/ deletion and word-final /d/
deletion
> we also require that u € S (i.e., every underlying form must appear somewhere
in D)
e Example: In Buckeye data, the candidate (s, u) pairs include ([l.ih.v], /l.ih.v/),
([lih.v], /Lih.v.d/) and ([l.ih.v], /lih.v.t/)

» these correspond to “live”, “lived” and the non-word “livet”



Probabilistic model and optimisation objective

e The probability of word-final /t/ and /d/ deletion depends on the following
word = distinguish the contexts C = {C,V, #}

1
P(s,ulc0) = Z—exp(e' f(s.u,c)), where:
Cc
Ze = Z exp(0-f(s,u,c)) forceC
(s,u)ex

e We optimise an L; regularised log likelihood Qp(#), with the word length
penalty applied to the underlying form u

Qslc8) = >, Pls.ulco)ep(-[ul’)
u:(s,u)ex
L

Qwle) = > J]osco)

S1...Sp Jj=1
S.tis;...sy=w

Qo) = > log Q(w; | 6) — xl6]:
i=1



MaxEnt features

e Here are the features f(s, u, ¢) where s = [Lih.v], u= /lLih.v.t/ and ¢ = C

» Underlying form lexical features: A feature for each underlying form u. In our
example, the feature is <U 1 ih v t>. These features enable the model to
learn language-specific lexical entries.

There are 4,803,734 underlying form lexical features (one for each possible
substring in the training data).

» Surface markedness features: The length of the surface string (<#L 3>), the
number of vowels (<#V 1>), the surface prefix and suffix CV shape
(<CVPrefix CV> and <CVSuffix VC>), and suffix+context CV shape
(<CVContext _C> and <CVContext C _C>).

There are 108 surface markedness features.

> Faithfulness features: A feature for each divergence between underlying and
surface forms (in this case, <*F t>).
There are two faithfulness features.



L1 regularisation and sign constraints

e We chose to use L regularisation because it promotes weight sparsity (i.e.

solutions where most weights are zero)

> rather than assigning every possible lexical entry and constraint a non-zero
weight (as Ly would), we may identify the subset of lexical entries and
constraints relevant to the language

> in turns out that L1 and L, regularisation produce similiar results

e The L; regularised log-likelihood is discontinuous at zero
» gradient-based methods like LBFGS can’t handle this discontinuity
= the OWLQN extension of LBFGS stops the line minimisation whenever it
crosses an orthant boundary (Andrew et al 2007)
» easy to extend this to impose sign constraints on weights

e Sign constraints we explored:

» Lexical entry weights must be positive (i.e., you learn what words are in the
language)
» Harmony faithfulness and markedness constraint weights must be negative

i
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Computational details
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Determining the possible surface and underlying forms

e The set of possible surface forms S is the set of all substrings in the training
data of length < 15

e X contains possible (surface,underlying) word pairs. For each s € S,
(s,s)e X, and (s,s+ /d/) e X if s+ /d/ € S (same for /t/)

P(s,ulc.8) = Zi exp(6 - f(s, u, c)), where:
Ze = Z exp(0-f(s,u,c)) forceC
(s,w)ex
Qslct) = > P(s,ulc8)exp(—|ul)
u:(s,u)eXx
Olog Q(s | c,0)

2 E[f(s, u, c)exp(—|ul?) |'s.c.0] —E[f(s.u. )| 6]

e The first expectation sums over underlying forms v : (s, u) € X, while the
second expectation sums over all (s, u) € X



Dynamic programming for log Q(w | 6)

Qwle) = >, [lasco

Jj=1
S.t.Sl...Sg:W
n

Qo(6) = D log Q(wi|6) = X[l

=1

e We can sum/maximise over all s1...sp such that s;...s; = w by using
dynamic programming

LSS S S S S S S ST SN
y I UwUqUna Ut U U U U Up U UKD

e A forward-backward type calculation calculates the expectations required to
compute dlog Q(w)/d0

N
]
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Experimental results
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Data preparation procedure

Data from Buckeye corpus of conversational speech (Pitt et al 2007)
> provides an underlying and surface form for each word

Data preparation as in Borschinger et al 2013

» we use the Buckeye underlying form as our underlying form

» we use the Buckeye underlying form as our surface form as well . ..

» except that if the Buckeye underlying form ends in a /d/ or /t/ and the surface
form does not end in that segment our surface form is the Buckeye underlying
form with that segment deleted

Example: if Buckeye u = /l.ih.v.d/ “lived”, s = [l.ah.v]
then our u = /lih.v.d/, s =[l.ih.v]

Example: if Buckeye u = /l.ih.v.d/ “lived”, s = [l.ah.v.d]
then our u = /lih.v.d/, s = [l.ih.v.d]



Data statistics

e The data contains 48,796 sentences and 890,597 segments.
e The longest sentence has 187 segments.

e The “gold” segmentation has 236,996 word boundaries, 285,792 word tokens,
and 9,353 underlying word types.

e The longest word has 17 segments.

e Of the 41,186 /d/s and 73,392 /t/s in the underlying forms, 24,524 /d/s and
40,720 /t/s are word final, and of these 13,457 /d/s and 11,727 /t/s are
deleted.

o All possible substrings of length 15 or less are possible surface forms S

e There are 4,803,734 possible word types and 5,292,040 possible
surface/underlying word type pairs.

e Taking the 3 contexts derived from the following word into account, there are
4,969,718 possible word+context types.

e When all possible surface/underlying pairs are considered in all possible
contexts there are 15,876,120 possible surface/underlying/context triples.



Overall segmentation scores

Borschinger et al. 2013 Our model
Surface token f-score 0.72  0.76 (0.01)

Underlying type f-score — 0.37 (0.02)
Deleted /t/ f-score 0.56  0.58 (0.03)
Deleted /d/ f-score — 0.62 (0.19)

e Results summary for our model compared to Borschinger et al (2013)

> their model only recovers word-final /t/ deletions and was run on data without
word-final /d/ deletions, so it is solving a simpler problem

e Surface token f-score is the standard token f-score

e Underlying type or “lexicon” f-score measures the accuracy with which the
underlying word types are recovered.

e Deleted /t/ and /d/ f-scores measure the accuracy with which the model
recovers segments that don't appear in the surface.

e These results are averaged over 40 runs (standard deviations in parentheses)
with the word length penalty d = 1.525 applied to underlying forms



The effect of feature weight constraints
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e The effect of constraints on feature weights on surface token f-score.

e “OT" indicates that the markedness and faithfulness features are required to
be non-positive

e “Lexical" indicates that the underlying lexical features are required to be
non-negative.
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Number of underlying /d/ and /t/ posited

15000 - .

y Sign
&, constraints
£ on weights
E 'A
:5’_: 10000 - oA None
o)
Ko)
ke
5 A oT
g
8
€ 5000~ = Lexical
>
P4
OT+Lexical
0 D e
i i
20000 40000

Number of deleted /d/

e The effect of feature weight constraints on the number of deleted underlying
/d/ and /t/ segments posited by the model (d = 1.525).

e The red diamond indicates the 13,457 deleted underlying /d/ and 11,727
deleted underlying /t/ in the “gold” data.



Regularised log-likelihood
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e The regularised log-likelihood as a function of the number of non-zero weights
for different constraints on feature weights (d = 1.525).




The number of words posited by the model
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e The number of underlying types proposed by the model as a function of the
number of non-zero weights, for different constraints on feature weights
(d = 1.525).

e There are 9,353 underlying types in the “gold” data.
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Deleted segment f-score
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e F-score for deleted /d/ and /t/ recovery as a function of word length penalty
d and whether all surface/underlying pairs X are included in all contexts C

e OT + Lexical weight constraints
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Conclusion and future work

e \Word segmentation and phonology can be integrated in a MaxEnt framework
to produce state-of-the-art results

> sensitivity to the word length penalty is a major drawback
> can this be set in a principled way?

e Constraining the feature weights associated with Markedness and Faithfulness
constraints improves the procedure’s performance considerably

e Can we generalise the approach to cover a wider range of phonological
processes?

e Can we generalise the approach to cover morpho-phonological processes,
where a single form has several hierarchical structures?
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