Rational Inferences and Bayesian Inferences

Mark Johnson

Dept of Computing
Macquarie University
Sydney, Australia

October 2015
Outline

When is Bayesian inference rational?

Language acquisition as inference

Non-parametric Bayesian models of word learning

Grounded learning and learning word meanings

Conclusions and future work
What is rational inference?

A theory of rational inference is a theory about the conditions under which it is rational for a person’s beliefs to change.

Dayton (1975) “Towards a theory of rational inference”

- **Inference** is the process of drawing conclusions (i.e., forming beliefs) from available information, such as observations
- What is **rational**?
Logic as rational inference

- Deductive logic describes inferences of the form $A, A \Rightarrow B \vdash B$
- It involves statements which are *either true or false claims about the world*
 - but we don’t know which; our knowledge is *incomplete*
- *Gödel’s Completeness Theorem* shows that the rules of first-order logic satisfy:
 - **Soundness**: if the premises are true, the conclusions are always true
 - **Completeness**: if a statement must be true given the premises, then the rules can derive it
- *Gödel’s Incompleteness Theorem* shows that no inference system for a sufficiently complicated domain, such as arithmetic, can be both sound and complete
 - deeply related to the undecidability of the Turing machine halting problem
What is Bayesian inference?

- Bayesian inference associates statements with probabilities:
 - **Objectivist interpretation**: $P(A) = 0.7$ means “A is true in 70% of the relevant situations”
 - **Subjectivist interpretation**: $P(A)$ is the strength of agent’s belief that A is true

- Bayes rule is used to *update* these probabilities based on evidence:

 $P(\text{Belief} \mid \text{Evidence}) \propto P(\text{Evidence} \mid \text{Belief}) \cdot P(\text{Belief})$

- But *where do the original prior probabilities come from?*
 - in practice, influence of prior often become negligible after just a few observations
When is Bayesian inference rational?

- **Axiomatic justification**: if strength of belief is represented by a real number, then probability theory and Bayes rule is the only reasonable way of manipulating these numbers.
- **Decision-theoretic justification**: if the world is really probabilistic in the way that Bayesian theory assumes, then Bayesian inference leads to optimal decisions.
- **Dutch book justification**: if you’re willing to make bets with odds based on the strength of your beliefs, and your beliefs aren’t consistent with probability theory, then a *Dutch book* sequence of bets can be made that guarantee you lose money.
Comparing logical and Bayesian inference

- **Logical inference ignores frequency information**
 - Bayesian inference extracts more information from data
 - Bayesian inference is *probabilistic*, while logical inference is *possibilistic*

- In logical inference, an inference is either correct or incorrect, while Bayesian inference is successful if the estimated probability is close to the true probability
 - we’re happy if \(\hat{P}(A) = 0.7 \) when \(P(A) = 0.70001 \)

 \(\Rightarrow \) Bayesian inference can succeed on problems that logical inference cannot solve because:
 - Bayesian inference gets *more information from data*, and has *a weaker criterion for success*
 \(\Rightarrow \) Bayesian inference can learn languages that logical inference cannot (e.g., PCFGs)
Outline

When is Bayesian inference rational?

Language acquisition as inference

Non-parametric Bayesian models of word learning

Grounded learning and learning word meanings

Conclusions and future work
The logical problem of language acquisition

- **Poverty of the stimulus**: A human language has an infinite number of sentences, but we learn it from a finite number amount of experience.

- **No negative evidence**: Parents don’t correct children’s grammatical errors (and when they do, the children don’t pay any attention).

⇒ **Subset problem**: How can children ever learn that a sentence is not in their language?

 I gave some money to the museum.
 I gave the museum some money.
 I donated some money to the museum.
 I donated the museum some money.
Bayesian solutions to the subset problem

• Problem: how to learn that *I donated the museum some money is ungrammatical without negative evidence?

• Possible approach (Amy Perfors and others): use Bayesian inference for two hypotheses
 ▶ Hypothesis 1: donates does not appear in the Dative-shift construction
 ▶ Hypothesis 2: donates does appear in the Dative-shift construction with frequency distributed according to some prior

• Note: this still requires innate knowledge!
 ▶ where do the hypotheses and priors come from?
 ▶ in Dative shift, the generalisations seem to be over semantic classes of verbs, rather than individual verbs
Occam’s Razor

- In Aspects, Chomsky (1965) hypothesises that learners use an *evaluation metric* that prefers a simpler grammar to a more complex one when both are consistent with the linguistic data.
- In Bayesian inference, the prior plays exactly the same role:

\[
P(\text{Grammar} | \text{Data}) \propto P(\text{Data} | \text{Grammar}) \cdot P(\text{Grammar})
\]

- Information-theoretic connection: If the grammar is written in an optimal code based on the prior, then the Bayes-optimal analysis will be the shortest description of the data (*Minimum Description Length* learning).
What information is available to the child?

- Language acquisition with logical inference from positive examples alone only works when the possible languages are very restricted.

⇒ Strong innate constraints on possible human languages

- But maybe the context also supplies useful information?

- Wexler and Culicover (1980) showed that transformational grammars are learnable when:
 - the learner knows the sentence’s semantics (its deep structure) as well as its surface form, and
 - the surface form does not differ “too much” from the semantics

- Steedman has developed Bayesian models that do this when the semantic form is uncertain.
Outline

When is Bayesian inference rational?

Language acquisition as inference

Non-parametric Bayesian models of word learning

Grounded learning and learning word meanings

Conclusions and future work
Broad-coverage evaluation of computational models

- In computational linguistics we’ve discovered that many models that work well on small artificial data sets don’t scale up well.

 ⇒ Computational linguistics now discounts research that doesn’t use “real data.”

- (But all modelling involves idealisations, and it’s not clear that working with small data is the worst of our modelling assumptions.)
Parametric and non-parametric inference

• A *parametric model* is one defined by values of a pre-defined *finite* set of parameters
 ▶ Chomskyian parameter-setting is parametric inference
 ▶ learning a parametric model is “just optimisation” of the parameter values

• A *non-parametric model* is one that can’t be characterised by a finite number of parameters
 ▶ learning a non-parametric model involves learning what the appropriate units of generalisation are
Lexicon learning and unsupervised word segmentation

- Input: phoneme sequences with *sentence boundaries* (Brent)
- Task: identify *word boundaries*, and hence *words*

```
ju want tu si ðə bʊk
“you want to see the book”
```

- Ignoring phonology and morphology, this involves learning the pronunciations of the lexicon of the language
- No obvious bound on number of possible lexical entries
 \[\Rightarrow \text{learning the lexicon is a non-parametric learning problem} \]
Adaptor grammars: a framework for non-parametric Bayesian inference

• Idea: use a grammar to generate potential parameters for a non-parametric model

• In an adaptor grammar, each subtree that the grammar generates is a parameter of the model

• The prior specifies:
 ▶ the grammar rules which define the possible generalisations the model can learn
 ▶ a distribution over the rule probabilities

• The inference procedure learns:
 ▶ which generalisations (subtrees) best describe the data
 ▶ the probability of these generalisations
Adaptor grammars for word segmentation

- The grammar generates an infinite number of **Word** subtrees
- A parse of a sentence segments the phonemes into words

Words \rightarrow Word
Words \rightarrow Word Words
Word \rightarrow Phons
Phons \rightarrow Phon
Phons \rightarrow Phon Phons

![Diagram of adaptor grammars for word segmentation](image)
Adaptor grammar learnt from Brent corpus

• Prior grammar

1 \text{Words} \rightarrow \text{Word} \text{Words}
1 \text{Word} \rightarrow \text{Phon}
1 \text{Phons} \rightarrow \text{Phon Phons}
1 \text{Phon} \rightarrow D
1 \text{Phon} \rightarrow A

• Grammar sampled from posterior after learning on Brent corpus

16625 \text{Words} \rightarrow \text{Word} \text{Words}
1575 \text{Word} \rightarrow \text{Phons}
4962 \text{Phons} \rightarrow \text{Phon Phons}
134 \text{Phon} \rightarrow D
180 \text{Phon} \rightarrow A
460 \text{Word} \rightarrow (\text{Phons} \text{Phon} y) (\text{Phons} \text{Phon} u)
446 \text{Word} \rightarrow (\text{Phons} \text{Phon} w) (\text{Phons} \text{Phon} A) (\text{Phons} \text{Phon} t)
374 \text{Word} \rightarrow (\text{Phons} \text{Phon} D) (\text{Phons} \text{Phon} ə)
372 \text{Word} \rightarrow (\text{Phons} \text{Phon} &) (\text{Phons} \text{Phon} n) (\text{Phons} \text{Phon} d)
Undersegmentation errors with Unigram model

- Unigram word segmentation model assumes each word is generated independently
- But there are strong inter-word dependencies (collocations)
- Unigram model can only capture such dependencies by analyzing collocations as words (Goldwater 2006)
Word segmentation improves when modelling syllable structure and context

- Word segmentation accuracy depends on the kinds of generalisations learnt.

<table>
<thead>
<tr>
<th>Generalization</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>words as units (unigram)</td>
<td>56%</td>
</tr>
<tr>
<td>+ associations between words (collocations)</td>
<td>76%</td>
</tr>
<tr>
<td>+ syllable structure</td>
<td>84%</td>
</tr>
<tr>
<td>+ interaction between</td>
<td></td>
</tr>
<tr>
<td>segmentation and syllable structure</td>
<td>87%</td>
</tr>
</tbody>
</table>

- **Synergies in learning words and syllable structure**
 - joint inference permits the learner to *explain away* potentially misleading generalizations
- We’ve also modelled word segmentation in *Mandarin* (and showed tone is a useful cue) and in *Sesotho*
F-score of collocation + syllable word segmentation model

<table>
<thead>
<tr>
<th>Category</th>
<th>Number of sentences</th>
</tr>
</thead>
<tbody>
<tr>
<td>WH-word</td>
<td>1 10 100 1000 10000</td>
</tr>
<tr>
<td>adjective</td>
<td>1 10 100 1000 10000</td>
</tr>
<tr>
<td>adverb</td>
<td>1 10 100 1000 10000</td>
</tr>
<tr>
<td>conjunction</td>
<td>1 10 100 1000 10000</td>
</tr>
<tr>
<td>determiner</td>
<td>1 10 100 1000 10000</td>
</tr>
<tr>
<td>light-verb</td>
<td>1 10 100 1000 10000</td>
</tr>
<tr>
<td>noun</td>
<td>1 10 100 1000 10000</td>
</tr>
<tr>
<td>preposition</td>
<td>1 10 100 1000 10000</td>
</tr>
<tr>
<td>pronoun</td>
<td>1 10 100 1000 10000</td>
</tr>
<tr>
<td>verb</td>
<td>1 10 100 1000 10000</td>
</tr>
</tbody>
</table>

The diagram shows the F-score distribution for different categories of words as the number of sentences increases.
Outline

When is Bayesian inference rational?

Language acquisition as inference

Non-parametric Bayesian models of word learning

Grounded learning and learning word meanings

Conclusions and future work
Mapping words to referents

- Input to learner:
 - word sequence: *Is that the pig?*
 - objects in nonlinguistic context: dog, pig
- Learning objectives:
 - identify utterance topic: pig
 - identify word-topic mapping: pig ⇛ pig
Frank et al. (2009) “topic models” as PCFGs

- Prefix sentences with possible topic marker, e.g., pig|dog
- PCFG rules choose a topic from topic marker and propagate it through sentence
- Each word is either generated from sentence topic or null topic \emptyset
- Grammar can require at most one topical word per sentence
- Bayesian inference for PCFG rules and trees corresponds to Bayesian inference for word and sentence topics using topic model (Johnson 2010)
AGs for joint segmentation and referent-mapping

- Combine topic-model PCFG with word segmentation AGs
- Input consists of unsegmented phonemic forms prefixed with possible topics:

 pig|dog ɪ z ð æ t ð ə p ɪ g

- E.g., combination of *Frank “topic model”* and unigram segmentation model

- Easy to define other combinations of topic models and segmentation models
Experimental set-up

- Input consists of unsegmented phonemic forms prefixed with possible topics:

 \[\text{pig} | \text{dog} \]

 - Child-directed speech corpus collected by Fernald et al (1993)
 - Objects in visual context annotated by Frank et al (2009)

- We performed Bayesian inference for the posterior Adaptor Grammar using a Markov Chain Monte Carlo algorithm (Johnson et al 2009)
Accuracy of topical and non-topical by frequency under topic-collocation (Tcolloc1) model

<table>
<thead>
<tr>
<th>Word type</th>
<th>Nontopical</th>
<th>Topical</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Accuracy (f-score)</th>
<th>Number of training sentences</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1 10 100 1000 10000</td>
</tr>
<tr>
<td>0.2</td>
<td>1 10 100 1000 10000</td>
</tr>
<tr>
<td>0.4</td>
<td>1 10 100 1000 10000</td>
</tr>
<tr>
<td>0.6</td>
<td>1 10 100 1000 10000</td>
</tr>
<tr>
<td>0.8</td>
<td>1 10 100 1000 10000</td>
</tr>
<tr>
<td>1.0</td>
<td>1 10 100 1000 10000</td>
</tr>
</tbody>
</table>
Results on grounded learning and word segmentation

- **Word to object mapping is learnt more accurately when words are segmented more accurately**
 - improving segmentation accuracy improves topic detection and acquisition of topical words

- **Word segmentation accuracy improves when exploiting non-linguistic context information**
 - incorporating word-topic mapping improves segmentation accuracy (at least with collocation grammars)

⇒ There are synergies a learner can exploit when learning word segmentation and word-object mappings
Modelling the role of social cues in word learning

- Everyone agrees social interactions are important for children’s early language acquisition
 - e.g. children who engage in more joint attention with caregivers (e.g., looking at toys together) learn words faster (Carpenter 1998)

- *Can computational models exploit social cues?*
 - we show this by building models that can exploit social cues, and show they *learns better on data with social cues than on data with social cues removed*

- Many different social cues could be relevant: *can our models learn the importance of different social cues?*
 - our models estimate *probability of each cue occurring with “topical objects”* and *probability of each cue occurring with “non-topical objects”*
 - they do this in an unsupervised way, i.e., they are not told which objects are topical
Exploiting social cues for learning word referents

• Frank et al (2012) corpus of 4,763 utterances with the following information:
 ▶ the orthographic words uttered by the care-giver,
 ▶ a set of available topics (i.e., objects in the non-linguistic objects),
 ▶ the values of the social cues, and
 ▶ a set of intended topics, which the care-giver refers to.

• Social cues annotated in corpus:

<table>
<thead>
<tr>
<th>Social cue</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>child.eyes</td>
<td>objects child is looking at</td>
</tr>
<tr>
<td>child.hands</td>
<td>objects child is touching</td>
</tr>
<tr>
<td>mom.eyes</td>
<td>objects care-giver is looking at</td>
</tr>
<tr>
<td>mom.hands</td>
<td>objects care-giver is pointing to</td>
</tr>
<tr>
<td>mom.point</td>
<td>objects care-giver is pointing to</td>
</tr>
</tbody>
</table>
Example utterance and its encoding as a string

Input to learner:

\[\text{.dog} \]
\[\text{.pig} \text{ child.eyes } \text{mom.eyes } \text{mom.hands} \]
\[\text{wheres the piggie} \]

Intended topic: \[\text{.pig} \]

Word-topic associations: \[\text{piggie} \sim \text{.pig} \]
Example parse tree for social cues
Results for learning words and social cues

- In the four different models we tried, social cues improved the accuracy of:
 - recovering the utterance topic
 - identifying the word(s) referring to the topic, and
 - learning a lexicon (word \(\mapsto\) topic mapping)

- kideyes was the most important social cue for each of these tasks in all of the models

- Social cues don’t seem to improve word segmentation
Outline

When is Bayesian inference rational?

Language acquisition as inference

Non-parametric Bayesian models of word learning

Grounded learning and learning word meanings

Conclusions and future work
Summary of Bayesian models of word segmentation

• Close to 90% accuracy in word segmentation with models combining:
 ▶ distributional information (including collocations)
 ▶ syllable structure

• Synergies are available when learning words and syllable structure jointly

• Grounded learning of word \Rightarrow topic mapping
 ▶ improves word segmentation
 ▶ another synergy in learning

• Social cues improve grounded learning
 ▶ but not word segmentation (so far)
General conclusions and future work

- Bayesian learners don’t have to be *tabula rasa* learners
 - the model structure and the prior can incorporate rich *a priori* knowledge
- Non-parametric models can learn a finite set of relevant generalisations out of an infinite set of potential generalisations
- There is useful information in distributional statistics that a Bayesian learner can take advantage of
- The models make predictions about order of acquisition that could be tested against real children’s behaviour