Crafting Scientific Papers

Mark Johnson

Macquarie University
Sydney, Australia

October 21, 2014
Talk summary

• Researchers’ job: change the way people do (or think about) something
• Your work is not done until you’ve communicated your results
• Written publications are the primary way we communicate our results
• Figure out your document’s purpose, and design it to achieve that purpose
• Scientific ideas are hard to understand: it’s hard work to craft a document that’s easy to read
• This talk gives suggestions about how to craft scientific papers and talks
Outline

Introduction

Design goals for scientific papers

The structure of a scientific paper

Planning a research paper

Writing the paper

Conclusions
Why are you writing this document?

• Figure out what goals you want your document to achieve, and *design the document so it achieves your goals*

 ▶ if your paper will have no impact, *don’t bother writing it*

 ▶ in undergraduate study, the purpose is e.g., to demonstrate you have mastered a subject, so you will pass the unit

 ▶ the purpose of a scientific paper is to *change the field in some way* (e.g., adopt a new technology, or at least think differently about a problem)

⇒ A “brain dump” might be ok for an undergrad paper, but almost never is appropriate for a research document

• Write your document with your intended audience in mind

 ▶ figure out what information the readers need in order to do what you want, and give it to them

 ▶ for applications and grant proposals, try to get the reviewing criteria
What’s the 1-sentence summary?

• We summarise other people’s papers in a single sentence, so it’s only reasonable to expect they’ll summarise our papers in a single sentence too

⇒ Figure out what your paper’s 1-sentence summary will be, because otherwise other people will do it for you (probably badly)

• Put your 1-sentence summary into your conclusion and your abstract and/or your title (maybe slightly changing the wording)
Differences between papers and conference talks

- **Research papers should be self-contained**
 - a paper should contain *all the information needed to convince an expert in the field*
 - you may need appendices or supporting documentation

- In computer science, many of our papers appear in conference proceedings, and are associated with a conference presentation

- Most conference talks aren’t long enough to present all the material from the paper
 - and a talk usually isn’t a good place to present a details of a proof or new algorithm

⇒ Use the conference presentation as *an advertisement for the paper* in the conference proceedings
 - most people only read a small fraction of the papers in the proceedings
Outline

Introduction

Design goals for scientific papers

The structure of a scientific paper

Planning a research paper

Writing the paper

Conclusions
The components of a paper

- The conventional paper structure in many fields is:
 - Title, authors, affiliations
 - Abstract
 - Introduction (including summary of prior work; this can be its own section)
 - one or more sections explaining the paper’s contributions (this is the meat of the paper)
 - Experimental Results
 - Conclusion
 - Acknowledgements (e.g., funding agency)
 - Bibliography

- If you’re writing a paper in an area for the first time, copy the structure of good papers in your field

- Use a standard document structure unless there’s a good reason for using a different structure
Sections and subsections

- You should structure your papers and talks into sections that reflect the logical structure
 - section headings help make clear the goal(s) of this part of the paper/talk
- In a paper (but usually not in a talk) it’s often good to divide sections into subsections
 - usually it doesn’t make sense to use subsubsections
 - you can use numbered or bullet points or “descriptions” to provide structured lists
- A book (e.g., a thesis) should have chapters as well as sections (and subsections)
Why discuss prior work?

• A good discussion of prior work should:
 ▶ convince the readers that you understand the field well enough not to have missed something important
 ⇒ you should discuss work that readers are likely to think is relevant
 ▶ help the readers understand your contribution by relating it to something they already understand

• Provide full bibliographic references, so readers can find it

• Be very clear about what is prior work and what is your innovation
 ▶ explicitly compare your work to close prior work
 ▶ sometimes it may be useful to delay discussion of prior work until after you’ve presented your contribution
Outline

Introduction

Design goals for scientific papers

The structure of a scientific paper

Planning a research paper

Writing the paper

Conclusions
What goes into a paper?

- A paper is usually designed to *convince the reader of something*
 - E.g., a scientific claim is true
 - E.g., a new algorithm is a better way of solving some problem than an old one
- It is *not* a description of how you did your research
 - real research is messy, full of ideas that didn’t work, etc.
 - ⇒ in general, *the order in which you did the research won’t be the same as the order in which you present the material*
 - nobody cares about your research experience (unless you’re getting a Nobel prize)
- Only include content that is *relevant to the paper’s goals*
 - ⇒ the paper shouldn’t be a “brain dump”
 - when writing something in a paper, always ask: *does the reader need to know this?*
- Figure out the paper’s goals, then work out *what you have to tell the reader to convince them your claims are correct*
Why plan your research paper?

- High level goal: *make sure you’ve already told the reader what they need to know in order to understand what you’re about to tell them now*
 - identify your target audience: usually researchers in the field who don’t know the specific topic of the paper
 - it’s fine assume standard background knowledge
 - include citations to textbooks or survey papers where reader can find any necessary background information
- Use a non-standard document structure if it enables you to present material in a more coherent order
 - explain to reader why you’re doing this
Drafting the paper

• There are many ways to do this; I usually write papers backwards
• Draft a bullet point outline, with roughly one bullet point per paragraph in the final paper
 ▶ draft the conclusion first, one bullet point for each high-level point that the paper makes
 ▶ pick a title and write the abstract (about a paragraph)
 ▶ draft the results section; work out what tables or figures are needed to provide evidence for the conclusion (this may identify additional results you’ll need for your paper!)
 ▶ draft bullet points for the rest of the results section, indicating e.g., the experimental methods you’ll need to explain
 ▶ draft bullet points for the content sections of the paper (this may force you to change the results and/or conclusion section)
 ▶ draft the introduction and prior work section(s)
• Now work forwards, replacing the bullet points with text
Explain everything three times

- Scientific papers are hard to read – do what you can to make yours easier to read!
- In general, *explain everything three times*:
 - tell the reader in general terms what you’re about to explain
 - then explain the material in detail
 - then summarise for the reader what you’ve just told them
- Don’t worry about making it too easy!
- Papers and monographs already have this structure (Introduction, Conclusion)
- It’s good to do this within the section and subsection level too; i.e., have an introductory paragraph at the beginning of each section explaining what the section contains, and how it relates to the point of the paper
Running worked examples

- Detailed, worked examples can help readers understand difficult concepts.
- Introduce examples immediately after a complex definition or part of the paper.
- It’s a good idea to have two or three examples that you refer to and build on throughout the paper.
- The examples can be artificial, chosen to provide simple demonstrations of key points of the paper.
- The examples can also help tie the subsections and sections of the paper together.
- *Identifying the examples you will use is a key part of designing a paper.*
Outline

Introduction

Design goals for scientific papers

The structure of a scientific paper

Planning a research paper

Writing the paper

Conclusions
A scientific paper isn’t a murder-mystery

- Don’t “hold back the best for last”: most readers won’t get to the end of the paper anyway
 ⇒ Trumpet important points in the abstract and the introduction, maybe even in the title
 ▶ e.g., a good title might be “Part-of-speech tagging improves named entity extraction”
 ▶ even then, people will misunderstand the point of the paper
Make your paper as easy to read as possible

- Scientific papers are hard to read because the ideas are complicated.

 ⇒ Make your text as easy to read as possible. Use simple words and short sentences if you can.

- You’re not writing a novel: avoid rhetorical flourishes
 - ignore your high-school writing advice
 - use the same word to describe the same concept throughout the paper
 - give examples of complicated definitions or concepts

- Use consistent formatting throughout (easy with LaTeX)

- Write in standard English
 - many readers are not native speakers
 - make your document as simple as possible (but not simpler!)
Citations and cross-references

- **It is crucial to cite the right publications**
 - if you miss obviously relevant papers, your readers will think you don’t understand the topic
 - you can cite background material your readers should know, rather than explaining it in your paper

- Use **cross-references within your document** where appropriate
 - cross-references are not appropriate in a talk (repeat the material instead)
 - in a complex document, use cross-references to help reader find key *definitions, running examples* and *results*
 - in LaTeX, use \ref and \pageref (except in conference proceedings)
 - to create hyperlinked cross-references, use the hyperref package, with \autoref and \autopageref commands
Proof-reading your paper

- First drafts are almost never very good

⇒ Plan to re-read and polish your paper (several times if it is important)

- After you’ve re-read a paper several times you lose the ability to see problems in it
 - give it to a friend to proof-read (in general, another person can only give you advice on a paper once)

- After a week or so, you start to see problems in your paper again
 ⇒ if a document is important, give yourself several weeks to write it

- Use a spelling corrector. E.g., ispell or aspell for Emacs.
Layout and fonts

- Most conferences will supply a LaTeX sty file that specifies layout, fonts, etc
 - there’s usually a rigorously-enforced page limit
- If there’s no specified formatting, use a conventional layout and font
 - don’t squeeze much onto a page (both papers and talks)
 - fancy fonts get tiresome quickly
- For slides, “less is more”: use at least 18 point font
Outline

Introduction

Design goals for scientific papers

The structure of a scientific paper

Planning a research paper

Writing the paper

Conclusions
Summary and conclusions

• Your publications are the primary way your research will become known

\Rightarrow Quality documents are critical for your scientific reputation!

• Identify the document’s goals, and engineer the document to achieve those goals

• Use a standard document structure unless you have a good reason not to

• Make sure the reader doesn’t have to be clairvoyant

• Explain everything three times

• Use examples to clarify difficult concepts

\Rightarrow Structure documents back-to-front, then write front-to-back

• Usually, make conference talks advertisements for the paper