The Noisy Channel Model and Markov Models

Mark Johnson

September 3, 2014
The big ideas

• The story so far:
 ▶ machine learning classifiers learn a function that maps a data item X to a label Y
 ▶ handle large item spaces \mathcal{X} by decomposing each data item X into a collection of features F
 ▶ but the label spaces \mathcal{Y} have to be small to avoid sparse data problems

• Where we’re going from here:
 ▶ many important problems involve large label spaces \mathcal{Y}
 – Part-Of-Speech (POS) tagging, where Y is a vector of POS tags
 – Syntactic parsing, where Y is a syntactic parse tree
 ▶ basic approach: decompose Y into parts or features G
 ▶ if each feature G_j is independent, just learn a separate classifier for each G_j
 ▶ but often there are important dependencies between the G_j
 – in POS tagging, adjectives typically precede nouns
 \Rightarrow more sophisticated models are required to capture these dependencies
Outline

The noisy channel model

Bigram language models

Learning bigram models from text

Markov Chains and higher-order n-grams

n-gram language models as Bayes nets

Summary
Many problems involve predicting a complex label Y from data X

- in *automatic speech recognition*, X is acoustic waveform, Y is transcript
- in *machine translation*, X is source language text, Y is target language translation
- in *spelling correction*, X is a source text with spelling mistakes, and Y is a target text without spelling mistakes
- in *automatic summarisation*, X is a document, Y is a summary of that document

Suppose we can estimate $P(Y \mid X)$ somehow. Then we should compute:

$$
\hat{y}(x) = \arg\max_{y \in \mathcal{Y}} P(Y=y \mid X=x)
$$

Problems we have to solve:

- $|\mathcal{Y}|$ is astronomical \Rightarrow computing $\arg\max$ may be intractable
- $|\mathcal{Y}|$ is astronomical \Rightarrow *how can we estimate* $P(Y \mid X)$?
The noisy channel model

- The noisy channel model uses **Bayes rule** to invert $P(Y \mid X)$

$$P(Y \mid X) = \frac{P(X \mid Y) P(Y)}{P(X)}$$

- We can ignore $P(X)$ if our goal is to compute

$$\hat{y}(x) = \arg\max_{y \in Y} P(X=x \mid Y=y) P(Y=y)$$

because $P(X=x)$ is a constant

- $P(X \mid Y)$ is called the **channel model** or the **distortion model**
- $P(Y)$ is called the **source model** or the **language model**
 - can often be learnt from cheap, readily available data
The noisy channel model in spelling correction, speech recognition and machine translation

\[
\hat{y}(x) = \arg\max_{y \in Y} P(X=x \mid Y=y) \cdot P(Y=y)
\]

- The channel models are task-specific
 - for spelling correction, \(P(X \mid Y) \) maps words to their likely mis-spellings
 - for speech recognition, \(P(X \mid Y) \) maps words or phonemes to acoustic waveforms
 - for machine translation, \(P(X \mid Y) \) maps words or phrases to their translations
- The source model \(P(Y) \), which is also called a language model, is the same
 - \(P(Y) \) is the *probability of a sentence* \(Y \)
 - can be learned from readily available text corpora
Outline

The noisy channel model

Bigram language models

Learning bigram models from text

Markov Chains and higher-order n-grams

n-gram language models as Bayes nets

Summary
Language models

- A *language model* calculates the probability of a sequence of words or phonemes.
- In many NLP applications the *source model* $P(Y)$ in a noisy channel model is a language model.

$$
\hat{y}(x) = \arg\max_{y \in Y} P(X=x \mid Y=y) \cdot P(Y=y)
$$

- In such applications, Y is a *sequence of words or phonemes*.
- The language model is used to calculate the probability of possible sequences Y of words or phonemes.
- The job of the language model is to distinguish likely sequences of words or phonemes from unlikely ones.
- It can be learnt from cheaply-available text collections.
The bigram assumption for language models

- A language model estimates the probability $P(Y)$ of a sentence $Y = (Y_1, \ldots, Y_n)$, where Y_i is the ith word in the sentence.
- Recall the relationship between joint and conditional probabilities:

 $$P(U, V) = P(V) P(U | V)$$

- We can use this to rewrite $P(Y) = P(Y_1, \ldots, Y_n)$:

 $$P(Y_1, \ldots, Y_n) = P(Y_1) P(Y_2, \ldots, Y_n | Y_1)$$
 $$= P(Y_1) P(Y_2 | Y_1) P(Y_3 | Y_1, Y_2)$$
 $$\ldots P(Y_n | Y_1, \ldots, Y_{n-1})$$

- Now make the bigram assumption: $P(Y_j | Y_1, \ldots, Y_{j-1}) \approx P(Y_j | Y_{j-1})$, i.e., word Y_j only depends on Y_{j-1}.
- Then $P(Y)$ simplifies to:

 $$P(Y_1, \ldots, Y_n) = P(Y_1) P(Y_2 | Y_1) \ldots P(Y_n | Y_{n-1})$$
Homogeneity assumption in language models

- Using bigram assumption we simplified

\[
P(Y_1, \ldots, Y_n) = P(Y_1) P(Y_2 | Y_1) \ldots P(Y_n | Y_{n-1})
\]

\[
= P(Y_1) \prod_{i=2}^{n} P(Y_i | Y_{i-1})
\]

- Homogeneity assumption: conditional probabilities don’t change with \(i\), i.e., there is a matrix \(s\) such that

\[
P(Y_i = y | Y_{i-1} = y') = s_{y,y'}
\]

- Then the bigram model probability \(P(Y=y)\) of a sentence \(y = (y_1, \ldots, y_n)\) is:

\[
P(Y=y) = P(Y_1 = y_1) s_{y_2,y_1} s_{y_3,y_2} \cdots s_{y_n,y_{n-1}}
\]

\[
= P(Y_1 = y_1) \prod_{i=2}^{n} s_{y_i,y_{i-1}}
\]
Using end-markers to handle initial and final conditions

• We simplify the model by assuming the string y is padded with end-markers $\$$.

\[y = (\$, y_1, y_2, \ldots, y_n, \$) \]

I.e., $Y_0 = \$$. and $Y_{n+1} = \$$.

• Then the bigram language model probability $P(Y=y)$ is:

\[
P(Y=y) = s_{y_1,\$} \, s_{y_2,y_1} \, \ldots \, s_{y_n,y_{n-1}} \, s_{\$,y_n} \\
= \prod_{i=1}^{n+1} s_{y_i,y_{i-1}}
\]
Bigram language model example

\[s = \begin{array}{c|cccc} y_i \backslash y_{i-1} & $ & bow & wow & woof \\ \hline $ & 0 & 0 & 0.1 & 0.2 \\ bow & 0.5 & 0 & 0.7 & 0.4 \\ wow & 0 & 1.0 & 0 & 0 \\ woof & 0.5 & 0 & 0.2 & 0.4 \\ \end{array} \]

\[
P($,\text{bow,} \text{wow,} \text{woof,} \text{woof,}$)
\]

\[= s_{\text{bow},$} \cdot s_{\text{wow,bow}} \cdot s_{\text{woof,wow}} \cdot s_{\text{woof,woof}} \cdot s_{\$\text{,woof}} \]

\[= 0.5 \cdot 1.0 \cdot 0.2 \cdot 0.4 \cdot 0.2 \]

\[= 0.008 \]
Outline

The noisy channel model

Bigram language models

Learning bigram models from text

Markov Chains and higher-order n-grams

n-gram language models as Bayes nets

Summary
Estimating bigram models from text

- We can estimate the bigram model s from a **text corpus**
- Collect a **vector of unigram counts** m and a **matrix of bigram counts** n

$$
m_y = \text{number of times } y \text{ is followed by anything in corpus}
$$

$$
n_{y',y} = \text{number of times } y' \text{ follows } y \text{ in corpus}
$$

- make sure you count the beginning and end of sentence markers!

- Maximum likelihood estimates:

$$
\hat{s}_{y',y} = \frac{n_{y',y}}{m_y}
$$

- Add-1 smoothed estimates (a good idea!):

$$
\hat{s}_{y',y} = \frac{n_{y',y} + 1}{m_y + |\mathcal{V}|}
$$

where \mathcal{V} is the **vocabulary** (set of words) of the corpus
Estimating a bigram model example

\[
\text{corpus} = \begin{pmatrix}
\$ \text{bow} \ \text{wow} \ \text{woof} \ \text{woof} \\
\text{woof} \ \text{bow} \ \text{wow} \ \text{bow} \ \text{wow} \ \text{woof} \\
\text{bow} \ \text{wow} \\
\end{pmatrix}
\]

\[V = \{\$, \text{bow}, \text{wow}, \text{woof}\}\]

\[m = \begin{pmatrix}
\text{bow} & \text{wow} & \text{woof} \\
3 & 4 & 4 & 4 \\
\end{pmatrix}
\]

\[
\begin{array}{c|ccc}
\text{y}_i \ \text{y}_{i-1} & \text{bow} & \text{wow} & \text{woof} \\
\hline
\text{y}_i \ \text{y}_{i-1} & 0 & 0 & 1 & 2 \\
\text{m} & 2 & 0 & 1 & 1 \\
\text{n} & 0 & 4 & 0 & 0 \\
\text{woof} & 1 & 0 & 2 & 1 \\
\end{array}
\]

\[
\hat{s} = \begin{pmatrix}
\$ & \text{bow} & \text{wow} & \text{woof} \\
1/7 & 1/8 & 2/8 & 3/8 \\
\text{bow} & 3/7 & 1/8 & 2/8 & 2/8 \\
\text{wow} & 1/7 & 5/8 & 1/8 & 1/8 \\
\text{woof} & 2/7 & 1/8 & 3/8 & 2/8 \\
\end{pmatrix}
\]
Outline

The noisy channel model

Bigram language models

Learning bigram models from text

Markov Chains and higher-order n-grams

n-gram language models as Bayes nets

Summary
Markov Models

- A **first-order Markov chain** is a sequence of random variables Y_1, Y_2, Y_3, \ldots, where:

 \[P(Y_i \mid Y_1, \ldots, Y_{i-1}) = P(Y_i \mid Y_{i-1}) \]

 I.e., Y_i is independent of Y_1, \ldots, Y_{i-2} given Y_i, or the value Y_i at time i only depends on the value Y_{i-1} at time $i-1$

- The bigram language model is a first-order Markov chain
 - Informally, the order of a Markov chain indicates “how far back in the past” the next state can depend on
Higher-order Markov chains and n-gram language models

- An n-gram language model uses adjacent n-word sequences to predict the probability of a sequence
 - E.g., the *trigrams* in $y = \text{(the, rain, in, spain)}$ are
 - ($$, $$, \text{the})$, ($$, \text{the, rain})$, \text{(the, rain, in)}, \text{(rain, in, spain)}, \text{(in, spain, $$)}, \text{(spain, $$, $$)}$
- In an mth order Markov chain, Y_i depends only on Y_{i-m}, \ldots, Y_{i-1}
- So an $m + 1$-gram language model is an mth order Markov chain
 - E.g., a bigram language model is a first-order Markov chain
 - E.g., a trigram language model is a second-order Markov chain
Outline

The noisy channel model

Bigram language models

Learning bigram models from text

Markov Chains and higher-order n-grams

n-gram language models as Bayes nets

Summary
n-gram language models

- Goal: estimate $P(y)$, where $y = (y_1, \ldots, y_m)$ is a sequence of words
- n-gram models decompose $P(y)$ into product of conditional distributions

\[
P(y) = P(y_1)P(y_2 | y_1)P(y_3 | y_1, y_2) \ldots P(y_m | y_1, \ldots, y_{m-1})
\]

E.g., $P(\text{wreck a nice beach}) = P(\text{wreck})P(\text{a} | \text{wreck})P(\text{nice} | \text{wreck a})$

\[
P(\text{beach} | \text{wreck a nice})
\]

- n-gram assumption: *no dependencies span more than n words*, i.e.,

\[
P(y_i | y_1, \ldots, y_{i-1}) \approx P(y_i | y_{i-n}, \ldots, y_{i-1})
\]

E.g., A *bigram model* is an n-gram model where $n = 2$:

\[
P(\text{wreck a nice beach}) \approx P(\text{wreck})P(\text{a} | \text{wreck})P(\text{nice} | \text{a})P(\text{beach} | \text{nice})
\]
An n-gram language model is a Markov model that factorises the distribution over sentences into a product of conditional distributions:

$$P(y) = \prod_{i=1}^{m} P(y_i \mid y_{i-n}, \ldots, y_{i-1})$$

- pad y with end markers, i.e., $y = (\$, y_1, y_2, \ldots, y_m, \$)

- Bigram language model as Bayes net:

- Trigram language model as Bayes net:
The conditional word models in n-gram models

- An n-gram model factorises $P(y)$ into a product of conditional models, each of the form:
 \[P(y_n | y_1, \ldots, y_{n-1}) \]

- The performance of an n-gram model depends greatly on exactly how these conditional models are defined
 - huge amount of work on this

- *Random forest* and *deep learning* methods for estimating these conditional distributions currently produce state-of-the-art language models
Outline

The noisy channel model

Bigram language models

Learning bigram models from text

Markov Chains and higher-order n-grams

n-gram language models as Bayes nets

Summary
Summary

- In many NLP applications, the label space \mathcal{Y} is *astronomically large* ⇒ decompose it into components (e.g., elements, features, etc.)
- The *noisy channel model* uses Bayes rule to “invert” a sequence labelling problem
 - enables us to use *language models* trained on large text collections
- n-gram language models are *Markov models* that predict the next word based on the preceding $n - 1$ words