Synergies in learning words and their referents

Mark Johnson
Katherine Demuth
Michael Frank
Bevan Jones

• Input: unsegmented utterances tagged with contextual objects
• Output: word segmentation and word to object mapping

PIG|DOG ɪ ə t ə p i g

PIG
Word to object “topic models” as PCFGs

- Objects in non-linguistic context \(\approx \) sentence topics
- Such topic models can be expressed as *Probabilistic Context-Free Grammars*
- PCFG rules *choose a topic* from possible topic marker and *propagate it through sentence*
- Each word is either generated by sentence topic or a special null topic
- Requiring *at most one topic per sentence*:
 - improves accuracy
 - can be expressed by PCFG
Adaptor grammars for word segmentation

• Adaptor grammars (AGs) generalise PCFGs by learning probability of *entire subtrees*

 ➤ Prob. of adapted subtree \propto number of times tree was previously generated $\ + \ \alpha \times$ PCFG prob. of subtree

 ➤ AGs are *hierarchical Dirichlet* or *Pitman-Yor Processes*

• AG for *unigram word segmentation*:

 Words \rightarrow Word $|$ Word Words

 Word \rightarrow Phons

 Phons \rightarrow Phon $|$ Phon Phons

• Segmentation accuracy improves if AG *learns collocations*
Joint segmentation and object-mapping

- Combine word-object “topic PCFGs” with word segmentation AGs
- Synergies in learning:
 - improving topic detection improves word segmentation
 70% \rightarrow 75% f-score
 - improving word segmentation improves topic detection
 50% \rightarrow 74% f-score
- Joint (rather than staged) learners can exploit these synergies
- Are there similar synergies in other aspects of language acquisition?
- Do human learners exploit such synergies?