A brief introduction to Conditional Random Fields

Mark Johnson
Macquarie University

April, 2005, updated October 2010
Talk outline

- Graphical models
- Maximum likelihood and maximum conditional likelihood estimation
- Naive Bayes and Maximum Entropy Models
- Hidden Markov Models
- Conditional Random Fields
Classification with structured labels

- Classification: predicting label y given features x

$$y^*(x) = \arg \max_y P(y|x)$$

- Naive Bayes and Maxent models: label y is atomic, x can be structured (e.g., set of features)

- HMMs and CRFs are extensions of Naive Bayes and Maxent models where y is structured too

- HMMs and CRFs model dependencies between components y_i of label y

- Example: Part of speech tagging: x is a sequence of words, y is corresponding sequence of parts of speech (e.g., noun, verb, etc.)
Why graphical models?

• Graphical models depict *factorizations of probability distributions*

• Statistical and computational properties depend on the factorization
 – complexity of dynamic programming is size of a certain cut in the graphical model

• Two different (but related) graphical representations
 – *Bayes nets* (directed graphs; products of conditionals)
 – *Markov Random Fields* (undirected graphs; products of arbitrary terms)

• Each random variable X_i is represented by a node
Bayes nets (directed graph)

• Factorize joint $P(X_1, \ldots, X_n)$ into product of conditionals

$$P(X_1, \ldots, X_n) = \prod_{i=1}^{n} P(X_i|X_{Pa(i)})$$

where $Pa(i) \subseteq (X_1, \ldots, X_{i-1})$

• The Bayes net contains an arc from each $j \in Pa(i)$ to i

$$P(X_1, X_2, X_3, X_4) = P(X_1)P(X_2)P(X_3|X_1, X_2)P(X_4|X_3)$$
Markov Random Field (undirected)

- Factorize $P(X_1, \ldots, X_n)$ into product of potentials $g_c(X_c)$, where \(c \subseteq (1, \ldots, n) \) and \(c \in C \) (a set of tuples of indices)

$$P(X_1, \ldots, X_n) = \frac{1}{Z} \prod_{c \in C} g_c(X_c)$$

- If \(i, j \in c \in C \), then an edge connects \(i \) and \(j \)

$$C = \{(1, 2, 3), (3, 4)\}$$

$$P(X_1, X_2, X_3, X_4) = \frac{1}{Z} g_{123}(X_1, X_2, X_3) g_{34}(X_3, X_4)$$
• MRFs have the same general form as *Maximum Entropy models*, *Exponential models*, *Log-linear models*, *Harmony models*, ...

• All of these have *the same generic form*

\[
P(X) = \frac{1}{Z} \prod_{c \in C} g_c(X_c) = \frac{1}{Z} \exp \sum_{c \in C} \log g_c(X_c)
\]
Potential functions as features

- If X is *discrete*, we can represent the potentials $g_c(X_c)$ as a *combination of indicator functions* $[X_c = x_c]$, where X_c is the set of all possible values of X_c

 $$g_c(X_c) = \prod_{x_c \in X_c} (\theta_{x_c = x_c})^{[X_c = x_c]}$$

 where $\theta_{x_c = x_c} = g_c(x_c)$

 $$\log g_c(X_c) = \sum_{x_c \in X_c} [X_c = x_c] \phi_{x_c = x_c}$$

- View $[X_c = x_c]$ as a *feature* which “fires” when the configuration x_c occurs

- $\phi_{x_c = x_c}$ is the *weight* associated with feature $[X_c = x_c]$
A feature-based reformulation of MRFs

- Reformulating MRFs as features:

\[
P(\mathbf{X}) = \frac{1}{Z} \prod_{c \in C} g_c(\mathbf{X}_c)
\]

\[
= \frac{1}{Z} \prod_{c \in C, x_c \in \mathcal{X}_c} (\theta_{\mathbf{X}_c = x_c})^{[\mathbf{X}_c = x_c]}, \text{where } \theta_{\mathbf{X}_c = x_c} = g_c(x_c)
\]

\[
= \frac{1}{Z} \exp \sum_{c \in C, \mathbf{X}_c \in \mathcal{X}_c} [\mathbf{X}_c = x_c] \phi_{\mathbf{X}_c = x_c}, \text{where } \phi_{\mathbf{X}_c = x_c} = \log g_c(x_c)
\]

\[
P(\mathbf{X}) = \frac{1}{Z} g_{123}(X_1, X_2, X_3) g_{34}(X_3, X_4)
\]

\[
= \frac{1}{Z} \exp \left([X_{123} = 000] \phi_{000} + [X_{123} = 001] \phi_{001} + \ldots \right)
\]

\[
= \frac{1}{Z} \exp \left([X_{34} = 00] \phi_{00} + [X_{34} = 01] \phi_{01} + \ldots \right)
\]
Bayes nets and MRFs

• MRFs are more general than Bayes nets

• It’s easy to find the MRF representation of a Bayes net

\[
P(X_1, X_2, X_3, X_4) = \underbrace{P(X_1)P(X_2)P(X_3|X_1, X_2)}_{g_{123}(X_1, X_2, X_3)} \underbrace{P(X_4|X_3)}_{g_{34}(X_3, X_4)}
\]

• Moralization, i.e., “marry the parents”
Conditionalization in MRFs

- Conditionalization is \textit{fixing the value of some variables}

- To get a MRF representation of the conditional distribution, \textit{delete nodes whose values are fixed and arcs connected to them}

\[
P(X_1, X_2, X_4 | X_3 = v) = \frac{1}{Z \ P(X_3 = v)} \ g_{123}(X_1, X_2, v) \ g_{34}(v, X_4) = \frac{1}{Z'(v)} \ g'_{12}(X_1, X_2) \ g'_4(X_4)
\]
Classification

• Given value of X, predict value of Y

• Given a probabilistic model $P(Y|X)$, predict:

$$y^*(x) = \arg \max_y P(y|x)$$

• In general we must learn $P(Y|X)$ from data

$$D = ((x_1, y_1), \ldots, (x_n, y_n))$$

• Restrict attention to a *parametric model class* P_θ parameterized by parameter vector θ

 – learning is estimating θ from D
ML and CML Estimation

- Maximum likelihood estimation (MLE) picks the θ that makes the data $D = (x, y)$ as likely as possible

$$\hat{\theta} = \arg \max_{\theta} P_{\theta}(x, y)$$

- Conditional maximum likelihood estimation (CMLE) picks the θ that maximizes conditional likelihood of the data $D = (x, y)$

$$\hat{\theta} = \arg \max_{\theta} P_{\theta}(y|x)$$

- $P(X, Y) = P(X)P(Y|X)$, so CMLE ignores $P(X)$
MLE and CMLE example

• $X, Y \in \{0, 1\}$, $\theta \in [0, 1]$, $P_\theta(X = 1) = \theta$, $P_\theta(Y = X|X) = \theta$

 Choose X by flipping a coin with weight θ, then set Y to same value as X if flipping same coin again comes out 1.

• Given data $D = ((x_1, y_1), \ldots, (x_n, y_n))$,

\[
\hat{\theta} = \frac{\sum_{i} [x_i = 1] + [x_i = y_i]}{2n},
\]

\[
\hat{\theta} = \frac{\sum_{i} [x_i = y_i]}{n},
\]

• CMLE ignores $P(X)$, so less efficient if model correctly relates $P(Y|X)$ and $P(X)$

• But if model incorrectly relates $P(Y|X)$ and $P(X)$, MLE converges to wrong θ

 – e.g., if x_i are chosen by some different process entirely
Complexity of decoding and estimation

- Finding \(y^*(x) = \arg \max_y P(y|x) \) is equally hard for Bayes nets and MRFs with similar architectures.

- A Bayes net is a product of independent conditional probabilities.
 \[\Rightarrow \] MLE is relative frequency (easy to compute).
 - no closed form for CMLE if conditioning variables have parents.

- A MRF is a product of arbitrary potential functions \(g \).
 - estimation involves learning values of each \(g \) takes.
 - partition function \(Z \) changes as we adjust \(g \).
 \[\Rightarrow \] usually no closed form for MLE and CMLE.
Multiple features and Naive Bayes

- Predict label \(Y \) from features \(X_1, \ldots, X_m \)

\[
P(Y|X_1, \ldots, X_m) \propto P(Y) \prod_{j=1}^{m} P(X_j|Y, X_1, \ldots, X_{j-1})
\]

\[
\approx P(Y) \prod_{j=1}^{m} P(X_j|Y)
\]

- Naive Bayes estimate is MLE \(\hat{\theta} = \arg \max_\theta P(x_1, \ldots, x_n, y) \)
 - Trivial to compute (relative frequency)
 - May be poor if \(X_j \) aren’t really conditionally independent
Multiple features and MaxEnt

- Predict label Y from features X_1, \ldots, X_m

 \[
P(Y|X_1, \ldots, X_m) \propto \prod_{j=1}^{m} g_j(X_j, Y)
 \]

- MaxEnt estimate is CMLE $\hat{\theta} = \arg \max_{\theta} P(y|x_1, \ldots, x_m)$
 - Makes no assumptions about $P(X)$
 - Difficult to compute (iterative numerical optimization)
Sequence labeling

• Predict labels Y_1, \ldots, Y_m given features X_1, \ldots, X_m

• Example: Parts of speech

 \[Y = \text{DT JJ NN VBS JJR} \]
 \[X = \text{the big dog barks loudly} \]

• Example: Named entities

 \[Y = [\text{NP NP NP}] \quad \]
 \[X = \text{the big dog barks loudly} \]

• Example: X_1, \ldots, X_m are image regions, each X_j is labeled Y_j
Hidden Markov Models

\[
P(X, Y) = \left(\prod_{j=1}^{m} P(Y_j|Y_{j-1})P(X_j|Y_j) \right) P(Y_m, \text{stop})
\]

- Usually assume \textit{time invariance} or \textit{stationarity} i.e., \(P(Y_j|Y_{j-1}) \) and \(P(X_j|Y_j) \) do not depend on \(j \)
- HMMs are Naive Bayes models with compound labels \(Y \)
- Estimator is MLE \(\hat{\theta} = \arg \max_{\theta} P_{\theta}(x, y) \)
Conditional Random Fields

\[P(Y|X) = \frac{1}{Z(x)} \left(\prod_{j=1}^{m} f(Y_j, Y_{j-1}) g(X_j, Y_j) \right) f(Y_m, \text{stop}) \]

- *time invariance* or *stationarity*, i.e., \(f \) and \(g \) don’t depend on \(j \)
- CRFs are MaxEnt models with compound labels \(Y \)
- Estimator is CMLE \(\hat{\theta} = \arg \max_{\theta} P_\theta(y|x) \)
Decoding and Estimation

- HMMs and CRFs have *same complexity of decoding* i.e., computing $y^*(x) = \arg \max_y P(y|x)$
 - dynamic programming algorithm (Viterbi algorithm)
- Estimating a HMM from labeled data (x, y) is *trivial*
 - HMMs are Bayes nets \Rightarrow MLE is relative frequency
- Estimating a CRF from labeled data (x, y) is *difficult*
 - Usually *no closed form* for partition function $Z(x)$
 - Use *iterative numerical optimization procedures* (e.g., Conjugate Gradient, Limited Memory Variable Metric) to maximize $P_\theta(y|x)$
When are CRFs better than HMMs?

• When HMM independence assumptions are wrong, i.e., there are dependences between X_j not described in model

$\begin{align*}
 Y_0 & \quad Y_1 & \quad Y_2 & \quad \ldots & \quad Y_m & \quad Y_{m+1} \\
 \bullet & \quad \circ & \quad \circ & \quad \ldots & \quad \circ & \quad \bullet \\
 X_1 & \quad X_2 & \quad \ldots & \quad X_m \\
\end{align*}$

• HMM uses MLE \Rightarrow models joint $P(X, Y) = P(X)P(Y|X)$

• CRF uses CMLE \Rightarrow models conditional distribution $P(Y|X)$

• Because CRF uses CMLE, it makes no assumptions about $P(X)$

• If $P(X)$ isn’t modeled well by HMM, don’t use HMM!
Overlapping features

- Sometimes label Y_j depends on X_{j-1} and X_{j+1} as well as X_j

$$P(Y|X) = \frac{1}{Z(x)} \left(\prod_{j=1}^{m} f(X_j, Y_j, Y_{j-1}) g(X_j, Y_j, Y_{j+1}) \right)$$

- Most people think this would be difficult to do in a HMM
Summary

- HMMs and CRFs both associate a sequence of labels \((Y_1, \ldots, Y_m)\) to items \((X_1, \ldots, X_m)\)
- HMMs are Bayes nets and estimated by MLE
- CRFs are MRFs and estimated by CMLE
- HMMs assume that \(X_j\) are conditionally independent
- CRFs do not assume that the \(X_j\) are conditionally independent
- The Viterbi algorithm computes \(y^*(x)\) for both HMMs and CRFs
- HMMs are trivial to estimate
- CRFs are difficult to estimate
- It is easier to add new features to a CRF
- There is no EM version of CRF
HMM with longer range dependencies

\[
Y_0 \quad Y_1 \quad Y_2 \quad \ldots \quad Y_m \quad Y_{m+1}
\]

\[
X_1 \quad X_2 \quad \ldots \quad X_m
\]