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ABSTRACT

Corresponding to the variety of notions of asymmetric lens,
various notions of symmetric lens have been proposed. A
common theory of the various asymmetric and symmetric
lenses should result from a study of spans of asymmetric
lenses. In order to define a category whose arrows are spans
of asymmetric lenses, the fact that a cospan of asymmetric
lenses may not have a pullback must be dealt with. In this
article, after resolving that problem we develop the functors
which exhibit a category whose arrows are spans of well-
behaved lenses as a retract of a category whose arrows are
the corresponding symmetric lenses. We relate them to the
symmetric lenses of Hofmann, Pierce and Wagner.

1. INTRODUCTION

A span is a pair of functions, or more generally of arbitrary
morphisms of a given kind, with common domain:

XyS‘Y

Such a span is often described as a “span from X to Y”, and
denoted u : X <=— S —=Y : v. The object S is sometimes
called the peak of the span and the arrows u and v are called
the legs of the span.

Spans have been used in a variety of fields as diverse as
the abstract theory of relations and the design of circuits
and systems. Naturally the mathematical theory of spans is
well-developed. Of particular importance: The composition
of a span from X to Y and a span from Y to Z is a span
from X to Z calculated by constructing a pullback, and
two spans from X to Y are span-equivalent when there is
an isomorphism between their peaks which commutes with
their legs.

Spans of transformations arise widely in areas related to
Bidirectional Transformations (Bx) too. Examples include
model driven engineering, triple graph grammars, and sym-
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metric lenses. However, in Bx the classical theory of spans
is harder to apply. Even in the case of basic (asymmetric)
lenses, the classical theory doesn’t apply because in the cat-
egory whose morphisms are lenses, what one might expect
to be the pullback of lenses need not satisfy the universal
property of a pullback — the difficulty that arises is that the
universally provided comparison morphism may not have a
lens structure.

Even if we neglect for a moment the difficulty in prop-
erly defining composition of spans of lenses, there is a fur-
ther complication: Span-equivalence does not seem to be the
right notion of equivalence for spans of lenses. As Hofmann
et al remarked in discussing spans of asymmetric lenses in
[5] (full version), “in the span presentation there does not
seem to be a natural and easy-to-use candidate for ... equiv-
alence.”

The main goal of this paper is to develop the mathematical
foundations required to support the use of spans in Bx. We
show that

1. While categories whose morphisms are lenses may not
have pullbacks, there is a framework that frequently
allows us to work as if they did by finding canonical
lens structures on the pullbacks of the Get functions.

2. While classical span-equivalence is far too strong a
condition for equivalence of spans of lenses, there is
a natural generalisation (replacing isomorphisms with
suitably non-empty lenses) which seems right.

Combining these we have the mathematical foundations
required. To demonstrate this we apply them here to the
study of the symmetric lenses of [5], and in future work to
a unified theory of symmetric lenses of many kinds.

A remark on the technical content. The paper is neces-
sarily quite mathematical — we are after all building a math-
ematical foundation, and the measure of its utility or even
correctness is its ability to provide precise proofs and in-
sightful clarifications of mathematical results about spans
of lenses. Many proofs have been omitted because, once the
correct formulation has been found, the proof is relatively
routine for those with category theoretic skills, and is un-
likely to be very enlightening for those with less category
theoretic experience. Other proofs have been sketched es-
pecially where an unusual approach might be required. The
main contributions of this work are not the proofs them-
selves, but rather finding the right formulations (eg Proposi-
tion 5 for dealing with the missing pullbacks, and the equiv-
alence =¢g) which make the proofs feasible.



The structure of the paper is as follows. In Section 2 we
review some details about asymmetric lenses and show how
to canonically construct lenses on the pullbacks of the get
functions of asymmetric lenses. The following section, Sec-
tion 3, lays out the general theory that we use to systemati-
cally deal with these pullback like constructions (that aren’t
pullbacks) and introduces the equivalence relation which we
will use on spans of asymmetric lenses. In Section 4 we in-
troduce rl lenses — the approach to symmetric lenses that
parallels that used in [5]. We show how to generalise that
so that it can be applied in any category with products,
making available immediately notions of symmetric lenses
for graphs, categories, and ordered sets for example. In Sec-
tion 5 we develop an equivalence for rl lenses motivated by,
but different from, the equivalence for set based rl lenses
in [5], and begin the development of two functors A and S
which are used to compare span based and rl based symmet-
ric lenses. Finally, in Section 6 we specialise to rl lenses with
a pointed complement. These lenses correspond exactly to
the lenses of [5] and we compare Hofmann et al’s equivalence
of such lenses with the equivalences proposed in this paper.

2. ASYMMETRIC LENSES

In this section we collect information about various no-
tions of asymmetric lens along with some basic results that
we will use later.

Let C be a category with finite products. Categories such
as the category of sets and functions, ordered sets and mono-
tone mappings, and categories and functors, are some of the
examples we have in mind. We recall the definition of asym-
metric lens in C [2, 5, 7].

DEFINITION 1. For objects X,Y in C, an asymmetric
lens in C from X to Y, denoted L : X —Y is L =
(X,Y,g,p) where g : X —Y is called the Get morphism
and p:Y X X —= X is called the Put morphism. A lens is
called well-behaved if it satisfies:

(i) (PutGet) the Get of a Put is the projection: gp = mo
(ii) (GetPut) the Put for a trivially updated state is trivial:
p<g7 1X> =1x
Diagrammatically, two commutative triangles:

1x
X ———X

(!Jle /

Y x X

YxX—2 s X
Y

PutGet GetPut

A well-behaved lens is called very well-behaved if it satisfies:

(#i) (PutPut) composing Puts does not depend on the first
update:
p(ly X p) = pmo,2

Diagrammatically, a commutative square:

ly Xp
Y XY xX—Y x X

Y xX ——>X

PutPut

We showed in [7] that, up to isomorphism, a very well-
behaved asymmetric lens L in C has X = Y x C for an
object C of “complements” and then g is the projection ¢ :
Y xC—-Y while the put is defined by p : Y x (Y x C)—Y x
C = mo,2, the projection onto the first and third factors.
That generalises to categories with products (for example,
those where the states of X and Y are, rather than mere sets,
ordered sets or even more generally graphs or categories) the
classical theory of constant complement updating [1]. Such
lenses are algebras for a monad on C/Y. Thus there is a
well-defined notion of morphisms between lenses. However,
our interest in this article is rather to treat various kinds of
lenses as arrows of categories, so we will need a composition
of lenses themselves.

Given lenses L = (X,Y,¢1,p1) and M = (Y, Z, g2, p2), the
composite lens is ML = (X, Z, g,p) where g = gag1 and p is

1z x(g1,1x) p2X1lx P1
_— >

ZxX ZxY xX Y x X X

or as an elementary formula: p(z,z) = p1(p2(z, g1z),z). For
X in C there is an identity lens 1x = (X, X, 1x,po) with
po the first projection, mo. We will assume that products
in C are associative. With that assumption, composition of
lenses in C is associative and the identity lens acts as an
identity.

The first additional properties of lenses are stable under
composition:

LEMMA 2. Suppose that L, M and ML are defined as
above. If L and M both satisfy PutGet, respectively GetPut,
PutPut, then ML satisfies PutGet, respectively GetPut and,
provided L satisfies PutGet, respectively PutPut.

Thus, there are categories we denote ALensg(C), ALensyg (C),
Alensg, (C), Alens,, (C) and ALens(C) of asymmetric lenses,
respectively lenses satisfying PutGet, GetPut, well-behaved
lenses, and very well-behaved lenses in C. In each case the
objects are those of C and the arrows are asymmetric lenses
with the corresponding property. When C is understood we
will sometimes write AlLens,, for example, for Alens,(C).
There are faithful, but evidently not full, inclusion functors

Alenspg

PN

Alensg AlLens, <—— Alens

~

Alensg,

There are some further results about asymmetric lenses
we need to record. First, finite product preserving functors
preserve lens structures:

PROPOSITION 3. Suppose that C and D are categories
with finite products and F : C —= D is a finite product
preserving functor. If L = (X,Y,g,p) is an asymmetric
lens in C, and respectively satisfying PutGet, GetPut, a
well-behaved lens or a very well-behaved lens, then FL =
(FX,FY, Fg, Fp) is an (asymmetric) lens in D, respectively
satisfying PutGet, GetPut, a well-behaved lens, or a very
well-behaved lens. If M is a lens in C composable with L,
then F(ML) = (FM)(FL), and we obtain a functor, also
denoted F,

F : ALenso(C) — ALensy(D)



and respectively from Alens,(C), Alensg(C), AlLens,(C)
and AlLens(C).

We denote the product-preserving inclusion of sets as dis-
crete ordered sets by I, and of ordered sets as small cate-
gories by J in:

I J
set —= ord —— cat

Thus there are faithful functors:

Alensy(set) —Ls Alenso (ord) —5 Alenso (cat)

and similarly for the PutGet, GetPut, well-behaved and very
well-behaved cases.

Next we consider pullbacks in C and the various categories
above. Remember that the lenses are morphisms. For ex-
ample, when very well-behaved lenses are viewed as algebras
for a monad on C/Y, pullbacks exist in the algebras when-
ever they do in the base. Our case here is different. Since
we need products and pullbacks in the base, we assume all
finite limits.

PROPOSITION 4. Suppose that C is a category with finite
limits and let L = (X,Y,g,p) be a morphism of AlLensyg,
resp. AlLensy and Alens, and h : Z —=Y be a morphism in
C. Let

X}//W\\Q/Z
N A

be a pullback in C. Then L' = (W, Z,g',p') is in AlLensy,
resp. Alens, and Alens, where p’ : Z x W —= W s the
unique morphism into the pullback determined by p(h x h') :
ZXW—X andmo: ZxW—Z. If also M = (Z,Y,h,q)
is in Alensy, resp. Alens, and Alens, then for M' =
(W, X,k ,q") the corresponding lens we have LM’ = ML'.

In the proof, the PutGet law gives gp(h x h') = mo(h x
h') = hmo which is used to define p’. When PutGet is avail-
able, the remaining properties for L’ follow routinely from
those for L. When M’ is defined, it is routine to check that
the composite lenses are equal.

Note that we say nothing about AlLensy nor Alensg,. It
appears that at least the PutGet condition is needed both
to define a sensible p’ and to show that the square of lenses
commutes.

Finally, we make some comments regarding lenses involv-
ing initial objects. For any set Y there is a unique well-
behaved asymmetric lens whose Get has empty domain in
the category set of sets and functions. The Put is the unique
Y x0 = 0—=0. On the other hand, when the Get for a lens
is a split epimorphism in C then it has a section s satisfying
gs = ly. We call an asymmetric lens split if its Get is a split
epimorphism. Thus, an asymmetric lens which is split and
has an inhabited codomain also has an inhabited domain. If
the codomain is not inhabited (for example, is empty in the
set case) then its domain is also not inhabited. In that case
there is, of course, a unique lens structure taking the unique
(identity) endo-function of the empty set for the Get.

3. CONSTRUCTION OF SP(G)

The various categories of asymmetric lenses usually do
not have pullbacks. However, since the base category C
is assumed to have finite limits, a cospan of asymmetric
lens Gets has a pullback in the base category C. Moreover,
the pullback projections in C are themselves canonically the
Gets of arrows (lenses) in the corresponding asymmetric lens
category. We are interested in defining categories whose
arrows are spans of the various sorts of asymmetric lenses.
That motivates the following constructions.

Let C be a category with finite limits and G : A — C
an identity on objects functor. The reader should think of
A as a category of asymmetric lenses and G as the forgetful
functor which remembers only the Gets.

We suppose that there is an operation P on cospans of

G(r
the form B ‘Q>C<L D in C which outputs an arrow

P(g,r) of A. We are thinking of r as an asymmetric lens and
g as a C arrow with the same codomain. We require three
properties of P. Suppose first that G reflects isomorphisms,
that is, if Gf is an isomorphism then f is an isomorphism.
Next, we assume there is a pullback in C:

N
B D
N

with ¢’ = G(r") where r’ = P(g,r) is in A. Finally, if we also
have that ¢ = G(v) then for v' = P(G(r),v) the following
square commutes in A:

BTI/A\U/D
N/

Note that the image under G of the square is still a pullback
in C.

As noted above, the categories Alensys(C), Alens, (C)
and AlLens(C) of various types of asymmetric lenses all sat-
isfy the hypotheses for G and P.

Given G and P as above, we define a category Sp(G).
The objects of Sp(G) are those of A (or C). The arrows are
equivalence classes for =¢ of spans in A. The equivalence
relation =¢ is generated by morphisms of spans in A such

as
C
2N
A t
u M v
in which v = 't and v = vt (this is what it means to

be a morphism of spans) and for which G(t) is a split epi-
morphism. This condition on G(t) is important since G(t)
will be a Get and we want to avoid cases where a lens whose
Get has empty domain can make two spans equivalent. Two
spans are equivalent, written (u,v) =¢ (u’,v’) if there is a



“zig-zag” (a string of length zero or more of arrows, adja-
cent members of which meet head to head or tail to tail) of
the span morphisms described above between them. Com-
position in Sp(G) is defined by span composition in C of
representatives. That is, the composite of the =¢ equiva-
lence classes of spans (u,v),(r,s) (in A) is the =¢ equiva-
lence class of the span (ur’, sv’) where ' = P(G(v),r) and
v' = P(G(r),v), as in the diagram in A:

PROPOSITION 5. With the data just defined, Sp(G) is a
category.

The proof is largely routine but we do note that it uses
the fact that a split epimorphism “pulls back” to (that is, it
has as an opposite pullback projection) a split epimorphism.

4. SYMMETRIC LENSES

As for asymmetric lenses, symmetric lenses were first de-
fined in set and the concept can be generalized. The asym-
metric lens concept is expressible in any category with finite
products. The same is true for the symmetric lenses (in set)
of Hofmann, Pierce and Wagner [5].

DEFINITION 6. Let C be a category with finite products
(including the empty product). For objects X,Y in C, an
rl lens from X to Y is a quintuple, L = (X,Y,C,r,1) where
C is an object of C of “complements” and r and l are mor-
phisms

r:XxC—YxC and 1:YxC—XxC
satisfying the four equations
mxlr =7x : XXC—X;mclr = wer : XxC—C (PUTRL)
and
myrl = 7wy : Y XC—Y mcrl = el : Y XxC—C (PUTLR)

An 7l lens with a specified point m : 1—=C' (m is for “miss-
ing”) in its complements is called a pointed-complement- or
pe-symmetric lens and denoted L = (X,Y,C,r,l,m). If L is
an rl lens there is an opposite lens L°P = (Y, X, C,l,r) with
the same complements and | and r interchanged.

REMARKS. A pc-symmetric lens in set is what was called
a symmetric lens in [5]. We will have more to say about
them below, but for now we just note that the point m is
not involved in the equations so it just ensures that C is
inhabited.

For an rl lens in set, the equations in the definition are
equivalent to the implications used to define a symmetric
lens in [5]. Those implications are

r(z,c) = (y,¢) = l(y, ) = (x,¢)
and
l(y,C) = (x>cl) = T(xvc,) = (yacl)

First, assume the equations in the definition and r(z,c) =
(y,c). We need to show that I(y,c¢’) = (z,c’). Now since

l(y,c) = lr(z, c) we have mcl(y, ¢') = nelr(z, ¢) = mor(z, )
= wc(y,c) = ¢ using the second equation of (PUTRL).
Similarly mxl(y,c') = nxlr(z,c¢) = nx(z,c) = x using the
first (PUTRL) equation, so I(y,c’) = (z,¢’). The other im-
plication follows similarly. Now assume the implications.
The first shows that Ir(z,c) = (z,c’) where r(z,c) = (y,c).
Projections from this equation are exactly the (PUTRL)
equations in the definition. The (PUTLR) equations follow
from the second implication.

We have the following:

PROPOSITION 7. For an 7l lens L = (X,Y,C,r,l) in C,
the equations rlr = r and lrl =1 hold.

PROOF. Since nxlr = wx, we have wxlrl = wxl : Y X
C — X and wclr = mer implies welrl = werl = wel
using the fourth equation. Since lrl and [ have the same
projections to X and C, they are equal. That rir = r is
similar. [

It appears that the equations in the preceding Proposition
do not imply the rl lens equations.

For any L : X —Y in Alens,(set), say L = (X,Y,g,p),
which is split by s : Y — X, there is a pc-symmetric lens
T(L)=(X,Y,C,r,l,m) where C ={f: Y —X | gf =1v}
is the set of sections of g, r(z, f) = (g9(x), p(—, x)), l(y, ) =
(f(y)vp(_7 f(y))7 and m = s.

PROPOSITION 8. [5] For an asymmetric lens L in
Alens,, (set) which is split, T(L) is a pc-symmetric lens in
set from X toY. [

We are more interested in relating rl lenses with spans of
asymmetric lenses.

We begin by supposing that L = (X,Y,C,r,l) is an rl
lens in C. If L is an rl lens in set it is easy to see that

{(z,y,0) | r(2,0) = (5,9} = {(z,9,0) [ Uy,¢) = (2,0)}.

More generally,

PRrROPOSITION 9. Ife: S—=X XY x C is an equalizer of
r70,2, 71,2 : XxYxC—Y xC

then e : S—= X XY x C is an equalizer of lm 2,702 :
XxYx(C—XxC.

PrOOF. Consider the diagram:

™ C
Y Amc

S’#XXYXCLXXC?YXC
Y7y
1.2 YXCZ.,T—Y>Y

Ife : '—=X xY x C is an equalizer of I 2 and 7o 2 then it
equalizes rimi,2 and rmg,2. Also, myrl = wy by assumption,
so rmg,2e = mi2e and e’ factors through the equalizer e :
S—=X XY xC of rmp,2 = m1,2. Similarly, e factors through
€', so e is also an equalizer of Imi,2 and 2. [

The equalizer S is called the consistent triples. In set,
if (z,y,c) is a consistent triple for an rl lens then r(z,c) =
(y,c) and I(y, c) = (x,c). The definition of S as an equalizer
extends the concept of consistent triples to other categories
with products.



Furthermore the construction of S allows us to define a
span of well-behaved asymmetric lenses from an rl lens as
follows.

PROPOSITION 10. Suppose that L = (X,Y,C,r,1) is an rl
lens in C. Lete: Sp—=X XY x C be an equalizer of rmo2
and m1,2. Then there is a span

Ll;XeSL%YZLT

in AlLens, from X to Y with Gets defined by g1 = mxe,
gr = wye. The Put for L; is defined by

1x Xe

pl:XXSLHXXXXYXC%XXC

Ax Xlo 1x X7

XxXx(C———8,
The Put for L, is similar.

We denote the span (L, L) by A(L). In set the formula
for the Put for L, is pi(2’, (z,y,¢)) = (z', (2, c)).

Thus to every rl lens L we have associated a span of asym-
metric well behaved lenses A(L). Indeed the main purpose
of this paper is to develop the machinery to allow us to,
given a category of asymmetric lenses like Alens,,, and its
forgetful functor that remembers only the Gets, use the Sp
construction to obtain the corresponding category of sym-
metric lenses. In future work we apply this construction
to a range of types of lenses including delta lenses [3, 4],
c-lenses [8], very well behaved lenses, and so on, to obtain
categories of symmetric lenses of each kind.

Returning to our case in point, denote by U,, the forgetful
functor from Alens,, to C which remembers only the Gets.
The category of symmetric well behaved lenses in C
is defined to be Sp(U,) and is denoted SLens,,.

Of course, we should compare in more detail the symmet-
ric well behaved lenses in C with the rl lenses in C. To do
that properly we need to define composites of rl lenses, and
an appropriate equivalence of rl lenses.

S. EQUIVALENCE OF RL LENSES

Forrllenses Ly = (X,Y,C1,r1,l1) and Ly = (X, Y, Ca, 72, 12)
we introduce a relation R and say that Ly RLs if there is a
well-behaved asymmetric lens L = (C41,Ca,t,p) from Ci to
Cy with t a split epimorphism and such that L respects the
operations of L; and Ls. That is,

TQ(X X t) = (Y X t)?"1 and l2(Y X t) = (X X t)l1
and
ri(Xxp) = (Y xp)(rexCi) and 11 (Y xp) = (X xp)(laxC1).

(In other words L commutes with the rl structures.) The
relation R on rl lenses from X to Y generates an equivalence
relation (its reflexive, symmetric, transitive closure) denoted
=,; on rl lenses from X to Y. We denote the =,; equivalence
class of L = (X,Y,C,7,1) by [L]n.

DEFINITION 11. For rllenses L = (X,Y,C,r, 1) and M =
(Y, Z,C',v',1I') the rl-composite lens is

LM = (X,Z,C",r"I",m")
where C" = C x C’,

r’ = <7T072,7T1>(?"/ X 1o ){mo,2, m1)(r X 1ar),

and
" = (I x 1or){mo2, m)(I' X 1¢)(mo,2,m1).

PROPOSITION 12. For rl lenses L1, L2 from X to Y and
M fromY to Z in C, the rl-composite lens M Ly is an rl lens
from X to Z. Moreover, if L1 =, L2 then MLy =, MLo.

PROOF. The first statement is similar to that in [5] using a
twist isomorphism. For the second point, it is straightfor-
ward to prove the statement for the relation R and then it
follows for =,;. [

COROLLARY 13. For rl lenses Li,La from X to Y and
Ml,Mg from Y to Z in C, Zf Ly =5 Ly and My =, M-
then M1L1 =rl MQLQ.

The corollary allows us to define an associative composi-
tion on =,; classes. The proof of associativity is again like
that in [5]. We can now define the category of rl lenses,
RLLens. The objects are those of C. The arrows from X
to Y are the =,; classes of rl lenses from X to Y with the
composition just described.

PROPOSITION 14. There is an identity on objects func-
tor we call A : RLLens — SLens,, defined by A([L].) =
[AD)]o, -

PrOOF. The proof proceeds by showing that A is well-
defined, independently of the choice of representative of the
rl equivalence class [L],;, and that the composite of rl lenses
is sent, up to =y,,, to the composite of the corresponding
spans in Sp(Uy). [

Given a span L : X =— S —Y : M in Alens, (that
is a representative for an equivalence class which is a mor-
phism in Slens,) we determine an rl lens denoted S(L, M)
as follows.

PROPOSITION 15. Suppose that L = (S, X, g1, pi1) and that
M = (5,Y,gr,pr) form a span of well-behaved asymmetric
lenses in C. Define

r={(gr, )p: X xS—>Y xS
and

l={gi,)pr: Y xS—X x5
then S(L, M) = (X,Y,S,r,1) is an rl lens in C.

PROOF. The proof is a routine verification that r and [ so de-
fined satisfy the four equations called PUTRL and PUTLR
in Definition 6. [J

PROPOSITION 16. Suppose that L : X <— S —=Y : M
is a span of well-behaved asymmetric lenses in C and de-
note AS(L,M) by L; : X <— St —Y : L,. There is an
isomorphism g : S —= S, that is a morphism of spans, and
consequently AS(L, M) =v,, (L, M), and they are isomor-
phic as spans of asymmetric lenses.

PROOF. The main point in the proof is to show that the
consistent triples Sg(z,a) have, in the case when C is the



category of sets, the form (gi(s), gr(s),s) where g; and g,
are the gets of the asymmetric lenses L and M respectively.
The required isomorphism g is then apparent, being an iso-
morphism it has a canonical lens structure, and as a lens
it commutes with the four asymmetric lenses L, M, L; and

L.. O

PrOPOSITION 17. Suppose that L : X <— S —Y : M
and L' : X <—S'"—Y : M' are =y,, equivalent spans of
well behaved asymmetric lenses in C. Then S(L,M) =
S(L',M") and so S([(L,M)]=, ) = [S(L,M)]. defines a
functor S : SLens,, —> RLLens.

PrROOF. For the first point, S(L,M) =,; S(L',M’) pro-
vided that AS(L,M) =y, AS(L',M’), but certainly we
have AS(L, M) =v,, (L, M) =v,, (L', M') =y, AS(L', M’).

To see that S is a functor, we note first that it is identity
on objects. The first part of the proposition shows that S
is well-defined on morphisms. Finally, to see that S is com-
patible with composition it suffices to trace how composition
works on each side, noting that Proposition 15 defines each
of the r and [ operations in terms of the lenses L and M. [

THEOREM 18. Slens,, is a retraction of RLLens via the
functors A and S.

PRrROOF. Both A and S are identity on objects.
If L : X<—S—Y : M is a span of well-behaved asymmet-
ric lenses in C, then AS([(L, M)]=,, ) = (L, M)]=,, - O
This result shows that every rl lens can be normalised into
one of the form S([L, M]) for a span of assymmetric well
behaved lenses L : X <—S—=Y : M, and that the category
of rl lenses of that form is equivalent to the category SLens,,.

6. PC-SYMMETRIC LENSES

There is a category of pc-symmetric lenses defined in [5]
which we now review. Our goal is to relate the equivalence of
symmetric well behaved lenses defined as spans, =¢,,, with
the equivalence of pc-symmetric lenses used in [5].

The main difficulty we face is that the pointing turns out
to be fundamentally important to the equivalence of pc-
symmetric lenses, although it plays no role in the algebraic
structure, and so has been excluded from the definition of rl
lenses and symmetric well behaved lenses.

DEFINITION 19. For pc-symmetric lenses
L = (X,Y,C,r,l,m) and M = (Y, Z,C",r',I'",m') the pc-
composite lens is

LoM = (X,z,C"+" 1", m")
where C"" = C x C’,

?"” = <7T072,7T1>(T’/ X 1c)<7|'(),2,7l'1>(’r' X lcl),

l” = (l X 10/)<7’l’0’2,7l'1>(l/ X 1c)<71'072,71'1>
and m'" = (m,m’). We display " (I is similar):

X1~/ 7T,a7">
XxOxO 2y woxo -2y of s

(70,2,71)

ZxC' xC—""57xCxC

X1l

PROPOSITION 20. For pc-symmetric lenses L and M in
C, the pc-composite lens Lo M is a pc-symmetric lens from
X to Z.

The proof for symmetric lenses in set is in [5], and is
similar for symmetric lenses in C.

In [5] an equivalence relation on pc-symmetric lenses from
X to Y in set is defined as follows.

DEFINITION 21. Suppose L1 = (X,Y,C1,7r1,l1,m1) and
Ly = (X,Y,C,r2,l2,m2) are pc-symmetric lenses from X
toY and R C Cy x C3. Say L1 is (R-)equivalent to Lo,
denoted L1 =r Lo iff (m1,m2) is in R and furthermore
(c1,¢2) € R,z € X, (y1,c3) = m1(x,c1), (y2,ca) = r2(x, c2)
imply that y1 = y2 and (c3,ca) € R (1)
and corresponding symmetric statements hold for l1,la. We
write Lw =pc Lo if there exists an R such that Ln =g L2

Recall from [5] that =, is an equivalence relation which
respects pc-symmetric lens composition. There is a category
pcLens (called Lens in [5]) whose arrows are =,. equivalence
classes of pc-symmetric lenses with composition given by the
pc-composite of representatives.

We want to relate the equivalence of spans of asymmetric
lenses by =y, with equivalence between pc-symmetric lenses
given by =p,.. We start with a generator of =y, . We will
show that when two symmetric well behaved lenses are each
pointed compatibly (choose any point in the peak of one, and
use the equivalence to determine the corresponding point in
the other) then their corresponding pc-symmetric lenses are
=pc equivalent.

PROPOSITION 22. Suppose that L = (X,Y,C,r,1) is an rl
lens with A(L) the span L; : X <— Sy —Y : L. of well-
behaved asymmetric lenses. Suppose that M = (W, SL,g,p)
is in Alens, and is split by s : S, —>= W. Define h; =
99, he = grg, qu : X xW—=W by q(z,w) = p(pi(z, gw), w)
and ¢y 1 Y X W —W by q-(z,w) = p(pi(z, gw),w), defin-
ing asymmetric lenses M; : X <=— W —Y : M,. Define
R = {(w,mcgw)} C W x C, and suppose m : 1 —W is
a point of W and hence (m,mcgm) is in R. Let Lgm =
(X,Y,C,rl,mcg(m)) be the pc-symmetric lens pointed by
wegm. Let S(My, M) = (X,Y,W,run,lm) be the rl lens
determined above and L., = (X, Y, W, ra,la, m) its corre-
sponding pc-symmetric lens . Then Ly, =r Lgm.

PRrROOF. The situation is summed up in the following:

w
N
g9
X g1 SL gr Y

We first note that rar : X x W —=Y x W is defined by
TM(:E7 ’U_)) = (hTQI(:E7 ’lU), ql(:r7 w))

We are going to prove only implication (1), so suppose
(wvﬂ—cgw) € va € X7 (y17w1) = ’I“]M(.T,w) and (yQ,CQ) =
r(z, rcgw). We need to show that y1 = y2 and (w1, ¢2) € R.



First
y1 = hrqi(z, w)
= grgqi(z, w)
= grgp(pi(x, gw), w) by def of ¢
= grpi(z,gw) by PutGet
= gT(xvr(myﬂ—ng)) def of yi
= my (r(z, Togw) = Y2
Next w1 = ¢/(z,w) by definition, so we want to show

that ¢ = meg(q(z,w)) to get (w1,c2) € R. Now ¢z =
me(r(z, rogw)), so

c2 = me(r(z, Tcgw))
= memy,cpi(z, gw)  def of p;
= mepi(z,gw) comp’n of projections
= 7megp(pi(z, gw),w) by PutGet
=7cgq(z,w) defof ¢

That completes the proof. [

COROLLARY 23. If L : X <—S—Y : M and L' :
X=<—8 —Y : M are =y, equivalent spans in SLens,,
viag:S—=S",m:1—=S5 and m’ : 1 — S’ where m and
m’ = g(m) are related by =y,,. Then for the corresponding
pe-symmetric lenses we have L’m, =pc Lim.

Since we have it on generators of the equivalence, the
corollary shows that =y, , appropriately pointed to permit
a comparison, is a finer equivalence relation than =,..

7. FUTURE WORK

This paper has been about developing the theory of spans
of lenses and an appopriate equivalence relation for them
which can then be used parametrically in the type of asym-
metric lens of interest.

Having laid the mathematical foundations for a theory of
symmetric lenses of type X as spans of asymmetric lenses of
type X we are in a position to define new symmetric lenses,
and to make detailed comparisons with the various extant
notions of symmetric lenses.

We have currently carried through this project for the
delta lenses of Diskin et al [3, 4, 6], and we are progressing
well with c-lenses [8]. The overall goal is a unified treatment
of all the various kinds of symmetric lenses that have been
defined, along with guidance for the future development of
new types of symmetric lenses.

In each case, we strive, as in the preceding section of this
paper, to relate the work to extant structures, and to use the
theory to shed more light on why they are the way that they
are, or to reveal when there are choices that have been made
that could have been made differently (thus for example, =p.
seems to be a coarser equivalence than is strictly needed, and
we are studying this further).

In other future work we are exploring the lens-like aspects
of our construction of Sp(G). The operation P(g,7) can
itself be seen as a kind of put operation which satisfies its
own PutGet, GetPut and PutPut conditions. It appears
that if they are formulated correctly the resultant structure
is a c-lens — further evidence of the utility of bidirectional
transformations (even in the development of the theory of
bidirectional transformations!).

8. CONCLUSIONS

We have presented foundations for a consistent and uni-
fied treatment of several different types of asymmetric and
symmetric lenses. In that treatment, Sp(U) is used to build
categories of spans of asymmetric lenses. Sp(U) provides
a different treatment to the usual treatment for compos-
ing spans, thus overcoming the difficulty about categories of
lenses frequently not having pullbacks. In addition, Sp(U)
uses a different equivalence from the one usually used in
categories of spans. The new equivalence seems to be the
natural generalisation for Bx as it replaces a requirement
for an isomosphism between spans (a particularly restrictive
kind of bidirectional transformation) with a lens.

The work has allowed us to compare the equivalence of the
general theory with the equivalence proposed in [5]. The
latter has some surprising features. It certainly achieves
the outcomes its authors required, but it appears that the
new equivalence can do the same without forcing so many
different lenses to be equivalent.
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