Lenses, fibrations, and universal translations

Michael Johnson*
School of Mathematics and Computing
Macquarie University

Robert Rosebrugh*
Department of Mathematics and Computer Science
Mount Allison University

RJ Wood*
Department of Mathematics and Statistics
Dalhousie University

Abstract

The purpose of this article is to extend the “lens” concept in Computer Science beyond the categories of sets and ordered sets. It is first shown that a constant complement view updating strategy also corresponds to a lens for a categorical database model. A variation on the lens concept called c-lens is introduced, and found to correspond to the categorical notion of Grothendieck opfibration. This variant guarantees a universal solution to the view update problem for functorial update processes.

1 Introduction

In a modern database system the instantaneous semantics (a database state) is usually taken to be a set of “tables”, also known as relations. This is

*Research partially supported by grants from the Australian Research Council and NSERC Canada.
based on the idea that a data object is specified by a record which is a list of field values. Then a table is a set of records and a database state is a set of tables. For example, an address book entry (record) will have appropriate numerical and string fields. In the syntax for a database, the address book table signature lists the fields and their types. A contacts list database schema might include an address book table signature. A table for the address book signature is a set (not a list!) of such records. The tables may be required to satisfy integrity rules such as external references. For example, an address record could be required to refer to a record, for example a person, in another table.

The specification of table signatures and integrity rules is the purpose of a database definition language (DDL). A database schema is naturally defined as a correct instance of some DDL. There is a variety database definition languages in use, but the most common is SQL.

For a database schema (for example a set of DDL statements in SQL), the database states are the valid ways of populating the database schema, usually the tables. We will have much more to say about the structure of a database schema and database states below.

A basic requirement of database states is that they may be updated. Updates may be additions or deletions of records, or simply modification of some fields. An update \(u \) is often described as a process that may be applied to any database state and result in a new database state: an update process is an endomorphism on states.

A view definition consists of a database schema derived from another database schema and determines an assignment of database states \(S \) to view states \(V \). So there is at least a view definition mapping from \(S \) to \(V \). In SQL views are very limited: a view definition describes only a single derived table, but this restriction can be safely ignored.

Combining these two concepts, a view update \(u \) is an endomorphism of view states. The view update problem is as follows:

Given a view \(g : S \rightarrow V \) and an update \(u : V \rightarrow V \) of the view states, when is there a compatible update (known as a translation) \(t_u : S \rightarrow S \) of the database states?

For \(t_u \) to be a compatible update (a translation) means that \(gt_u = ug \), that
is, the following diagram commutes (as noted as early as 1982 [1]):

\[
\begin{array}{ccc}
S & \xrightarrow{t_u} & S \\
\downarrow g & & \downarrow g \\
V & \xrightarrow{u} & V
\end{array}
\]

Of course this is a lifting problem: for a view update \(u\), we ask when \(ug\) can be lifted along \(g\) to some \(t_u\). If \(S\) and \(V\) are sets and \(g\) is surjective (surjectivity of \(g\) is commonly required), then any section of \(g\) would provide a solution. However it is natural also to require the translation of the identity view update to be the identity, and to impose other conditions discussed below so that this obvious suggestion is not adequate. The view updates \(u\) under consideration are not necessarily arbitrary, but usually those view updates for which the view update problem is required to have a solution should be composable and include the identity. That is, they are required to be a monoid.

The view update problem has a long history in the database literature dating at least to the 1980’s. Perhaps the most influential consideration of the problem is due to Bancilhon and Spyratos [1]. Their main result amounts to a requirement that there be a product decomposition of the database states with the view states as one factor and with the second factor called the “complement” view. In this case the view update problem has a simple solution with the translation being constant on the second factor. The resulting view update solution is called the “constant complement” strategy.

Several years ago, B. Pierce and collaborators [4], [7] introduced a concept they called “lens” for a mapping \(g : S \rightarrow V\). A lens has a “Put” mapping \(p : V \times S \rightarrow S\) that satisfies additional equations. A lens provides solutions to view update problems for a view definition mapping \(g\). The equations are strong enough to require that \(g\) be a projection, and they showed that a lens for a view definition mapping corresponds to a translator in the sense of [1].

As far as we know, the lens equations were first considered in the early 1980’s by F. Oles [16], [17] in a study of abstract models of storage. Oles (as reported in [15]) also characterized models of the equations in sets as projections. In the 1990’s M. Hoffman and B. Pierce [10] also considered the lens equations in their study of typing for programming languages.

At about the same time as the relationship of lenses to constant complement update strategies was noticed, S. Hegner wrote about “update strategies” for a “closed family of updates” [9]. For Hegner, the database states
should be treated as an ordered set rather than a discrete abstract set. This makes very good sense: if a database state is a set of tables (relations), then there is an obvious partial order among them given by inclusions. Hegner’s definition of update strategy includes being a lens in the sense appropriate to the category of partially ordered sets. As we review below, a lens structure actually determines an update strategy.

The present authors recently showed [14] that the lens equations are equivalent to those satisfied by an algebra for a well-known monad on a slice category of a category with products. This clarifies the constant complement approach, and formally unifies the approaches of Bancilhon and Spyridon and that of Hegner.

Rather than treat the database states as given abstractly (as in [1] or [9]), we have suggested that the syntax (or database schema) be given by a certain type of mixed sketch, and that the category of models be the semantics, the database states [13]. Several other authors have adopted variants of this idea, notably Diskin and Cadish [6] and Piessens and Steegman [19]. Using sketches for syntax provides a natural way to define a view, namely as a morphism of sketches. The view definition mapping is then the induced (substitution) functor between the model categories. With this formalism, a single view state update (insertion or deletion) is a morphism in the category of view states. The criterion for updatability is the existence of an (op)cartesian arrow in the database state category. Note that when states can be compared in some way (so that the database states have more structure than an abstract set), there is also a natural requirement for a comparison between a (view) state and its value under an update process.

When a view definition (substitution) functor is a lens in \textbf{cat}, the category of categories, it is a projection and hence also a fibration and an opfibration. Thus all (delete or insert) view updates have a best possible database update. Though projections are certainly among the updatable view definition mappings, the main results of this article show that our fibrational criteria are sufficient to guarantee the existence of “universal translations”. This result arises as follows. In the categorical data model, it is reasonable to modify the lens concept so that the domain of the Put is a suitable comma category, and rewrite the lens equations there. We call the resulting concept a \textit{c-lens}. We show that a c-lens is nothing other than an opfibration. This characterization allows the application of facts about opfibrations to provide a universal translation for a functorial update process.
2 Sketches, views and translations

We assume the reader is familiar with sketches and their models [2] and begin by defining EA sketches, their views, “propagatability” for view updates, and then the fibrational criterion for propagatability.

EA sketches are mixed sketches with limitations on cones and cocones. The important point is that the permitted cones and cocones are sufficient to implement the fundamental database operations, but they are restricted enough to permit construction of the query language. To set notation, we begin with the definition of sketch and then specialize to EA sketches.

Definition 1 A sketch $E = (G, D, L, C)$ consists of a directed graph G, a set D of pairs of paths in G with common source and target (called the commutative diagrams) and sets of cones L and cocones C in G. The category generated by the graph G with commutative diagrams D is denoted $C(E)$. An EA sketch E has only finite cones and finite discrete cocones and has a specified cone with empty base whose vertex is called 1. Edges with domain 1 are called elements. The vertex of a discrete cocone all of whose injections are elements is called an attribute. A node of G which is neither an attribute nor 1 is called an entity.

Example 2 As an example data domain we consider an EA sketch for part of a movies database.

The nodes of the graph G will include persons, for example Actors, Directors and Crew, and the movies themselves. Other nodes of the graph will tabulate relationships among people and movies, for example directors direct movies, actors play in a movie, and so on.

Among the constraints will be requirements that the general Person node be a sum of Actors, Directors and Crew (as a consequence an actor cannot be a director or crew). Finite limit constraints will include expressions of joins: for example Comedy directors are found as the join (pullback) of the instances of the directs node with Comedies. Subset constraints can also be expressed, for example, a comedy is a movie.

The EA sketch might look something like the following. The figure was produced using the EASIK [20] implementation for sketches; some attributes are shown UML style; constraints are noted with dashed links; monic constraints are diamond-tailed arrows.
The definition of model for a sketch makes sense for any codomain category, but as we are interested in databases we consider only models in finite sets set_f:

Definition 3 A model M of a sketch \mathbb{E} is a functor $M : C(\mathbb{E}) \to \text{set}_f$ such that the image of a cone in L (cocone in C) is a limit cone (colimit cocone) in set_f. If M and M' are models of \mathbb{E} a morphism $\varphi : M \to M'$ is a natural transformation from M to M'. The category $\text{Mod}(\mathbb{E})$ has as objects the models of \mathbb{E} and as arrows the morphisms of models. For an EA sketch, a model is called a database state and we abuse notation by writing $D : \mathbb{E} \to \text{set}_f$.

To define views for an EA sketch, we use the query language. For an EA sketch \mathbb{E} there is a category called the theory of \mathbb{E} denoted $Q\mathbb{E}$. This $Q\mathbb{E}$ is constructed by starting from $C(\mathbb{E})$ and then formally adding all finite limits and finite sums, subject to the (co)cones in L and C (for details consult [3, Section 8.2]). Thus $Q\mathbb{E}$ contains an object for any expression in the data for \mathbb{E} constructible using finite limits and finite sums which justifies terming it the query language. Every category has an underlying sketch, and the category of models $\text{Mod}(Q\mathbb{E})$ of the underlying sketch of $Q\mathbb{E}$ is equivalent to the category $\text{Mod}(\mathbb{E})$. Briefly, a $Q\mathbb{E}$ model restricts to an \mathbb{E} model, and conversely an \mathbb{E} model determines values on its queries and thus a $Q\mathbb{E}$ model.

Definition 4 A view of an EA sketch \mathbb{E} is an EA sketch \mathbb{V} together with a sketch morphism $V : \mathbb{V} \to Q\mathbb{E}$.
This definition allows the view (morphism) to have values which are query results in E. Via the equivalence of $\text{Mod}(E)$ with $\text{Mod}(QE)$, a database state $D : E \rightarrow \text{set}_f$ may also be considered as a model $QE \rightarrow \text{set}_f$, also denoted D. Composing the latter model with a view $V : \mathcal{V} \rightarrow QE$ defines a \mathcal{V} database state or view state $DV : Q \rightarrow \text{set}_f$, the V-view of D. This operation of composing with V is written $V^*D = DV$ and it defines a functor $V^* : \text{Mod}(E) \rightarrow \text{Mod}(\mathcal{V})$.

Example 5 A view on the movies EA sketch (database schema) could be defined for the information on persons. Here a view state arises from every state of the underlying database schema by extracting only the information on persons in that state. Note that there is an EA sketch which has (in this case) a subgraph of the original graph. The view updating problem arises when we consider that a user of the persons view may wish to insert or delete information in the view state. Is there an update to the state from which the view state was derived that correctly implements the change? Is there a best possible update to that state?

In much of the literature on views and updates, a database state or a view state is merely an element of an abstract set [1], [8] or of a partially ordered set [9] rather than an object of a category. As a result, the view definition mapping was taken to be a (surjective) function or a monotone mapping. In the abstract set context, there is no basis for considering how one state updates to another. Rather, an update is defined only in terms of a process on the set of states, that is as an endomapping of the states. Thus, it is common to consider a view update as a process on all of the view states. We have argued that it is important to be able to consider an update of a single state. This is easy to define for a model of an EA sketch.

Definition 6 An insert update (respectively delete update) for a database state D is a monomorphism $D \rightarrow D'$ (respectively $D' \rightarrow D$) in $\text{Mod}(E)$.

The following is a criterion for being able to lift an (insert) update on a single view state to the underlying database:

Definition 7 Let $V : \mathcal{V} \rightarrow QE$ be a view of E. Suppose D is a database state for E, and $i : V^*D \rightarrow W$ is an insert update of V^*D. The insertion i is propagatable if there exists an insert update $m : D \rightarrow D'$ in $\text{Mod}(E)$ such that $i = V^*m$ and for any database state D'' and insert update $m'' : D \rightarrow D''$
such that $V^*m'' = i'i$ for some $i' : W \rightarrow V^*D''$, there is a unique insert $m' : D' \rightarrow D''$ such that $V^*m' = i'$. If every insert update on V^*D is propagatable, we say that the view state V^*D is insert updatable.

This definition is simply a precise statement of the requirement that m be the “best” (minimal) insert update of D which maps to i under V^*. Note that Hegner ([9], Lemma 4.2) states in essence that his notion of an update strategy for a closed update family (see below) provides propagatability for inserts.

To define propagatable for a deletion $d : W \rightarrow V^*D$ and delete updatable for a view state we simply reverse arrows. It is often the case that all arrows in $\text{Mod}(\mathbb{E})$ are monic. For example, this so if \mathbb{E} is keyed (see [13]). The reader may have noted that in that case the arrow m in Definition 7 is opcartesian and the analogous arrow for a delete is cartesian. In any case, it makes sense to drop the monic requirement above and generalize the notion of insert and delete update by calling any morphism of database states with domain D an insertion in D, and similarly for deletes. We adopt this convention from here on. When all insert (respectively, delete) updates of a view are propagatable then V^* is an opfibration (respectively fibration), and conversely. Some criteria guaranteeing that V^* is an (op)fibration are discussed in [12].

When the database states are the category of models for an EA sketch, we can also consider an update process. It ought to be a functor. Then we can consider a “translation” of a view update process to be a compatible update process (functor) on states of the underlying database as mentioned in the Introduction. Thus compatibility requires that the view update functor and its translation commute with the view substitution V^*. However since we now have morphisms among states available, it is natural to require a comparison between a state and its image under the process (the updated state). Furthermore, we can also say when a translation is best possible, as we did above for propagatable single updates. These considerations motivate:

Definition 8 Let $V : \mathbb{V} \rightarrow Q\mathbb{E}$ be a view. A pointed view (insert) update is a pair $\langle U, u \rangle$ where $U : \text{Mod}(\mathbb{V}) \rightarrow \text{Mod}(\mathbb{V})$ is a functor and u is a natural transformation $u : 1_{\text{Mod}(\mathbb{V})} \rightarrow U$ is a natural transformation. If $\langle U, u \rangle$ is a pointed view update, a translation of $\langle U, u \rangle$ is a pair $\langle L_U, l_u \rangle$ where $L_U : \text{Mod}(\mathbb{E}) \rightarrow \text{Mod}(\mathbb{E})$ is a functor with $UV^* = V^*L_U$, $l_u : 1_{\text{Mod}(\mathbb{E})} \rightarrow L_U$ is a
natural transformation and \(uV^* = V^*l_u : UV^* \to V^*L_U \):

\[
\begin{array}{c}
\text{Mod}(E) \\ V^*
\end{array} \xrightarrow{L_U} \begin{array}{c}
\text{Mod}(E) \\ V^*
\end{array} \\
\downarrow l_u \quad \downarrow 1
\]

\[
\begin{array}{c}
\text{Mod}(V) \\ U
\end{array} \xrightarrow{u} \begin{array}{c}
\text{Mod}(V) \\ U
\end{array} \\
\downarrow u \quad \downarrow 1
\]

A translation \(\langle L_U, l_u \rangle \) is universal when, for any other translation \(k : 1_{\text{Mod}(E)} \to K \) and \(u' : U \to U' \) with \(V^*k = u'uV^* \) \(\) (so \(V^*K = U'V^* \)) there is a unique transformation \(k' : L_U \to K \) such that \(k = l_u k' \) and \(V^*k' = u'V^* \).

Notice that a pointed (view) update provides a process and a comparison from the original state to the updated state, like an insert update. There are dual notions of copointed view update and couniversal translation which correspond to delete updates.

Example 9 A pointed view update on the persons view states of the movies database system might be expressed by the insertion process of adding a new actor. For any view state there is an updated view state with the new actor added. Notice that this will also imply an update to the persons entity. Taken together, these updates define an endofunctor on the view states. This is a pointed update because for any view state there is an insertion morphism from it to the updated view state. Together these updates form a natural transformation from the identity functor to the update functor. Notice that for states where the new actor is already present the insertion is trivial.

Clearly, a universal translation is unique up to a natural isomorphism of its functor part. As in the case of propagatability, the requirement here is not simply that there be some translation for the view update process, but further that it be optimal.

3 Lenses and “constant complements”

Our ultimate goal is to study sufficient conditions for universal translations. In this section we we begin with the notion of lens and review its relation to
some classical results on view updatability. Then we consider lenses in the
context of our categorical data model.

We begin with the context of given sets of underlying database states
S, view states V, and a view definition mapping $g : S \rightarrow V$. Here a view
update process is an endomorphism $u : V \rightarrow V$. Informally, a lens provides
a way to specify a global update process $t_u : S \rightarrow S$ that is compatible with
u no matter which u is chosen. In particular, a lens specifies, for each state s
and each updated view state v', what the value of $t_u(s)$ should be. The lens
specification depends on s, but it does not depend on the particular view
update u, only on its value v' at $g(s)$.

Example 10 If we ignore the morphisms among states of the movies database
system and treat both the database states and the view states just as sets
rather than categories, we can almost imagine a lens. Given a database
state, and a state of the persons view, the lens creates a database state with
exactly the specified persons information, ignoring the persons information
from the original database state. For this to work, of course, there must be
no interaction between the persons information and the other information in
the original database state. To achieve this we would have to require that
the original database schema be modified.

We denote projections $\pi_0 : X \times Y \rightarrow X$ and so on, and will moreover
abbreviate $\langle \pi_0, \pi_2 \rangle : X \times Y \times Z \rightarrow X \times Z$ to $\pi_{0,2}$.

Definition 11 Let C be a category with finite products. A lens in C denoted
$L = (S, V, g, p)$ has states S and view states V which are objects of C, and
two arrows of C, a “Get” arrow $g : S \rightarrow V$ and a “Put” arrow $p : V \times S \rightarrow S$
satisfying the following equations:

(i) (PutGet) the Get of a Put is the projection: $gp = \pi_0$

(ii) (GetPut) the Put for a trivially updated state is trivial: $p(g, 1_S) = 1_S$

(iii) (PutPut) composing Puts does not depend on the first view update:
$p(1_V \times p) = p\pi_{0,2}$

The “Put” arrow does the job of specifying the database update value for
pair consisting of a database state and an updated version of its image under
the view mapping. “PutGet” guarantees the lifting condition mentioned
above.
For any category C and any object V of C, we denote the slice category by C/V and by $\Sigma_V : C/V \rightarrow C$ the functor that remembers the domain, that is $\Sigma_V g = C$ for an object $g : C \rightarrow V$. For C with finite products, the functor $\Delta_V : C \rightarrow C/V$ is defined on objects by $\Delta_V C = \pi_0 : V \times C \rightarrow V$. We will often drop the subscripts. There is an adjunction:

$$
\begin{array}{c}
C/V \\
\Sigma
\end{array} \leftrightarrow \begin{array}{c}
C \\
\Delta
\end{array}
$$

For an object $g : C \rightarrow V$ of C/V, $\Delta \Sigma g = \pi_0 : V \times C \rightarrow V$ and the adjunction determines a monad $\Delta \Sigma$ on C/V. The g’th component η_g of the unit for the monad is $\eta_g = \langle g, 1 \rangle : C \rightarrow V \times C$. The g’th component μ_g of the monad multiplication is $\mu_g = \pi_{0,2} : V \times V \times C \rightarrow V \times C$.

Proposition 12 [14] Let C be a category with finite products. An algebra structure on $g : C \rightarrow V$ in C/V for the monad $\Delta \Sigma$ on C/V is determined by an arrow $p : V \times C \rightarrow C$ satisfying the lens equations, PutGet, GetPut and PutPut, and conversely.

To explain the relation between lenses and the “constant complement” view updating strategy we consider monadicity of Δ_V. For notation, consider the following diagram in which K is the comparison functor from C to $\Delta \Sigma$ algebras.

$$
\begin{array}{c}
C \\
\Sigma
\end{array} \quad \begin{array}{c}
\Delta
\end{array} \quad \begin{array}{c}
(C/V)^{\Delta \Sigma}
\end{array}
$$

The next result follows from Theorem 2.3 of [11], or it can be proved using Beck’s theorem.

Proposition 13 [14] For C with finite products and V an object, suppose $V \rightarrow 1$ is split epi (so if V has a global element). Then K is an equivalence, that is, Δ is monadic.

This result means that if (S, V, g, p) is a lens, then $g : S \rightarrow V$ is essentially just a projection to V, that is for some C, $g \cong \pi_0 : V \times C \rightarrow V$. Indeed,
given the lens \((S, V, g, p)\), the “complement” \(C\) just mentioned is the object of \(C\) given by the essential inverse of \(K\).

There is a close relationship between lenses in \(\text{set}\) and the “translators” of Bancilhon and Spyratos [1]. They define a view \(g : S \rightarrow V\) to be a surjective function and also define a complete set of updates to be a set \(U \subseteq \text{set}(V, V)\) of updates closed under composition and such that for \(u\) in \(U\) and \(s\) in \(S\) there is a \(v\) in \(U\) such that \(vu(s) = s\). A translator \(T\) for \(U\) is a composition-preserving function \(T : U \rightarrow \text{set}(S, S)\) such that for \(u\) in \(U\), \(gT(u) = ug\). There is a one-one correspondence between lenses and translators, noted in an unpublished manuscript [18]. We note that a lens in \(\text{set}\) was called a “total, very-well-behaved lens” by Pierce et al [4]. Bancilhon and Spyratos show directly that a translator determines a product decomposition of the domain \(S\) of the view mapping and that the view mapping is the projection to the factor \(V\). The other factor (with its projection) is called a complementary view.

In 2004 Hegner [9] extended the ideas of Bancilhon and Spyratos to the ordered setting. His idea is that the database states should be an ordered set \(S\) and that a view definition mapping should be a surjective monotone mapping \(g : S \rightarrow V\). This idea has the appealing advantage that states can be compared if they are related by the order. Hegner considers an (order-compatible) equivalence relation on the view states \(V\). The intention is that equivalent states are mutually updatable. He defines an update strategy to be a (partial) mapping \(p : V \times S \rightarrow V\) satisfying a list of equations that includes both the requirement that \(p\) be monotone and the lens equations. We denote the category of partially ordered sets and monotone mappings by \(\text{pos}\). It has finite limits. The present authors showed [14] that, at least for the “all” equivalence relation, an update strategy is exactly a lens in \(\text{pos}\). Consequently, an update strategy or a lens provides a product decomposition of the database states for a view in \(\text{pos}\) (as Hegner also pointed out).

The lens concept explains the constant complement view updating strategy when database states are considered to be an abstract set or an ordered set. A \(\Delta\Sigma\) algebra or a lens is the same thing as a projection to the view states. Moreover, the second factor in the projection is provided by the inverse of the equivalence \(K\) and is the “constant complement” found directly by Bancilhon and Spyratos and also by Hegner.

The category of categories \(\text{cat}\) has finite products. We are interested in the view definition functor \(V^* : \text{Mod}(\mathcal{E}) \rightarrow \text{Mod}(\mathcal{V})\) for EA sketches \(\mathcal{E}\) and \(\mathcal{V}\). Whenever \(\mathcal{V}\) has at least one model, so that \(\text{Mod}(\mathcal{V})\) has at least

12
one object, it has a global section in \textbf{cat}. By Proposition 13, a lens in \textbf{cat} with view states \(\text{Mod}(V) \) is essentially a projection to its codomain. Thus whenever \(V^* \) is a lens, \(\text{Mod}(E) \) decomposes as \(\text{Mod}(V) \times E' \).

Proposition 14 ([5] 8.1.13) Let \(P : V \times C \longrightarrow V \) be a projection in \textbf{cat}. Then \(P \) is a fibration and an opfibration.

Thus, if a view definition mapping \(V^* \) has a lens structure then we have insert and delete updatability of view updates. Indeed a lens structure is a powerful condition on \(V^* \) since it prescribes a view update strategy not just for updates of a single view, but also, as we will see below, for any pointed functorial update process.

Remark 15 When \(C \) has pullbacks and a terminal object (so also finite products), there is a “relative” version of the lens notion and the lens equations that we leave to the reader: for an object \(\alpha : J \longrightarrow I \) in \(C/I \), an \(I \)-indexed family of lenses with view states \(\alpha \) is a \(\Delta_\alpha \Sigma_\alpha \)-algebra structure on \(\alpha \). When \(\alpha \) is split epi, then here also \(\Delta_\alpha \) is monadic.

4 Fibrations and universal translations

In this section we consider a variation on the lens concept that turns out to be equivalent to being a split (op)fibration and which guarantees existence of universal translations. Consider again a lens \((S,V,g,p) \) in \textbf{set}. To define a translation for an update \(u : V \longrightarrow V \), it is sufficient for the Put mapping \(p \) to be defined on the subset \(d_u = \{(ug(s), s) \mid s \in S\} \) of \(V \times S \). As \(u \) varies, the union of the \(d_u \) is all of \(V \times S \) so the domain of \(p \) should be \(V \times S \). In the categorical model for a view definition \(V^* : \text{Mod}(E) \longrightarrow \text{Mod}(V) \), a database state \(D \), a pointed view update \(u : 1 \longrightarrow U \), and \(u_D : V^* D \longrightarrow UV^* D \), to define a translation will require that we have an arrow \(l_{uD} : D \longrightarrow D' \) with \(V^* l_{uD} = u_D \). Thus, the domain of Put needs to include the arrows \(u_D : V^* D \longrightarrow UV^* D \). These are arrows of the form \(V^* D \longrightarrow W \) in \(\text{Mod}(V) \) so they are objects of the comma category \((V^*, 1_{\text{Mod}(V)})\).

Example 16 Returning to the movies database schema and persons view, we note that for an insert update process on the view states, we are considering insertions into the image under the view definition of a database state.
These insertion arrows are actually objects of the comma category just described. If we want to provide compatible updates to the original database states it is these comma category objects which must be considered.

While our interest is primarily view definition functors \(V^* \), the following definitions and results make sense for any functor \(G : S \rightarrow V \). For notation we denote the comma category and projections for a functor \(G \), as follows:

\[
\begin{array}{c}
(G, 1_V) \\
\downarrow Q_0 \quad \quad \quad \quad \quad \downarrow Q_1 \\
S & \xrightarrow{\alpha} & V \\
\downarrow G \quad \quad \quad \quad \quad \quad \downarrow 1_V \\
V
\end{array}
\]

and recall that a functor \(X \rightarrow (G, 1_V) \) is specified by a triple \((H, K, \varphi)\) where \(H : X \rightarrow S, K : X \rightarrow V \) and \(\varphi : GH \rightarrow K \). Using this we establish some further notation. First we denote the iterated comma category

\[
\begin{array}{c}
((G, 1_V), 1_V) \\
\downarrow Q_0 \quad \quad \quad \quad \quad \downarrow Q_1 \\
(G, 1_V) & \xrightarrow{\beta} & V \\
\downarrow Q_1 \quad \quad \quad \quad \quad \downarrow 1_V \\
V
\end{array}
\]

Then define a functor \(\eta_G = (1_V, G, 1_G) : S \rightarrow (G, 1_V) \) as in

\[
\begin{array}{c}
(S, 1_V) \\
\downarrow Q_0 \quad \quad \quad \quad \quad \downarrow Q_1 \\
S & \xrightarrow{\eta_G} & V \\
\downarrow G \quad \quad \quad \quad \quad \quad \downarrow 1_V \\
V
\end{array}
\]
and define $\mu_G = (Q_0Q_2, Q_3, \beta(\alpha Q_2)) : ((G, 1_V), 1_V) \rightarrow (G, 1_V)$ where we recall that $\beta(\alpha Q_2) : GQ_0Q_2 \rightarrow Q_1 Q_2 \rightarrow Q_3$ in

$$
\begin{tikzcd}
((G, 1_V), 1_V) \\

(G, 1_V) \\

S \\

V
\end{tikzcd}

And finally, for a functor $P : (G, 1_V) \rightarrow S$ satisfying $GP = Q_1$ so that $GPQ_2 = \beta : Q_1 Q_2 \rightarrow Q_3$, define, for use in Definition 17, $(P, 1_V) = (PQ_2, Q_3, \beta) : ((G, 1_V), 1_V) \rightarrow (G, 1_V)$ as in

$$
\begin{tikzcd}
((G, 1_V), 1_V) \\

(G, 1_V) \\

S \\

V
\end{tikzcd}

As noted above, in the cat case the domain of Put for insert updates should be a comma category. Notice that the equations in the next definition are similar to those of Definition 11 with the domain of Put replaced by the appropriate comma category.

Definition 17 A c-lens in cat is $L = (S, V, G, P)$ where $G : S \rightarrow V$ and $P : (G, 1_V) \rightarrow S$ satisfy

i) PutGet: $GP = Q_1$

ii) GetPut: $P\eta_G = 1_S$

iii) PutPut: $P\mu_G = P(P, 1_V)$
or diagrammatically:

\[\begin{array}{cccc}
S & \xrightarrow{\eta_G} & (G, 1) & \xrightarrow{(P, 1)} (G, 1) \\
& \downarrow P & Q_1 & \\
S & \xrightarrow{G} & V & \\
\end{array} \]

A c-lens is as above except that the domain of \(P \) is \((1, G)\), and so on.

We recall from [21] that the assignment \(G \mapsto (G, 1) \) is the object part of a KZ monad on \(\text{cat}/V \). The \(\eta_G \) and \(\mu_G \) defined above provide the unit and multiplication for the monad. Dually, \(G \mapsto (1, G) \) is a co-KZ monad.

Theorem 18 An algebra structure on \(G : S \to V \) in \(\text{cat}/V \) for the monad

\[\text{cat}/V \xrightarrow{(-, 1)} \text{cat}/V \]

is determined by an arrow \(P : (G, 1) \to S \) satisfying the c-lens equations, \(\text{PutGet, GetPut and PutPut} \), and conversely.

Proof. This result is similar to Proposition 12. We first note that the GetPut equation says that \(P \) is a morphism of \(\text{cat}/V \) from \(Q_1 \) to \(G \). The upper right triangle defining \(\eta_G \) shows that \(\eta_G \) is a morphism of \(\text{cat}/V \) and the PutGet equation is then exactly the unit law for the algebra structure. Finally, the upper right triangle defining \((P, 1)\) is the arrow of \(\text{cat}/V \) which defines the action of the monad applied to \(Q_1 \). Thus the PutPut equation expresses the other law required to make a c-lens an algebra. Conversely, an algebra structure on \(G : S \to V \) is first of all an arrow \(P \) from \(Q_1 \) to \(G \) in \(\text{cat}/V \), GetPut is satisfied, and satisfaction of the algebra equations immediately imply satisfaction of PutGet and PutPut.

As proved in [21], the algebras for \((- , 1)\) are the split opfibrations (and algebras for \((1, -)\) are split fibrations). For the rest of this article, we assume that all \(\text{(op)fibrations} \) mentioned are assumed to be split.

Corollary 19 A c-lens with codomain \(V \) is an opfibration with codomain \(V \), and conversely.
The dual is that a c'-lens is a fibration. Our interest is to apply this result to show that a c-lens structure is sufficient to provide universal translations. For the rest of this section we discuss opfibrations, but remind the reader they are c-lenses. We begin with two lemmas showing that homming into an (op)fibration gives an (op)fibration, and that the pullback of an (op)fibration is again such.

Lemma 20 ([5], 8.1.15) Let $G : S \to V$ be an (op)fibration. For any category X, $(1_X, G) : \text{cat}(X, S) \to \text{cat}(X, V)$ is an (op)fibration.

Lemma 21 ([5], 8.1.16) For a pullback in cat:

\[
\begin{array}{ccc}
E & \xrightarrow{F'} & S \\
\downarrow{G'} & & \downarrow{G} \\
B & \xrightarrow{F} & V
\end{array}
\]

if G is an (op)fibration, then G' is an (op)fibration.

The following consequence of the lemmas may be a new observation.

Proposition 22 Let $G : S \to V$ be an (op)fibration and the square below be a pullback. The functor Q is an (op)fibration

\[
\begin{array}{ccc}
K & \xrightarrow{Q} & \text{cat}(S, S) \\
\downarrow{(1_S, G)} & & \downarrow{(1_S, G)} \\
\text{cat}(V, V) & \xrightarrow{(G, 1_V)} & \text{cat}(S, V)
\end{array}
\]

Proof. This follows immediately from Lemmas 20 and 21.

When Q is an opfibration, we have the following explicit description:

Corollary 23 Let Q in the previous theorem be an opfibration. Suppose that $HG = GF$ so that $H = Q(H, F)$ and $u : H \to U$, then there is $L_U : S \to S$ and $l_u : F \to L_U$ such that $Gl_u = uG$ and such that for any $L' : S \to S$ and
Let \(V : \mathbb{V} \rightarrow \mathbb{Q} \mathbb{E} \) be a view and \(\langle U, u \rangle \) a pointed view update. If \(V^* \) is an opfibration, then there is a universal translation \(\langle L_U, l_u \rangle \) of \(\langle U, u \rangle \).

Proof. Take \(F = 1_{\text{Mod}(\mathbb{E})} \), \(H = 1_{\text{Mod}(\mathbb{V})} \) in the Corollary.

The dual is:

Corollary 25 Let \(V : \mathbb{V} \rightarrow \mathbb{Q} \mathbb{E} \) be a view and \(\langle U, u \rangle \) a copointed view update. If \(V^* \) is a fibration, then there is a couniversal translation \(\langle L_U, l_u \rangle \) of \(\langle U, u \rangle \).

Pointed view updates can be composed horizontally, and there is a comparison from a universal translation for the horizontal composite to the horizontal composite of universal translations. Formally,

Proposition 26 Let \(V : \mathbb{V} \rightarrow \mathbb{Q} \mathbb{E} \) be a view and \(\langle U_1, u_1 \rangle \) and \(\langle U_2, u_2 \rangle \) be pointed view updates. If \(V^* \) is an opfibration, then \(\langle U_2 U_1, u_2 \circ u_1 \rangle \) has a universal translation \(k : 1 \rightarrow K \) and there is a unique comparison \(k' : K \rightarrow L_{U_2} L_{U_1} \) to the composite of the (codomains of the) universal translations for \(\langle U_1, u_1 \rangle \) and \(\langle U_2, u_2 \rangle \).

Proof. This is immediate from Proposition 24.

There is no reason to expect \(k' \) to be invertible, so while \(\langle L_{U_2} L_{U_1}, l_{u_2} \circ l_{u_1} \rangle \) is certainly a translation for \(u_2 \circ u_1 \) it may not be universal.
These results show that when V^* satisfies the fibrational criteria of [12] for updatability, and in particular when it has a lens structure in cat, then universal translations are available. It is worth repeating that such translations are essentially unique, and optimal. By contrast, there is no way even to measure a translation’s properties if we restrict view definition morphisms to set. This defect is at least partly fixed when, as in [9], the view definition morphism is a monotone mapping.

The following Proposition is of interest for updates in the case of a keyed EA sketch E so that $\text{Mod}(E)$ is ordered. In that case it provides a partial converse to Corollary 23.

Proposition 27 Let $G : S \to V$ be a functor and let the square below be a pullback.

$$
\begin{array}{ccc}
K & \longrightarrow & \text{cat}(S, S) \\
\downarrow Q & & \downarrow (1_S, G) \\
\text{cat}(V, V) & \xrightarrow{(G, 1_V)} & \text{cat}(S, V)
\end{array}
$$

Suppose further that S is an ordered set viewed as a category and Q is an opfibration. Then the functor G is an opfibration.

Proof. Suppose $\alpha : GS \to V$ in V. We need to define an opcartesian arrow for α. For any categories A, B, denote the functor which is constant at B in B by $K_B : A \to B$. For $f : B \to B'$, there is an obvious natural transformation $\kappa_f : K_B \to K_B'$. Indeed, any natural transformation from K_B to K_B' arises in this way.

For $A = B = V$, denote $H = K_{GS}$ and for $A = B = S$, $F = K_S$. Thus $HG = GF$ (so F lies over H).

Define $U = K_V : V \to V$ and $u = \kappa_\alpha$ so by hypothesis there are $L_U : S \to S$ and $l_u : F \to L_U$ satisfying $Gl_u = uG$ and in particular $GL_U = UG$ so that for any S in S, $GL_U(S) = UG(S) = V$.

Denote the arrow $l_u(S) : F(S) \to L_U(S)$ by $\tilde{\alpha} : S \to S\alpha^*$. We aim to show that $\tilde{\alpha}$ is opcartesian for α. So suppose that $\varphi : S \to S'$ satisfies $G\varphi = \beta\alpha$, for some $\beta : V \to GS'$.

Denote $M = K_{S'}$, and $W = K_{GS'}$ and note that $GM = WG$, $\kappa_\varphi : F \to M$ and $\kappa_\beta : U \to W$. Furthermore, we have $G\kappa_\varphi = \kappa_\varphi G = \kappa_\beta\alpha G = \kappa_\beta G = \kappa_\beta uG$.

19
Now since Q is an opfibration, we know that there is a unique transformation $k : L_U \to M$ satisfying $Gk = \kappa_\beta G$ and $\kappa_\varphi = kl_u$ and we have the required fill-in arrow defined by $kS : S\alpha^* = L_U(S) \to M(S) = S'$. Moreover, since $Gk = \kappa_\beta G$, $GkS = \kappa_\beta GS = \beta : V = U(GS) \to W(GS) = GS'$, and necessarily, $(kS)\bar{\alpha} = \varphi$ since S is ordered. For the same reason, kS is unique.

Note that we use the hypothesis that S is ordered to show both commutativity and uniqueness of the “fill-in” arrow. Some converse of Proposition 24 is desirable, even in the case that S and V are ordered sets, but we do not know of any.

5 Conclusion and future work

The concept of lens in a category with finite products is relevant to the lifting problem also known as the view update problem for databases. Because a lens determines a product structure (up to isomorphism) on its domain, it is strong enough to guarantee that compatible liftings (or translations) can be computed for any update process. As such, it unifies interpretations of database states and view mappings in the category of sets and the category of ordered sets. The definition applies to the category of categories as well. There the product decomposition implies that the view definition functor underlying the lens is both a fibration and an opfibration.

The authors have considered the view update problem in the context where database states are models of sketches. For a single view insert update viewed as an arrow in the category of view states, the existence of an opcartesian arrow is a suitable criterion for a universal solution to the view update problem [12]. Thus, when the view definition is an opfibration such problems have a solution. Similarly, a single view delete update has a universal update when there is an opcartesian arrow.

In this article the focus is on update processes in the categorical context. That requires consideration of (co)pointed update functors. This article shows that a suitable weakening of the lens concept called the c-lens turns out to be equivalent to being an opfibration (or fibration for c'-lenses), and further that a c-lens structure is sufficient to guarantee even universal updates for pointed update processes. The original lenses provide an important special case.
While a lens in the category of categories provides updates for both delete and insert functorial update processes, a c-lens structure does so only for inserts. The next step is to consider what structure on a view mapping will provide universal updating for both inserts and deletes. We expect that the categorical notion of distributive law will play a role in this study.

References

