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Abstract. We study some of the mathematical challenges presented by
the need to support ensemble engineering, concentrating on likely contri-
butions from category theory and universal algebra. Particular attention
is paid to dealing with missing data, modelling dynamics and interaction,
and analysing inconsistencies.
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1 Introduction

This volume, and much of the earlier work of the INTERLINK Working Group 1
(WG1), has advocated ensemble engineering as an important new computing
paradigm. For a discussion of ensembles, the reader is referred to [3] in which
ensemble engineering is defined (page 19) as “the science and engineering disci-
pline of complex, integrated ensembles of computing elements ... [and] ways to
reliably and predictably model, design, and program them”.

The growth in the development of distributed systems, mobile technologies,
agent-based systems, multi-processor embedded systems, and the construction
of interoperations for legacy systems all contribute engineering techniques that
can be useful for ensemble engineering. At the same time, the challenges of
very large numbers of nodes, adaptive technologies which blur the boundary
between development time and operation time, open environments, and emergent
behaviour, will require the development of new mathematical techniques for
reliable design.

Some of the mathematics expected to be of value can be predicted already.
Probabilistic analyses, differential equations, the modal logic of games, and many
aspects of complex systems theory are all relevant. This paper explores the
prospects of providing mathematical support for ensemble engineering using one
less known mathematical tool — category theoretic universal algebra. After some
background material and a brief example of specification via category theoretic
universal algebra we deal in turn with the need to develop mathematics for the
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dynamics of algebras, proposals for the study and management of the integra-
tion of systems, how to deal with limited data at the local level of computational
elements, how to deal with limited data during interoperation between compu-
tational elements, and a proposal for the analysis of systems in the presence of
inconsistencies.

2 Remarks on Category Theory

Some readers of this volume will have little or no experience with the branch of
mathematics known as category theory. The remainder of this paper attempts to
outline results which follow from category theoretic analysis without including
the mathematical details. Of course, there is a risk of “falling between two stools”
— those who understand category theory may feel cheated by the missing details,
while those with no experience of category theory may wonder what it’s all about.

To try to address the first group, the category theorists, I have included precise
statements of the category theory involved whenever I can do that with a few
words. Those without experience of category theory should just read past the
technical terms when they appear.

For the second group I say a few words informally about category theory in this
section. Mostly I try to avoid full definitions, talking about category theory rather
than trying to provide an exposition of a graduate course in a page or two.

Nevertheless, we begin with some detailed definitions: A category is a directed
(multi-) graph, together with a composition for arrows in the graph defined
whenever two arrows meet head to tail (viz A >B >(C, with the resulting
composite a single arrow from A to C). If the two composable arrows are called f
and g then the composite is denoted gf (note the order which corresponds to the
usual (algebraic) notation for composite functions). The composition operation
is required to be associative (so h(gf) = (hg)f) and to have identities.

Since in every category composition of arrows is associative, any string of ar-

rows A >B > ... >T in a category has a unique composite.
Of course, different strings might have the same composite. If another string of
arrows A >C > ... >T has the same composite the diagram made

up of the two strings is said to commute. Some examples of commutative triangles
and a commutative square appear in Section [l

Common examples of categories arise from classes of mathematical struc-
tures and the arrows, often called morphisms, between them. For example, the
category of finite sets has as objects all finite sets and as arrows the functions be-
tween the sets. Similarly there are categories whose objects are groups and whose
arrows are group homomorphisms; topological spaces with continuous maps;
graphs with graph homomorphisms; etc. There is even a category whose ob-
jects are all “small” categories and whose arrows are the appropriate morphisms
for categories — graph morphisms ¢ which respect the composition meaning
that ¢(gf) = ¢(g)o(f) and ¢ takes identity arrows to identity arrows — called
functors. (Do not be concerned about “size” issues which cause no difficulties
provided one correctly uses classes).
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Finite categories are quite common in computer science applications. They
are easily presented by giving their finite underlying graph and tabulating the
(finitely many) compositions.

Categories were introduced during the 1940s, originally to make precise the
notion of natural transformation — a kind of morphism between functors. The
language of categories has since become widely used in many ares of mathe-
matics, and category theory itself has had an important role in unifying and
organising disparate areas of mathematics.

Categories are disarmingly simple — a category is merely a graph together
with a composition which is associative and has identities. What is surprising is
that such a simple notion can have much “semantic power”. A large part of that
power comes from the discovery during the 1950s that notions nowadays known
as limits and colimits, including products, coproducts, pullbacks and pushouts,
can be described solely as properties of arrows within a category. Such properties
typically take the form “for all arrows of a certain kind there is a unique arrow
of another kind making certain diagrams commute”, and because of the initial
universal quantifier (“for all”) they are known as universal properties. Another
kind of universal property, cartesian morphisms, plays a role in Section

The existence of objects with certain universal properties is sometimes called
an exactness condition. For example, to say that a category, like the category of
finite sets, has all finite products (which it does), is an exactness condition. A
category which has all finite limits is called finitely complete. Finite completeness
is quite a strong exactness condition, but we do sometimes require more, for
example the existence of finite coproducts (Section H)). The category of finite
sets has all of these exactness conditions and more besides.

3 Categorical Universal Algebra

In the 1960s, F.W. Lawvere discovered and developed categorical universal alge-
bra. Lawvere observed that using finite products and commutative diagrams he
could construct a category which encapsulated all of the information required for
a particular branch of algebra, say group theory. The category is called the theory
of a group. Every finite group arises as a finite product preserving functor from
the theory to the category of finite sets. Indeed more: The category whose objects
are such functors and whose arrows are the natural transformations between them
is equivalent to the category of finite groups and group homomorphisms.

Similarly other areas of algebra arise correspondingly from other theories.
Monoids, semigroups, rings and many other algebraic structures can be treated in
exactly the same way. And theorems proved about the categories using category
theoretic tools are theorems of universal algebra.

In order to further generalise from fully defined operations (like the product
of elements of a group) to partially defined operations (like the composition of
arrows in a category) one needs to replace “finite products” with more general
limits. For example, a certain pullback can be used to abstractly specify the
composable pairs of arrows in an abstract category. Thus, one is led to the notion
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of a theory as a category with certain exactness properties, and algebras as
functors from the theory to a category of sets which preserve the exactness
properties. Commutative diagrams in the theory still correspond to axioms that
the algebras are required to satisfy.

In the 1970s Lawvere and others developed categorical logic, most explicitly
in topos theory, in which certain universal properties can be used to represent
standard logical constructions. Categorical logic is important to us here because
category theory can be used to specify systems as well as algebras, and restric-
tions on those systems are often expressed in logical terms which can, since the
1970s, be rephrased into category theoretic specifications.

To conclude this very brief historical survey we note that in the 1980s people
began widely using category theory and universal algebra (although not usually
category theoretic universal algebra) for specifications in computer science. In
the 1990s the author and others used Lawvere style category theoretic universal
algebra to specify information systems while others used category theory for
program language semantics or even to introduce programming constructs (eg
monads in Haskell). Since 2000 the author and his colleague Rosebrugh have
been using category theory to study view updates (Section[)), and view updates
to engineer system interoperations (for arguably very very small ensembles).

4 System Specification Using Universal Algebra

This section briefly reviews the mathematical foundation the author has used for
system specification using category theory. It is based on categorical universal
algebra, which is the basis of classic algebraic specification techniques [2]. We
assume some familiarity with elementary category theory, as might be obtained
in [I], [II] or [13]. For the purposes of this paper we will just outline the basic
ideas. A fuller treatment can be found in, for example, [7].

A theory is a finitely complete category, frequently with other exactness prop-
erties (for example finite coproducts in much of the author’s work with his col-
leagues Rosebrugh and Dampney). A specification is a presentation for a theory,
usually given via a sketch [I]. A model or state for a theory is a finite limit
preserving, and whatever other exactness properties might have been specified
preserving, functor from the theory to the category of finite sets. A model is also
called in more mathematical treatments an algebra.

A model should be thought of as a snapshot of the system in operation, while
the theory constrains the possible snapshots — in a sense the theory embodies
all of the information that is required in all possible snapshots.

These formalities allow us to be quite precise about our systems, and to begin
to analyse them mathematically. but they also have other advantages some of
which we will note here:

— The theory is invariant — there are usually many different presentations of
the same system, and we don’t wish to deal with artifacts of any particular
presentation. For any given system the theories will be equivalent categories
no matter which presentation is used.
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— The theory includes the constraints, axioms or business rules that are im-
portant to capture at specification time, and to enforce at operation time.
Indeed, the power of the exactness properties permits, via categorical logic,
the specification and enforcement of logically delicate constraints.

— The theory can be constructed so as to include mathematical representations
of the data and properties that can be derived from particular states (models)
of the system. For example, when the system in question is a database,
the theory will include (automatically because of the required finite limits)
representations of all of the queries that can be applied to the database.

Example 1. Figure 1 is fragment of a theory for a health informatics system
[B]. Models of this theory include sets representing for example all of the in-
patient operations for which details are stored in the system and all of the
hospitals for which details are stored in the system, along with a function between
them indicating which operation took place in which hospital. The theory itself
includes many more base datatypes together with nodes representing all possible
queries of the database, and arrows representing all derived operations among
datatypes.
In a little more detail:

— The graph shown is a type diagram. The three monic arrows (those with
extra tails to indicate that they should be realised as injective functions)
indicate subtypes. The other arrows are functions (operations) which given
an instance of their domain type will return an instance of their codomain
type. The names on nodes and arrows have no formal significance but do
indicate the real world semantics being captured in the specification and
will be used from now on in our discussion.

— The commutativity of the two triangles represents a typical real-world con-
straint: Every in-patient operation conducted at a particular hospital by a
particular medical practitioner must take place under a practice agreement
(a type of contract) between that hospital and that practitioner. If, instead

In-patient - Oper'n
operation type
GP by under 2
\
Specialist > isa Medlvcal B Practlc’e > Hospital
pract’ner agreem'’t
has memb 2
v is a v
Spec'n > > College Person

Fig. 1. A fragment of a theory for a health informatics system
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the left hand triangle were not required to commute then it would still be the
case that every operation took place under an agreement, but Dr A could
operate under Dr B’s practice agreement. In many information models, sit-
uations like this do not even include the arrow marked under, and thus they
store the contractual information, but do not specify the constraint — it is
expected to be added at implementation time.

— The square is also commutative and is required to be a pullback. This en-
sures that the specialists are precisely those medical practitioners who are
members of a college which occurs in the subtype Specialisation. This is im-
portant because the registration procedures (not shown) for specialists are
different from those for other medical practitioners.

— Subtype inclusion arrows, and other arrows that are required to be monic in
models, are so specified using pullbacks.

— As is common practice, attributes are not shown in Figure 1, but they are
important. They are usually large fixed value sets, often of type integer
(with specified bounding values), string (of specified maximum length),
date etc. Some examples for this theory include the validity period of a
practice agreement, the name and the address of a person, the classification
of a hospital, the date of an operation, the provider number of a medical
practitioner and many more. Strictly, they are all part of the theory.

It is worth noting that in contrast with most algebras that arise in mathemat-
ics, information systems are usually very many-sorted (based on many different
sets like Hospital, Person, College etc) and most operations are unary (at, by, isa
etc). Also in many algebraic specifications essentially unique models (algebras)
are sought, frequently by taking initial algebra semantics for example. In con-
trast ensembles frequently need to collect data maintaining histories or sets of
instances for each datatype.

5 Dynamics

The utility of categorical universal algebra for abstract specification of software
and systems, including areas as diverse as information systems and programming
language semantics, is well-established. So, rather than rehearsing those argu-
ments we will begin by considering one of the limitations of present work — the
mathematical treatment of the dynamics of algebras is relatively undeveloped in
modern universal algebra.

Universal algebra specifies and studies individual algebras, or varieties of alge-
bras with certain properties, but only rarely does it deal with algebras changing
through for example adding or deleting an element. Yet this dynamic nature is
central for the study of systems that process information — a snapshot of the
system at a moment in time is an algebra, and as the system acquires more
information, perhaps by the addition of a new instance of some type (eg, an in-
sertion of a new entity instance in a database), the algebra is modified to become
another algebra.
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One well-understood, but fairly limited, instance of algebra dynamics is the
extension of a field or a ring by an indeterminate (R > R[z]). In a more general
sense algebras can be modified by quotienting or by operating on them with other
algebras (taking for example the product — see the next section). But there is little
theory to support “Given a group G, add an element with the following properties
(expressed in terms of other elements of G) to get a new group G'”.

A certain amount of theoretical development of dynamics has been done in [§]
which developed a mathematical foundation that unifies the treatment of speci-
fications, updates (dynamics), and categories of algebras for a class of database
systems. Nevertheless, much remains to be done.

6 Interactions among System Components

One of the outstanding features of ensembles of computational elements is the
interaction of those elements. While ensemble interaction should be dynamic, and
possibly adaptive, it is nevertheless important to design and manage interactions
and to model them mathematically.

The traditional universal algebra approach to modelling and designing interac-
tions between systems involved calculating pushouts in the category of theories.
This has been an effective technique, but it may be seen as less appropriate for
ensembles as it views the ensemble as a static system constructed from parts.

R.F.C Walters and his colleagues have an ongoing programme of research into
a (bi-) categorical calculus of processes which accurately models the composition
of systems including representations of concurrency and feedback (see for exam-
ple [9] and [I0]). The processes may be viewed as algebras in our framework,
and algebras can be composed using algebra operations akin to product, sum,
and trace. More recently the researchers have incorporated timing issues into
their mathematical model. It seems likely that approaches such as these will be
very useful in ensemble engineering, although much of the work is still oriented
towards viewing the ensemble as a constructed system rather than as a dynamic
evolving agglomeration.

Another approach advocated by the author [4] focuses on managing the com-
munications between extant systems using techniques outlined in Section 8 The
basis for studying interactions is quite like the pushout approach: We begin with
a span of theories IF < A% >JE', two of which, IE and IE’, are the theories
of independent computational elements while the third (V) is a representation
of their interactions, typically the common information on which they will at-
tempt to remain synchronised. The synchronisation techniques (Section [§]) are
quite different from the calculation of a pushout, but more importantly for this
section the systems specified by IF and IE’ remain independent and can in prin-
ciple move in and out of communication rather than being parts of a composite
system calculated via pushout.

So, we have at least three promising techniques to analyse and design interac-
tions among elements of ensembles. In all three cases there is still much to do to
develop the mathematical approaches to more fully support ensemble engineering.
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7 Limited Data at Computational Elements

One of the most significant aspects of an ensemble is the need to deal with semi-
structured rather than fully-structured data. In a dynamic world with many
adaptive elements joining and leaving an ensemble, it’s hard to imagine how
complete sets of data can be captured, communicated and maintained.

The problem of incomplete data has long been dealt with in the database
community by using NULLs — invalid data values that act as place holders for
missing data. Nevertheless, NULLs have had at best an ambiguous status in
the theory, frequently they were retro-fitted long after a design which de facto
assumed perfect data availability. And when they were considered in the theory
they led to widely differing treatments using so-called three-valued logics.

The first observation to be made here is that missing values have no impor-
tance in and of themselves — one doesn’t need a NULL value to store the fact
that there is nothing to store. The delicacy in dealing with missing values arises
because operations may need to take undefined values.

Now partial operations are easily represented category theoretically. Suppose
fi:A > B is an operation which might be only partially defined on its domain
A. Then in the theory which establishes the type of f we don’t include an arrow
A > B but rather a span A< <A’ > B. Thus A’ is the type standing
for those instances of A on which f is defined, and notice that in a dynamic
system this provides full flexibility — instances of elements of A can be added
to, or deleted from, A’ as information becomes available.

Interestingly, and delicately, the span approach is not equivalent to using
NULLs. In the latter case a partially defined f : A > B would be represented
by a fully defined f': A > (B + 1) where the extra element of the codomain
is the NULL. The two approaches are Morita equivalent (ie have equivalent
categories of models, see [6]) on the assumption that the subobject A’>  >A
is complemented and this is not usually the case. The difference is important in
dynamic environments: To define f on a new value a € A is extra information and
is represented in the span case by inserting a into A’, but when f’ has codomain
B + 1 extending the domain of definition really means reassigning values for f’
(formerly f’(a) = 1, but once f becomes defined at a then f’(a) = b for some
be B).

8 Limited Data during Interoperation

Another source of limited data arises in dynamic environments when, for exam-
ple, systems interoperate via a span of theories IF < A% > IF’ as proposed
in Section [6l

Suppose we aim to keep, as far as possible, the algebra for I synchronised
with the algebra for £’ on common parts indicated by V. In categorical univer-
sal algebra an algebra for a theory IE’ is an appropriate functor I’ > Set.
Thus an algebra for IF’ yields an algebra for V by composition with the theory
morphism V > IE'. Now, how can we modify the algebra (system snapshot)
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for IE so that it remains synchronised with the new algebra for V? This is the
view update problem. The problem is genuinely difficult because of missing data.
A change in the algebra for IE' by an insert say, may result in a change in the
algebra for V also by an insert. That insert is properly defined, since all the
information that a V-algebra needs is available in the JE’-algebra. But trying to
propagate the insert to the extant [E-algebra may be impossible (if for example
there are constraints that are required to be satisfied by IF-algebras that do
not appear in V-algebras), or ambiguous (if for example there are operations in
FF-algebras that are not fully determined by operations in V-algebras).

To engineer effective interoperations we need to determine those occasions when
view-updating may be impossible since they are real limitations to interoperations,
and for those situations where view-updating may be ambiguous because there are
multiple solutions we seek a “best” solution — one for which the change to the IF-
algebra is minimal. In category theoretic terms we seek a universal solution to the
view updating problem and analysing the situation shows that the solution is given
by well-known cartesian and op-cartesian morphisms [7].

Importantly the two types of missing data (treated in this section and the
preceding section) interact well: In work still being written up the author shows
that when operations support missing data using the span approach outlined in
the previous section, and an insert leads to an ambiguous view update because
such an operation is not fully-determined, the least defined extension of the
operation will be a component of an op-cartesian morphism.

Of course there is much work to be done in testing the utility of these ap-
proaches for full ensemble engineering, but they have already proved their value
in smaller scale system interoperations.

9 Analysing Systems in the Presence of Inconsistencies

Finally we consider one important mathematical limitation that can arise in deal-
ing with ensembles. With loosely coupled, or indeed uncoupled, dynamic systems
of open computing elements one can’t ensure consistency — unexpected or mal-
functioning elements might occasionally join an ensemble and exhibit properties
which contradict ensemble invariants. This shouldn’t be surprising. Conflicting
systems often exist, and frequently operate effectively for extended periods in
at least a narrow domain in the real world. But for mathematical tools such
inconsistencies can be damning. A single inconsistency in a mathematical model
invalidates everything that the model purports to demonstrate.

In fact, it is easy to see how the difference arises. Real systems have various
flows of control and inconsistencies can co-exist for extended periods without
being invoked together and coming into conflict. The system behaviour is de-
termined by the traces of execution. In contrast mathematical structures exist
in their Platonic entirety. If a contradiction exists, its effects cannot be dis-
tinguished from deductions that would have been valid in its absence. Every
“behaviour” of the mathematical structure, everything that it proves, is brought
into doubt by the presence of the inconsistency.
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Recent work by Catherine Menon [12] addresses this problem using ideas from
view updating. Menon develops what she calls CCF, the categorical consistency
framework.

Menon has developed a framework which maintains mathematically the
distinctions between modules and permits an analysis of the modules and an
exploration of their joint consistency without in fact building them all into a
mathematical model which would itself exhibit any inconsistency which was
present.

Menon’s work is a first step in an area that will need to become well-developed
if we are to provide proper mathematical support for truly open and dynamic
ensembles rather than using older mathematical techniques to analyse snapshots
of ensembles as large static systems constructed from fixed components.

10 Conclusion

It is clear that a great range of mathematical techniques will be important for
ensemble engineering. Some exist. Others will be developed to meet the new
challenges that arise.

This paper has focused particularly on categorical universal algebra and ex-
plored some of the probable applications, and some of the current limitations,
of extant universal algebra for ensemble engineering. We’'ve demonstrated that
some of the difficult problems of ensemble engineering can be addressed using
recent developments based on categorical universal algebra, particularly the rep-
resentations of missing data and the solution of view update problems, neither
of which played a part in earlier applications of universal algebra. We look for-
ward to many more similar developments in mathematical support for ensemble
engineering.
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