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Introduction

With the rise in interest in n-categories, at least for n = 2, the operation of pasting has been
recognized as a valuable tool in understanding categorical diagrams involving several different
compositions. Nevertheless, the operation and the pasting diagrams themselves, have never been
given a precise formal description. Of course, one can work with pasting diagrams without worrying
about their foundation (much as many 19th Century group theorists worked productively in groups
of substitutions without an axiomatization of groups), but broader applications and more general
results need a firm footing.

This thesis attempts to provide an axiomatic foundation for pasting diagrams, and to take
advantage of the clearer formulation in the following applications.

Pasting diagrams in 2-categories were described in a 1971 lecture of Walters [23], where the
importance of the pasting theorem was recognized. The theorem asserts that any “composable”
diagram in a 2-category determines a unique cell, independently of the choice of the order of the
compositions involved. Unfortunately the theorem has never been proved, chiefly because of the
lack of a sufficient formalization of the notion of pasting diagram. Chapter 2 below sets down
a definition of pasting diagrams, isolates the “composable” diagrams (called well-formed pasting
diagrams), and presents a proof of the general n-category pasting theorem.

Street, in [20], introduced orientals: The nth oriental is “the free n-category on the n-simplex”.
Chapter 3 presents a new description of Street’s orientals. The cells of the free n-category on the
n-simplex should be made up of simplexes freely composed, and the recognition of a natural pasting
diagram structure on the (combinatorial) w-simplex makes such cells easy to define. They turn
out to be simply the well formed (= “composable”) subpasting diagrams of the simplex, and the
fact that they form a free w-category follows from generalities about pasting diagrams.

The first coherence theorems were proved by Mac Lane [15] in 1963. Mac Lane has described
coherence theorems as assertions that all of a certain class of diagrams commute, but in most
of the classical examples the diagrams involved are diagrams of natural transformations, which
are most naturally treated as pasting diagrams in the 2- (or even 3-) category Cat, rather than
ordinary diagrams in an ordinary category. Chapter 4 takes this point of view and describes a fairly
general setting for the analysis of coherence questions. Many classical results follow easily from
the n-categorical geometry of the diagrams and new results—the higher coherence conditions—are
equally simple.

Algebraic topology frequently constructs algebraic objects from topological objects by taking
“paths” in the topological object, with composition given by some form of concatenation of paths,
usually modulo a homotopy relation. One version of this construction which doesn’t use homotopy
is called the Moore category of a space and works by having many different domains for paths.
Moore’s construction only applies to 1-dimensional paths and it has not been clear how to extend it
to higher dimensions because the necessary collection of domains for paths seems quite complicated
and because Moore’s construction has not been well understood in general settings (homotopy
groups are groups because S™ is a cogroup in the homotopy category, but Moore’s domains of
paths do not form a cocategory).

The nature of the Moore construction is analysed in Chapter 5 which introduces parametrized
theories. The algebras for a parametrized theory of (say) categories are categories with appropriate
extra structure—examples include Lawvere’s categories with duration, Bénabou’s fibrations, and
Paré-Schumacher’s indezed categories. Moore’s domains of paths are a co- parametrized-category



and so, for classical reasons, his paths form a parametrized-category. The extra structure is a
‘length’ for each cell; forgetting the length gives the usual Moore category. Furthermore, the
collection of freely composed simplexes (well-formed simplicial sets) described in Chapter 3 forms
a co-parametrized-w-category, and so provides the desired generalization of the Moore construction
to higher dimensional paths.

History

The problems described above have been “in the air” for a number of years. Researchers have
suspected that they are interrelated but precise relations have not been found. This section briefly
reviews the recent history of each of the problems.

The categorical operation of pasting was first used by Bénabou in his treatment of bicategories
[3]. Independently, Walters in his thesis [22] used pasting, and he introduced it to Sydney in his
1971 lecture [23]. The latter is also important because it recognized the importance of the pasting
theorem, although Walters stated it as part of an alternative axiomatics for 2-categories. Later
pasting played an important role in the joint work of Street and Walters [21].

An expository description of pasting can be found in the review of Kelly and Street [13] which
also includes a description of the pasting theorem. Despite a suggested technique, and a number
of attempts, no proof of the theorem has appeared.

The investigation of the “free n-category on the n-simplex” was begun by Roberts [18]. Street
and Duskin worked on the problem for a number of years and recently Street [20] has obtained a
solution. Walters has argued that there should be a more geometric description of such a geometric
construction and Aitchison [1] has analysed the geometry of the “free n-category on the n-cube”,
but his work did not achieve Walters’ hoped for simplification of Street’s results.

The relationship between orientals and higher coherence conditions has been particularly tan-
talizing. Mac Lane proved the first coherence theorems in 1963 [15] and his theorems have been
important in the development of enriched category theory by Kelly [11] and others. The devel-
opment of the theory of categories enriched over a bicategory led Street and Walters to realize
that the associative law is obtainable from the free 3-category on the 3-simplex, that coherence of
associativity is obtainable from the free 4-category on the 4-simplex, and to conjecture that the
higher coherence conditions arise analogously. However, there has been no indication as to why
the known laws for an associativity should correspond to simplexes, nor any indication of why this
should continue to be the case for higher conditions.

The final problem is more recent than the others. In 1985 Lawvere and Schanuel, following a lec-
ture given by Walters in Buffalo, were interested in obtaining an n-dimensional version of the Moore
construction to permit “homotopy theory without quotienting”. In July the 2-dimensional case was
still presenting difficulties and Schanuel brought the problem to the author’s attention, suspecting
that the theory of n-dimensional diagrams in w-categories might also apply to n-dimensional paths
in topological spaces. This corresponds well with Walters’ observation that orientals should be
geometrical (and the results that are reported below bear them both out).



Chapter 1

Preliminaries

This chapter presents known results (without motivation) and establishes notation. Sophisticated
readers may like to skip directly to chapter 2 and refer to this chapter if and when notational
difficulties arise.

1.1 Graded Sets

Sets may be identified with discrete categories and this identification allows us to speak of functors
whose domain is a set. A graded set is a functor A from the set of natural numbers, w = {0, 1, ...},
into the category of sets. The image of the functor A at the natural number n is written A,,.
Elements of the set A,, are called n-dimensional.

A graded set may be specified by giving a sequence of sets (4;)iec,. We adopt the convention
that if a particular member of the sequence, say A,,, is not specified then it is assumed to be empty.
A graded set A is called n-dimensional if Ay = () for all ¥ > n, and A, # 0. The n-dimensional
skeleton of a graded set A, denoted |A|,, is the graded set obtained from A by setting (|Al,)x = 0
for all k£ > n, and (|A|p)r = Ay, for k < n.

We say that A is a subgraded set of B, written A C B, when, for each i, A; C B;. Subgraded
sets inherit the usual operations on subsets by defining them pointwise. Thus, for A = (A4;), and
B = (B;), AUB is defined to be (A; U B;);e,,. Similarly for intersection (AN B) and set theoretic
difference (A — B).

If A is a graded set say that x is an element of A, and write € A, when = € A,, for some n.
An element x € A, of a graded set A, will often be identified with the subgraded set X of A given
by

Xy = {z}, whenk=n
Xy = 0, whenk#n.

Then, a definition couched in terms of subgraded sets of A, applies also to elements of A.

Write [n] = {0,1,...,n} and let A be the category of finite ordinals and non-decreasing func-
tions. A simplicial set is a functor A°® — Set. Composition with the functor w — A°P, given by
n — [n], gives the underlying graded set of a simplicial set. The extra structure possessed by a
simplicial set, but not by a graded set, is the information about the images of the morphisms of
A,

For each n and each i € [n], denote by 07" the morphism [n] — [n + 1] of A which is injective
and whose image in [n + 1] does not include 4, and by ¢ the morphism [n + 1] — [n] which is
surjective and has ¢*(i) = o?(i + 1) = i. When there is no danger of confusion we suppress the
superscript n’s. The 0; and their images in a simplicial set are called face operators, and the o;
and their images are called degeneracy operators. The morphisms of A are generated by its face
and degeneracy operators (for details see e.g., [17] or [5]).

An element of a simplicial set is called degenerate if it occurs in the image of some degeneracy
operator.



A simplicial complez is a finite or countably infinite set K, together with a collection K of
subsets of K such that A € K and B C A implies B € K. Such a complex determines a graded
set, also called K by

K, = {A € K : the cardinality of A is n + 1}.

A simplicial complex is said to have an orientation when its elements are linearly ordered. A
simplicial complex with an orientation may be equipped with face operators 9; : K, — K,_1,
€ [n], defined on A = {ag, a1,...,an : a; < ajy1,i € [n — 1]} by

0i(A) = {ap,a1,...,ai,...,an}

(where the circumflex indicates the absence of the character which it accents).

A simplicial complex which has an orientation generates a simplicial set whose non-degenerate
elements are the same as the elements of the complex, and whose face operators are as just de-
scribed, by freely adding degenerate elements subject to the usual simplicial identities. Specifically,
if (K, K) is such a complex then define a simplicial set A by

A, = {(ko,kl,...,k/‘n) tk; € K,and k; < k‘i+1}

with face and degeneracy operators given by deleting, respectively repeating, the element in posi-
tion 7.

The standard n-simplex is the simplicial set which is generated by the simplicial complex
([n], P[n]), where P denotes the power set and [n] bears the usual order. The standard w-simplex
is the simplicial set generated by the simplicial complex S = (w, Py(w)), where Py(w) is the set of
finite subsets of w and w bears the usual order.

The wvertices of a simplicial set, simplicial complex, or graded set, are the elements of dimension
7€ero.

1.2 Higher Dimensional Categories

This section is taken almost entirely from Street [20] pages 1, 2, 4 and 41. We begin with a
one-sorted, arrows-only description of categories.
A category (A, s, t,*) consists of a set A, functions s,t: A — A satisfying the equations

ss=1ts=s, tt=st=t,

and, a function * : {(a,b) € A x A : s(a) = t(b)} — A, whose value a * b at (a,b) satisfies the
equations

s(axb) = s(b), t(axb)=t(a),

such that the following axioms hold:

(right identity) s(a) = t(v) = implies axv = q;
(left identity) wu = s(u) = t(a ) implies ux*a = a;
(associativity) s(a) = t(b), s(b) =t(c) imply ax(bxc)=(axb)=*c.

The functions s, t, x are respectively called source, target and composition; by abuse of notation
the category (A, s,t,x) is often denoted by A. Elements of A are called arrows and the notation
a:u — v is used to denote that s(a) = u and ¢(a) = v. An arrow u is in the image of s if and only
if it is in the image of ¢; such arrows are called identities (or objects) and satisfy s(u) = t(u) = w.
A pair (a,b) of arrows is called composable when s(a) = t(b).

A 2-category (A, so, to, *0, S1, 1, *1) is given by giving two category structures on A (A, so, to, *0)
and (A4, s1,t1,*1) satisfying the following conditions:

(i) s1s0 = s0 = sos1 = sot1, tito =to = tot1 = tosy;

(ii) so(a) = to(a’) implies s1(a *q a’) = s1(a) %o s1(a’) and 1 (a *¢ a’) = t1(a) *g t1(a);



(iii) s1(a) = t1(b), s1(a’) = t1(b'), so(a) = to(a’) imply
(a*1b) %o (a' %1 b') = (axoa’)*1 (bxod').

The identities for %o are called 0-cells and the identities for *; are called 1-cells. The notation

a

b

is used to denote that = € A, s1(x) = a, t1(x) = b, so(z) = u and to(z) = v.

An w-category (A, (Sn,tn, *n)new) consists of category structures (A, sp, tn,*,) on A for each
n € w such that (A, sm, tm, *m, Sn, tn, *,) is a 2-category for all m < n.

The identities for *,, are called n-cells. We write A,, for the set of n-cells of the w-category A.

For r € w, an r-category is an w-category for which all elements are r-cells. We write |A|, for
the r-category consisting of the r-cells of A.

An w-functor f : (A, (Sn,tn, *n)new) = (A', (s, ), %1 )ncw) is a function f : A — A" which
respects all sources, targets and compositions.

An w-category A is freely generated by a subset G of A when, for all w-categories X, for all
n € w, for all w-functors f : |A|, — X, and, for all functions g : G N |A|,+1 — X such that
Sng = fSn, tng = ftn, there exists a unique w-functor h : |A|,+1 — X whose restriction to |A|, is
f and whose restriction to G N |A|,+1 is g (see diagram below).

G N [Aln+
g
Al — - = X
sn | | tn sn | |t
| Al X

1.3 Theories, Algebras and Families

One of the great advantages of category theory is the possibility of instantiating the axioms of equa-
tional mathematical theories in particular categories, usually themselves called theories. Algebras
for such a theory are then functors from the particular category into the category of sets which
preserve appropriate structure of the theory. Usually the correct morphisms for such algebras are
simply natural transformations.

More generally the category of sets may be replaced by any category C and we consider algebras
in C. For example a topological group is a group (an algebra for the theory of a group) in the
category Top of topological spaces.

In Chapter 5 we will have reason to investigate algebras for finite limit theories (hereafter called
theories since we will treat no others) in the category Fam C of families of objects of a category C.
This section reviews the definitions and some elementary properties.

A theory T is a small finitely complete category. If C is any category a T-algebra in C is a
functor F': T — C which preserves finite limits (a left exact functor). A T-algebra in Set is often
just referred to as a T-algebra.

Most of the applications below involve single sorted theories in which T has a generic object
G—all other objects of T are limits of diagrams in which G is the only object. When T is a single
sorted theory with generic object G, F' a left exact functor T — C, and D = FG the image of G,
we will often abuse notation and refer to D as a T-algebra in C.



Recall that covariant representable functors C(X,—) preserve finite limits. Thus if F is a
T-algebra in C then the composite

C(x,-)

T ¢ "2 Set
is a T-algebra (in Set). For example if C = Top and T is the theory of a group then we rediscover
that “homming from any topological space X into a topological group yields a natural group
structure” usually described as the pointwise group structure on the hom set.

If T is a theory a T-coalgebra in a category C is a T-algebra in C°P. As before, if H is a coalgebra
in C then
CoP(

X,-)
—

T - ¢or Set
is a T-algebra, but C°?(X,—) = C(—, X) so “homming out of a cogroup yields a natural group
structure”. There are not many cogroups in nature but one well known example occurs in Hot,
the category of topological spaces and homotopy classes of continuous maps: For n > 1, S™ is a
cogroup in Hot. Thus Hot(S™, X) is a group, usually called the nth homotopy group of X.

The original, non-categorical, formulation of this duality is due to Eckmann-Hilton. See for
example Hilton [6].

Suppose C is a category. The category of families of objects of C, FamC, is defined as follows.
An object of FamC is a small set I and an I-indexed family (A4;);cr of objects of C. An arrow
of FamC from (A;);er to (Bj);jes consists of a function ¢ : I — J and a family of arrows of C,
fi : Al — B¢>(l)

Notice that C is a full subcategory of Fam C, the inclusion being given by sending an object to
the singleton family containing it, and that Fam C is fibred over Set, with p : Fam C — Set given
by (Ai)ier = I and if (¢, fi) : (Ai)ier = (Bj)jes then p(¢, fi) = ¢ : 1 — J.

Fam(C may be characterized universally as the free coproduct completion of C. Yet another
description of FamC is: If I is the inclusion Set — Cat then FamC is the lax comma category

ijc.



Chapter 2
Pasting Diagrams

Category theorists make extensive use of diagrams. A diagram in a category has been defined to
be a graph morphism from some graph into the underlying graph of the category [2]. In 2-category
theory, pasting diagrams like

K ﬁ%ﬂN\ and 1y

4
B ~B (2.1)

(the equality of which expresses one of the triangular equations of an adjunction) play an important
role. If a diagram in a 2-category were to be a 2-graph morphism [4] from some 2-graph into the
underlying 2-graph of the 2-category then the left hand side of (2.1) would not be a diagram
(although the right hand side would be a diagram).

Street [19], recognizing this difficulty, introduced computads. A computad G is a graph |G|
together with a second graph structure whose edges are called 2-cells and whose vertices are
elements of the free category on |G|. Furthermore, in the second graph structure, two vertices can
be connected by an edge only if they share the same domain and codomain as elements of the free
category on |G|. Street defined the underlying computad of a 2-category in which a 2-cell from the
2-category appears between every possible factorization of its domain and codomain. A diagram
in a 2-category may be taken to be a computad morphism into the underlying computad of the
2-category.

We take the view that the above use of graphs and computads defines a diagram by a parametriza-
tion—compare with “A path in a topological space is a continuous map from the unit interval ...”.
However, a parametrizing object is usually in some sense ‘loop free’ or ‘non-singular’ and there is
no such requirement above. So, for example, the definitions allow

to occur as a parametrizing object and hence a similar square of morphisms forms a diagram in a
category. It is not at all clear how to interpret such a diagram.

In this chapter we introduce pasting schemes. A loop-free pasting scheme is an appropriate
parametrizing object for a diagram in an n-category. A realization of a loop-free pasting scheme in
a particular n-category is the map which defines the parametrization. Because the free n-category



on an n-dimensional loop-free pasting scheme has a particularly simple structure our realizations
will be functors rather than pasting scheme morphisms into the underlying pasting scheme of the
n-category. A well-formed pasting scheme is the parametrizing object for a composable diagram—
sometimes referred to as a ‘leg’ in a diagram in an ordinary category. The n-category pasting
theorem states that a well-formed pasting scheme with a given realization has a unique composite.

2.1 Pasting Schemes

In this section we set down the technical details needed in order to be precise about diagrams like
(2.1) above. Such a diagram will be determined by a realization of a pasting scheme in a category.
A pasting scheme will be a graded set (A;);c., where for each i, A; represents the set of i-cells in
the diagram. The actual arrangement of the cells relative to one another will be determined by
two collections of relations E}, B’ : A; — A; which may be thought of as describing which j-cells
are at the ‘end’, respectively ‘beginning’, of each of the i-cells.

Let A = (A;)icw be a graded set, E;-, i,j € w, j <1, a collection of relations with E;- a relation
between the sets A; and A;. Let X be a subgraded set of A of dimension n. Write E*(X) for the
graded set EF(X); = {y € A; : there exists z € X}, zE¥ y} and E(X) for E™(X). If E;, Bj- are two
such collections of relations let R; be the relation between A; and A; given by x R; y when there
exists a sequence * = 1, %2,...%; = y of elements of A satisfying =z Df]’ Tppy for k=1,2,...5—-1
and DY = E} or BY.

We will often position the grading subscript on the relation writing E;(X) rather than E(X);.
The relation E’ is called finitary when, for any = € A;, E}(z) is finite.

In what follows, the E; will be ‘end’ relations and the B; ‘beginning’ relations and we have a
duality: If P is a proposition then dualy P stands for the proposition obtained from P by replacing
all occurrences of E¥ by B and vice versa.

A pasting scheme (A,E,B) is a graded set (4;) together with finitary relations E;-, B;-, j<i,
such that

1. Ej- is a relation between A; and A;

2. E! is the identity relation on A;

3. For k > 0 and any x € Ay there exists y € Ap_; with z EI,;1 Y

4. For k < n, w E} z if and only if there exists u, v such that wE? _; wE}~' z and wE!_, v B} 'z
5. I wE!_, 2E}" 2 then either w E}  or there is a v with wB!_, vE} 'z

and dually (notice that there are four dual forms of condition 5). We will allow A to ambiguously
denote either the pasting scheme or its graded set.

Informally, condition 3 says that every k-cell ends at at least one k — 1 cell, and dually begins
at at least one k — 1 cell. Condition 4 ensures that low dimensional ends occur between higher
dimensional ends—see for instance ) € E(n) in Example 2.1 below. Finally, condition 5 ensures
that a cells beginnings and ends ‘close up’ and that their orientations agree:

.‘
This = , rather than this = or this =

r <

Example 2.1 The diagram

10



is a representation of the pasting scheme (A4, E,B) given by

Ay = {P,Q,R,S}

Ay = {u,v,z,y,2}

Ay = {5777}

A = @, k>2
Eg {(578)7(77777)} Bg = {(578)7(77777)}
Et = {(&w),(n9),(n,2)} BI = {(5,2),(5,9), (n,0)}
E = {(nQ)} B, = {(=R)}
E% = {(u,u),(v,v),(a?,a?),(y,y),(z,z)} Bi = {(u,u),(v,v),(a?,a?),(y,y),(z,z)}
E, = {(0,Q),(v5),(2,R),(y,Q),(2,5} By = {(u,P),(v,R),(P),(yR),(20Q)}
Eo {(P,P),(Q,Q),(R,R),(S,5)} By = {(P.P),(Q,Q),(R,R),(S,S5)}

In a pasting scheme A define a relation <4 (written as < when there is no danger of confusion)
as follows: for any k, and for any a,b € Ay, say a<b if there is a sequence

a=ap,a1,...,a; =0,35>0,

of elements of A with, for all i < 7, Ex_1(a;) N Br_1(a;+1) # 0. As usual, if X is a subgraded set
of A, we write < (X) for {b € A : there exists z € Xy, b<az }, and if X is n-dimensional, <(X) for
(X)),

A pasting scheme A is said to have no direct loops when, for any k and for any a,b € Ag,
B(a) N E(a) = {a} and a<b implies B(a) N E(b) = .

If A is a pasting scheme and X a finite subgraded set of A, define the domain of X, dom X by
X — E(X) and the codomain of X, cod X by X — B(X).

Lemma 2.2 If A is a finite, k-dimensional pasting scheme with no direct loops, then dom A is a
k — 1 dimensional graded set.

Proof. The domain of A is at most k¥ — 1 dimensional since (dom A), = Ay — Ex(A4x) = 0. To
see that dom A is k — 1 dimensional choose some ag € Ay and some yg € Br_1(ag). If yo & dom A
it can only be because yo € E(aq) for some a1 € Ag. Now choose any y; € Bj_1(a1), and repeat.
Since A has no direct loops, a; # a; for ¢ # j and so, since Ay, is finite, we must eventually locate
a Yy € (dom A)g_q.0

Theorem 2.3 If A is a finite pasting scheme with no direct loops then
dom dom A = dom cod A.

Proof. Notice

domdom A = (A—E(A)) —E(A—E(4)) =

A—
dom cod A (A-B(A)) —E(A—-B(4)) = A-

so it suffices to show E(A)UE(A—E(A)) = B(A)UE(A—B(A)) which is clear in dimensions greater
than or equal to dim A = n say.

11



C: Suppose z € E(A), x of dimension k < n. If z € B(A) then x € RHS so suppose = ¢ B(A).
By pasting scheme condition 4 there exists vy with g Ezfl x. If vg € A — B(A) then x € RHS. If
vo € A — B(A) then there must be a wy with wg B} _; vo Ez_l x whence by the dual,, of condition
5 there exists v1 € E(wp) with vy Ef ' 2. Repeating we eventually obtain v,, € A — B(A4) and
z € E(vy,).

Vo

Suppose z € E(A—E(A)), say vo E} ™' = with vy € A—E(A) and suppose z ¢ B(A). As before, if
vg € A—B(A) then z € RHS; otherwise we apply condition 5 until we obtain some v, € A —B(A)
with z € E(up,).
D: The converse inclusion is precisely the dual, of the above.O

2.2 Well-Formed Pasting Schemes

We have shown that finite pasting schemes with no direct loops have sensible notions of domain

and codomain which satisfy the basic equation domdom = domcod. If a finite pasting scheme

parametrizes a composable diagram then its highest dimensional elements must agree in orientation.

In this section we describe well-formed pasting schemes—those in which the arrangements of the

highest dimensional cells in the scheme, and in all of its domains and codomains, are compatible.
If A is a k-dimensional pasting scheme with no direct loops write

sn(A) = th(A)=A ifn>k
sn(A) = dom* A ifn<k
th(4) = cod* A ifn<k.

Notice that if n < k then s,(A) and #,(A) are n-dimensional by Lemma 2.2. We call s,,(A4) the
n-source of A, and t,,(A) the n-target of A.

A pasting scheme A of dimension k& > 0 is called compatible when for any z,y € Ay, if z £y
then By_1(xz) NBr_1(y) = 0 and Ex_1(x) NEx_1(y) = 0. A zero dimensional pasting scheme is
called compatible if it is a singleton.

A subgraded set X of a pasting scheme A is called a subpasting scheme of A if y € R(X) implies
yeX.

A finite pasting scheme A with no direct loops is called well formed if

1. A is compatible

2. For all n > 0 both s, (A) and ¢,(A) are compatible subpasting schemes of A.

Example 2.4 1. The pasting scheme of Example 1 is well formed.

2. Any finite chain of abutting arrows (head to tail and without loops) represents a well-formed
pasting scheme.

3. All the diagrams involving 2-cells in Lecture Notes in Math. 420 may be expressed as well-
formed pasting schemes or assert the equality of two subdiagrams which may be expressed
as well-formed pasting schemes.

Examples of well-formed pasting schemes of dimension greater than two appear in Chapter 3.
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2.3 Loop-Free Pasting Schemes

Pasting schemes with no direct loops, (and even well-formed pasting schemes with no direct loops),
may still exhibit subtle looping behaviour like

where the lines should be thought of as k-dimensional, the double arrow as k + 1 dimensional, x

as k — 1 dimensional, and the ellipsis () as j-dimensional with j < k. In this section we set down
the conditions (again rather technical) which eliminate such behaviour. Schemes satisfying these
conditions are called loop free and in the remainder of this chapter we show that loop-free schemes
and well-formed subschemes of them, behave as we expect pasting schemes should.

A pasting scheme B is called loop free if

1. B has no direct loops
2. For any z € B, R(x) is well formed

3. For any k — 1 dimensional well-formed subpasting scheme A of B and any z € Bj with
domR(z) C A

(a) ANE(z) =10
(b) if y € A and B(z) NR(y) # 0 then y € B(x)

4. For any well-formed j-dimensional subpasting scheme A of B and any z € B with s;(R(z)) C
A, if u,u’ € s;(R(z)) and, for some v € A;, uagv<au/, then v € s;(R(z))

and dually.

Remark 2.5 In Chapter 3 we will prove that condition 3 is a consequence of the other three
conditions. For now we include all four conditions because the presence of condition 3 simplifies
the development of the theory which will be needed in the inductive proof that conditions 1, 2,
and 4 imply condition 3.

Example 2.6 All the well-formed pasting schemes of Example 2.4 are loop free, as are the non-
well-formed commutative schemes referred to there.

From now on we will consider only loop-free pasting schemes. In this and the next section we
establish some of their properties.

Proposition 2.7 Suppose B is a loop-free pasting scheme, x € By, then

dom R(z) = R(Bg—1(x)).
Proof. Firstly, dom R(z) = R(z) — E(z) C R(Bj—1(z)) because, using pasting scheme condition
4, R(z) = R(Bg—1(x)) UR(Eg_1(z)) U {z} and, using pasting scheme condition 5, R(Ej_;(x)) C
R(Bg—1(x)) U E(z). But, since B has no direct loops,

Br_1(z) C R(z) — E(z)

and so, using loop free condition 2, R(Bj—1(x)) C R(dom R(z)) = dom R(z).O
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Proposition 2.8 (Pasting On) Suppose B is a loop-free pasting scheme. If A is a well-formed
k — 1 dimensional subpasting scheme of B and x € By, satisfies domR(z) C A then AUR(z) is a
well-formed subpasting scheme of B.

Proof. The scheme A U R(z) has only a single k-dimensional element and so is compatible.
Furthermore

sp—1(AUR(x)) AUR(z) — E(x)
(A - E(2)) U (R(z) - E(z))
= AUdomR(z)

A

which is well formed. Hence for all n # k, s,(A UR(z)) is well formed. Furthermore, since for
j<k-1

HAUR() = (1 (AUR(@))

tn(AUR(z)) is well formed for all n # k, k — 1.
It remains only to consider

tho1(AUR(z)) = AUR(z) - B()

which is a subpasting scheme since cod R(z) and (using loop free condition 3) A — B(z) are
subpasting schemes. Finally, t;_1(A U R(z)) is compatible since suppose not then there exists
z,w € (tp—1 (AUR(x)))k—1, 2 # w, such that there exists a € Dy_2(2) NDg_2(w), D =E or D = B.
Now z,w are not both in A —B(z), since if it is ¥ — 1 dimensional then it must be compatible being
a subpasting scheme of a compatible k¥ — 1 dimensional pasting scheme, nor in cod R(z) since it is
compatible. Hence, without loss of generality, suppose

w € A—B(z), z € cod R(z).

Now a ¢ E(z) since a € D(w) C A and ANE(z) = @ so, by pasting scheme condition 5, there exists
v € By_1(z) with a € D_2(v) contradicting the compatibility of A.0

Theorem 2.9 Suppose that Q) is a loop-free pasting scheme and that A, B are well-formed sub-
pasting schemes of Q with sy (B) = t,(A4), then AN B = s,(B).

Proof. By induction over the dimension of AU B.

If AU B is of dimension less than or equal to n then s,(B) = t,(A) implies that A = t,(A) =
sp(B) = B = AN B as required.

Suppose A U B is of dimension n +1 and z € AN B but x ¢ s,(B) then A, B are both
n + 1 dimensional since otherwise ¢,(A4) = A or s,(B) = B, whence z ¢ s,(A) = t,(B) implies
z ¢ AN B. Thus s,(B) =dom B and z ¢ s,(B) implies z € E(w) some w € By 41.

In Blet Y = «g(w) = {y € B: y<w}. We show that there is an enumeration yo, y1, ...,y of
the elements of Y such that

Bn(y;)) CdomBUE({y; :j <i}) —B({y; :j <i}).

Firstly, there exists s suitable yg since, choose any y € YV, if B,,(y) ¢ dom B it can only be because
there is some y’ <y with E,(y") N B,(y) # . Repeating we obtain 3" <y’ <y etc. Since B is finite
and has no direct loops this process must terminate yielding some suitable (9 = g, say. Similarly,
there exists y; € Y — {yo} such that

B, (y1) C dom B U E(yp)
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etc. Furthermore, because of the compatibility of Y (inherited from B), if

n(yi) C domBUE({y;:j <i}) then
n(yi) C domBUE({y;:j <i})—B{y;:j <i}).

Now since dom R(yo) = R(B,(y0)) (Proposition 2.7) we can apply Proposition 2.8 to conclude
that

B
B

cod (dom B U R(yp)) = dom B U R(yo) — B(y0) = dom B U E(yo) — B(o)
is well formed. Proceedingly inductively,
B' =dom BUE(Y) — B(Y)

is well formed.
Similarly, « & t,(A) implies z € B(z) some z € A,y and if

2442 and v € E,,(2') Ncod A = E,,(2") Ndom B
then v € B’ since v € B,,(y) some y € Y would give a direct loop. Thus
B"=B'UB(a(2) U{z}) —E(ba(z) U{z})

is well formed as above. But dom R(w) C B", and z € E(w) N B" which contradicts @ loop free.

— >
A B

Now suppose h > n + 1 and that for all well-formed A, B with A U B of dimension less than
h and s,(B) = t,(A) we have AN B = s,(B). Let A, B be well-formed subpasting schemes of @
with A U B of dimension h. Once again suppose z € AN B but z ¢ s,(B). We may suppose x
is of dimension less than h since if not choose any v € E,_1(z) then v € AN B, v is of dimension
h—1and v ¢ s,(B),sov will do. Let P={a€ A, :z € E(a)} and Q = {b € By, : z € E(b)}. Put
A = Shfl(A) U E(QAPUP) - B(QAPUP)
B = sh—1(B)UE(1pQ U Q) — B(«pQ U Q).

Then A’, B" are well formed and s, (B’) = sp(B) = tp(4) = t,(A) but x € AN B, x & s,(B') =
tn(A") and A’ B' are of dimension less than h, contradicting the inductive hypothesis.O

2.4 Paring Down Well-Formed Schemes
A pasting scheme A of dimension k > 0 is called strongly compatible when, for any z,y € Ay,

z # y implies B(z) NB(y) = # and E(x) NE(y) = §. A zero dimensional pasting scheme is strongly
compatible if it is a singleton.

Proposition 2.10 Every loop-free well-formed pasting scheme is strongly compatible.
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Proof. Suppose that @ is a k-dimensional loop-free well-formed, pasting scheme. By way of
contradiction, suppose w,z € Ay, w # z, and a € E(w) N E(z). Let Y = <{w, z}.

As in the proof of Theorem 2.9, dom Q U E(Y) — B(Y') = A say, is well formed. Furthermore,
either By_;(w) C A and By_1(2) C A and hence dom R(w) C A so using Proposition 2.8 A" =
AU E(w) — B(w) is well formed, or w € Y or z € Y (but not both); suppose without loss of
generality w € Y and then let A' = A. Now in either case a € A’ (since a € E(w) and, because @
has no direct loops, for any y € Y U {w}, a € B(y)) and Bj_;(z) C A’ hence domR(z) C A', but
a € E(2) contradicting @ loop free.O

Proposition 2.11 (Paring Down) Suppose that Q is k-dimensional, loop free and well formed,
and y € Qy, satisfies domR(y) C dom @ then Q — B(y) is well formed.

Proof. If Q — B(y) is £k — 1 dimensional then @ — B(y) = cod @ which is well formed, so suppose
@ — B(y) is k-dimensional. Then @ — B(y) is compatible since @ is, and it is a subpasting scheme
since if not then there exists a € B(y) N R(z) some z € Qr — {y}. Furthermore, a ¢ E(z) since
a € B(y) C dom @, therefore a € R(w) some w € Bj_;(z) whence w € dom@) or E(z3) etc. to
obtain w € dom @ with a € R(w), w € Bi_1(z,) but then @ loop free implies w € By_1(y) and
zr # y (because a € R(Ex_1(y)) but a € R(Ex_1(2,)) ) which contradicts the compatibility of Q.

Furthermore,
cod (@ -B(y) = Q-B(y)—B(Qkr —{y})
= Q- (Bl UBQL—{y})
= Q—B(Qk) =cod@
is well formed and so s,(Q — B(y)), t.(Q — B(y)) are well formed for all n # k, k — 1.
It remains only to show that s;_1(Q — B( )) = dom (Q — B(y)) is a compatible pasting scheme.

Now,

dom (@ —B(y)) = Q—-B(y) —EQr—{y})
Q — E(@Qr — {y}) —B(y)
= Q- E(Qr) UE(y) — B(y), Proposition 2.10
= domQUE(y) —B(y)
= cod (dom @ UR(y))

which is a compatible pasting scheme by Proposition 2.8.0

2.5 Categories of Pasting Schemes

Well-formed pasting schemes parametrize ‘composable’ diagrams. If, in a loop-free pasting scheme,
we have two well-formed subpasting schemes whose n-source and n-target match up, we should
be able to paste them together to obtain another well-formed scheme. This is made precise in the
following theorem.

Theorem 2.12 Suppose that S is a loop-free pasting scheme and P the collection of well-formed
subpasting schemes of S then (P, (s;,ti,U)icw) is an w-category.

Proof. The elementary properties of s; and t; follow from their definition in terms of dom and cod
and Theorem 2.3; identity, associativity and middle four interchange laws follow from analogous
properties of union (for identity A C B implies AU B = B).

For the other composition axioms suppose s;(B) = t;(A) for some A, B € P. We prove by
induction over the dimension of AU B that

(a) si(AUB) = s;(A),
(b) s;(AUB) =s,(A)Us;(B) for j > i, and
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(¢) AU B is well formed.

If AU B is of dimension less than or equal to i then s;(B) = ¢;(A) implies A = B so (a), (b)
and (c) follow.

Suppose A, B are well formed, AU B is of dimension A > i and that for all well-formed A, B
with AU B of dimension less than h, s;(B) = ¢;(A) implies (a), (b) and (c).

(a) If h > i+ 1then s;(AUB) = s;(sp—1(AUB)) = s;(dom (AU B))
= s ((AUB)—-E(AUDB))

/(A —E(Ar) — E(Bn)) U (B — E(Br) — E(44)))
( ~1(4) — E(Bn)) U (sp-1(B) — E(44)))

I
»
&

I
&2
/\/\/\/\/‘:’?/\/\/\/\
;-
»ﬂ
AA’_‘
S

) Usp_1(B)), since AN B = s;(B)
= si(sp_1 A)) by inductive hypothesis (a)
= S; A)
If h=14+1then s;(AUB) = s;((sh—1(4) — E(Bp)) U (sp—1(B) — E(44)))

= s;(A), since s;(B) — E(Ap) C s;(4)

(b) If j > h then s;(AUB) = AUB =3s,(A)Us;(B)
If j < hthen s;(AUB) = sj(sp—1(AUB))=s;j(dom (AU B))
= sp—1(A) U sp_1(B)), as above

55
= sj(sn—1(A)) Us;(sp—1(B)), inductive hypothesis (b)
= 5i(4)Us;(B)

(c) AUB is a compatible pasting scheme since A and B are and E"(A)NE"(B) = () and B"(4)n
B"(B) = 0 (Theorem 2.9). Furthermore, if & > i + 1 then dom (AU B) = s;,_1(A) Usp,_1(B)
(by (b)), while if » =i + 1 then dom (AU B) = s;(A) (by (a)). In either case dom (AU B) is
well formed. Similarly, using dual forms of (a) and (b), cod (A U B) is well formed.O

If S is a loop-free pasting scheme then the w-category of Theorem 2.12 is called the w-category
of components of S. The pasting theorem, which asserts that all strategies for composing cells
in a ‘composable diagram’ in an w-category yield the same result, follows from the freeness of
w-categories of components.

Theorem 2.13 Suppose S is a loop-free pasting scheme then the w-category of components of S
is the free w-category generated by the R(z), z € S.

Proof. The fact that the w-category of components of S is generated by the R(z), = € S, follows
by induction.

Suppose that A is a well-formed subpasting scheme of S of dimension k, z € Ay and A # R(z).
We show that for some j there exists y € A;, y & R(z), with either A — B(y) and s;_1(4) UR(y)
well formed and j — 1 composable with composite A, or A — E(y) and ¢;_1(A) UR(y) well formed
and j — 1 composable with composite A.

Since A # R(z) there exists yo of maximum dimension say j, such that yo ¢ R(z). Furthermore,
by part 4 of the definition of loop-free,

either <4{yo} NR(z) =0, or >a{yo} NR(z) = 0.

Suppose <4{yo} NR(z) = O (the other case follows dually) then any <4-minimal element of <4{yo}
will do for y since s;_1(A) U R(y) is well formed (Proposition 2.8) and A — B(y) is well formed
(Proposition 2.11, Proposition 2.8 and Theorem 2.12).

Freeness follows exactly as in Street [20, Theorem 18].0

Remark 2.14 It is noteworthy that, despite our different context and greater generality, Street’s
proof [20, Theorem 18] generalizes with only notational modifications to our Theorem 2.13. In
Chapter 3 we describe the particular pasting scheme which corresponds to Street’s work.
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2.6 The Pasting Theorem

We have described loop-free pasting schemes which are the appropriate parametrizing objects
for diagrams in w-categories. Among these are the well-formed loop-free pasting schemes which
are the appropriate parametrizing objects for composable diagrams. It remains to describe the
parametrizations themselves and to establish that a well-formed loop-free pasting scheme which
is the domain of a given parametrization in some w-category, determines a unique cell called
the composite of the diagram in the w-category. These two tasks are interwoven. We proceed
inductively.

A realization (A, f;) of a pasting scheme A in an w-category C is a collection of functions
fi : A = Ci, i = 0,1,..., which we will sometimes view as functions f; : A; — C, into the
underlying set of the w-category C'.

We write P(A) for the w-category of components of A—its elements are well-formed subpasting
schemes of A (Theorem 2.12). The j-category |P(A)|; is the sub-w-category of P(A) whose elements
are well-formed subpasting schemes of A of dimension less than or equal to j. For each k we have
a function R( ) : Ay — |P(A4)|x and functors (which we will not name) including |P(A4)|; in
|P(A)|k, j < k. A realization (A4, f;) is said to be n-extendable when there exists a unique functor
f :|P(A)]|n — C such that the diagrams (of functions)

|P(A)|k IP(A)ln
R() f
Ay C

fr

commute for all k£ < n.

Inductive Definition Any realization (A, f;) will be called zero-appropriate, and is zero-
extendable (fo is already a functor |P(A)|o — C). Suppose that every n-appropriate realization is
n-extendable and suppose given an n-appropriate realization (A, f;). Then we have

Apt1

R frt1
PAlnt1 = === ~C
Sn | [t Sn | [tn
P(A)ln c

f

We say that (A, f;) is n + 1 appropriate if s, fnt1 = fsuR and t,f,+1 = ft.R, whence, by the
freeness of P(A), (A, fi) is n+1 extendable. A realization is called appropriate if it is n-appropriate
for all n.

Thus a realization is nothing more than an assignment, to each n-dimensional element of a
pasting scheme, of an n-cell in an w-category. A realization is appropriate if it respects s; and
tp—if it’s categorically sensible. A diagram (A, f;) in an w-category C' is a loop-free pasting scheme
A together with an appropriate realization f; : A; — C;. A composable diagram in an w-category C
is a well-formed loop-free pasting scheme A together with an appropriate realization f; : A; — C;.

Observation 2.15 (The pasting theorem) If A is an n-dimensional, well-formed loop-free pasting
scheme then A € |P(A)|,,. Furthermore, appropriate realizations are extendable. Thus a compos-
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able diagram (A, f;) in an w-category C determines uniquely a cell of C called the composite of

(4, fi) by f(A).
In the sequel, all realizations will be appropriate and all well-formed schemes will be loop-free
pasting schemes. We will suppress the unnecessary adjectives.
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Chapter 3

Well-Formed Simplicial Sets

This chapter is devoted to describing a particularly important class of pasting schemes—the well-
formed simplicial sets. The remainder of this thesis arises, in one way or another, from an investi-
gation of some of the applications of the well-formed simplicial sets.
We begin by describing relations E;- and B;- which make the standard w-simplex into a pasting
scheme. We then show that the n-simplexes are well-formed subschemes and that the w-simplex
is loop free. The well-formed subschemes of the w-simplex are called well-formed simplicial sets.
The following consideration of well-formed simplicial sets was originally inspired by Street’s
orientals [20]. There is a correspondence between the well-formed simplicial sets and the elements
of Street’s O, and as an application of Theorems 2.12 and 2.13 of Chapter 2 we obtain Street’s
main results [20, Theorems 14 and 18] in the well-formed simplicial set form. Street has applied his
orientals to non-abelian cohomology while this work uses well-formed simplicial sets to investigate
coherence conditions in Chapter 4 and to define an w-category of paths in Chapter 5.

3.1 The w-simplex as a pasting scheme

Let S be the simplicial complex (w, Pr(w)), that is, the collection of non-degenerate elements of the
w-simplex with the induced face operators. In this chapter we will work in S because an element
of S is a non-degenerate element of the w-simplex. We will define a pasting scheme structure on S
and isolate the well-formed subpasting schemes of S, which, being subsimplicial complexes, may
be viewed as simplicial sets in the usual way.

Let = be a k-dimensional element of S and let A be any subset of [k] = {0,1,2,...,k}, say
A={a1,as,...,0;} with a; < aj41. Write Ra(2) = 04,04, ... 0a;(2) and if the a; are all are all
even (respectively all odd) then write E4(z) (respectively B4(z)) for Ra(z). Thus R4(z) is the
k — i subset obtained from x by simultaneously deleting the aist,asnd, ..., a;th elements of z.

Define relations E; between S; and S; by z E; y if there exists a set A with y = Ea(z), and sim-
ilarly B; Then (S, E, B) satisfies conditions 1 to 3 for a pasting scheme and it satisfies conditions 4
and 5 by the following lemmas.

Lemma 3.1 Suppose that S, E, and B are given as above and that w,z € S with w E}, x then there
exists u € S with wEL_, wE}™" 2, and dually.

Proof. Suppose = Eg,, 4,,..,0;}(w) then let u = Ef,;3(w) and notice that we then have z =
Efar,az,.ai_13 (). For the dual,_1 let u = Eg, 3 (w) and then x = By, _1,05-1,....0;—13 (1).0

Lemma 3.2 (S,E,B) satisfies pasting scheme condition 5.
Proof. Suppose wE!_, 2E}" 'z, say z = Egy(w) and 2 = Efq, 0, 0,3 (2) then if j > ap,,
T = Efa;,a0,....am,j} (0). Otherwise, for some h, j < aj but j > aj_1, where for simplicity we set

ag = —1. Then
T = E{al,ﬂ2,---,ah—1,j7ah+1,---7am}(Bah‘H (w))
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To illustrate the duality in the w-simplex we prove also the dual, of condition 5. Suppose
wBy_z EZfl z, say z = Byjy(w) and = Eg4, a,,... 0,3 (2) then if j < ay,

r = B{j,a1+1,a2+1,...,am+1}(w)-

Otherwise, suppose j > ap, but j < apy1, where for simplicity we set ay,41 =n + 1. Then

T = E{a17a27~~~yah—17j717ah+17---7am}(Eah (u})),D

Thus (S, E, B) is a pasting scheme. In fact it is a loop-free pasting scheme, but for now we show
only that it is free of direct loops.

Lemma 3.3 (S,E,B) has no direct loops.

Proof. Certainly, for any a € S, B(a) N E(a) = § since elements of B(a) are obtained by deleting
odd positioned elements from a, while elements of E(a) are obtained by deleting even positioned
elements from a.

It remains to show that if a <b then B(a)NE(b) = 0. The proof is by induction over the common
dimension of a and b, say k.

For k = 1, a<b implies that there exists ap = a = {a,ap}, a1 = {al,ai}, a> = {a3, a3}, ...
an = b= {a,al}, with the a! natural numbers, a? < a!, and, in order to obtain E(a;) NB(a;1) #
0, it must be that a} = af,,. Hence a,,, the only end of b, is strictly greater than aj, the only

beginning of a.

Now suppose that a,b are k-dimensional and a<b then we have ap = a = {ad,a},...,ak},
_ .0 A1 k _ [0 1 k _p— [0 1 k ;
ay = {aj,ay,...,af}, as = {a3,a3,...,a5}, ... a, = b = {a,,a,,...,a;}. Furthermore, since

E(a;)NB(a;11) # 0, a;11 is obtainable from a; by deleting an even positioned element and inserting
an odd positioned one.

Now if af = a¥ = --- = aF then writing a; — {a*} = a! we obtain the k — 1 dimensional
sequence ag,al,...,a, showing that af<a) and use induction (since B(ag) N E(ay) # @ implies
B(ah) NE(al,) # 0).

If, on the other hand, af # a¥ for some j then, if k is odd, then af < a¥ < a¥ and so af ¢ ag
but for any z € E(ay,), a¥ € z therefore x ¢ B(ag) hence B(a) N E(b) = (). Similarly, if k is even

k

then af > a* > aF and so af ¢ a, but for any z € B(ag), af € z therefore x ¢ E(a,) hence

B(a) N E(b) = 0.0

3.2 Simplexes are Well Formed

In any pasting scheme (A4, E,B), an element z € A generates the subpasting scheme R(z) C A.
When the pasting scheme is (S, E, B), as defined above, and z € S,,, R(2) is an n-simplex. In this
section we show that for any z € S, R(z) is a well formed subpasting scheme of S.

Suppose z € S,. If A ={a1,as,...,an} is a subset of [n] which is written in increasing order
and satisfies a; even whenever i is even and a; odd whenever i is odd, write

AL () for Ra(z).
If the elements of A are alternatively even and odd, beginning with an even write
A% (2) for Ra(z)

(mnemonic: alternating removal, beginning with an element of parity zero). Just as for E;(z),
write A} (z) for the set of all j-dimensional elements obtainable from z by removing elements of
alternating parity, beginning with an odd, and

ALZ) = | ALz)
z€Z

etc.
Our aim is to express dom?(R(z)) in terms of A;_j(z). We begin by characterizing the ends of

Aikj (2).
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Lemma 3.4 Suppose given A alternatively odd and even, beginning with an odd. For ease of
exposition let ap = —1, and let A = {a1,as,...,a; : a; < ajy1, i € [j —1]}. Then x € E(AL(2)) if
and only if there exists a set B, disjoint from A, such that

(a) if a;—1 < b< a; then bZ a; (mod 2);
(b) if a; < a; <Db for alli then b=aqa; (mod 2),
and such that x = Raup(z).

Proof. Properties (a) and (b) may be interpreted as saying that z has the form

-~

even ogd even odd

where the elements of B are all represented by b.

(<) Such an z is an end of A',(2) since a;_; < b < a;, b Z a; mod 2 implies that the element
of z in position b will be in an even position in Al (z). Similarly for b > a;.

(=) If R4aup(2) = z and B does not satisfy the property, then there exists some b € B with
a;—1 < b < a; but a; = bmod 2, or with b > a; but a; # b mod 2. Now the element of z in position
b must be removed from Ay (2) to get  but it will be in an odd position so z ¢ E(A;(2)).0

Lemma 3.5 Suppose z is an n-dimensional element of S then
dom’(R(z)) = R(A},_;(2)).

Proof. By induction on j. True for j =0, 1.
Suppose true for j then

dom 7™ (R(2)) = dom (R(AL_;(2)))

so it suffices to show
dom (R(A},_;(2))) = R(A,_(j11)(2))-

D: Suppose z € R(Aikj(z)) but z ¢ dom R(A}%j(z)) then z € E(R(Aifj(z))) so z € E(A4(2))
some A of cardinality j, so there exists a B as in Lemma 3.4 with x = Ra_g(z) but then z ¢
R(A}l_(Hl)(z)) since there can be no j + 1 element alternating (beginning odd) set of vertices to
be deleted.

C: Suppose z € dom R(Aifj(z)) then z € R(A!(z)) for some A = {ay,as,...,a;} say, but
z g E(A}l_j (2)). Write = Raup(2). Now since = & E(A(2)), B does not satisfy the properties
given in Lemma 3.4 so either there exists b € B, b > a; with b #Z a; mod 2 whence

x € R(A%al,az,...,aj,b}(z)) c R(A}Lf(JJrl)(z)))

or there exists some b € B such that for some i € [j], a;—1 < b < a; (allowing again ap = —1) and
b = a; mod 2. Furthermore, we can choose such a b so that there exists b’ with b < V' < a; and
b" # a; mod 2 (if not then writing ¢; for the least element of A U B such that a;—; < ¢; < a; and
¢i = a; mod 2 we see that = € E(A%Cl’cz’m’q}(z)) contrary to assumption) and then

T e R(A%al,...,ai,l,b,b’,ai,...,aj,l}(2)) C R(Aizf(]+1) (Z))D
Theorem 3.6 Suppose z € S then R(z) is well formed.

Proof. Suppose that z is n-dimensional. Trivially R(z) is a compatible pasting scheme.
Furthermore, for all j, dom” (R(z)) is a pasting scheme (by Lemma 3.5, dom?(R(z2)) = R(Ai_j(z)) )
and is compatible since if z,y € A:L_j(z) with x # y but 9;z = O,y then it must be that

1
xr = A{al,

z)
a27---7ak7ak+17ak+27~~~7aj}(

22



and
Yy = A%al7a2,...,ak,bk+17ak+2,...,a]—}(Z)
whence a1 = k+ 1 = bis mod 2 and so i Z hmod 2 (since if, without loss of generality,
ag+1 > bppr theni=k+1-k=1mod2and h=k+1— (k+1) =0mod 2). Thus D,_;_1(z) N
Dy—j—1(y) # 0 implies one D is a B and the other is an E.
Similarly, for all j, cod?(R(z)) = R(A?ij(z)) is a compatible pasting scheme.O

3.3 An Improved Criterion for Loop Free

This section is devoted to showing that condition 3 in the definition of loop-free pasting schemes
is superfluous—conditions 1, 2 and 4 imply condition 3. This result is very important for applica-
tions of the theory of pasting schemes because loop free condition 3 is hard to verify in practical
situations. The result is used in Section 3.4 to show that (S, E,B) is loop free as well as in other
applications not reported here (cf. Prospectus).

Theorem 3.7 Suppose (B,E,B) is a pasting scheme such that
1. B has no direct loops
2. For any z € B, R(x) is well formed

4. For any well-formed j-dimensional subpasting scheme A of B and any x € B with s;(R(z)) C
A, if u,u’ € s;(R(z)) and, for some v € Aj, uxqvaa v, then v € s;(R(z)), and dually,

then

3. For any k — 1 dimensional well-formed subpasting scheme A of B and any © € By with
domR(z) C A

(a) ANE(z) =0
(b) ify € A and B(z) NR(y) # 0 then y € B(z)

Proof. By induction over k.

If £ = 1 then any well-formed k — 1 dimensional subpasting scheme A of B has a single element,
say a. Suppose ¢ € B, then, since R(z) is well formed and B has no direct loops, Ro(z) consists
of exactly two elements Bo(z) and Eg(x), and dom R(z) = Bo(z), cod R(z) = Eo(x). Thus to say
domR(z) C A is to say a = By(z), hence E(z) N A = (. Furthermore, B(z) N R(y) # 0 for some
y € A implies y = a € B(z).

Suppose true for all dimensions less than or equal to k — 1 i.e., for j < k — 1 and for all well-
formed j — 1 dimensional subpasting schemes of B and any 2 € B; such that domR(z) C 4, (a)
and (b) hold.

(b)  Suppose that (b) is false for some k—1 dimensional well-formed A, and x a k-dimensional
element with dom R(z) C A, then there exists y € A, y ¢ B(z), and a € B(z) N R(y). Now there
are w, z € By_; (z) with a € B(w), and a € E(z). Furthermore, y ¢ R(x) since a € B(z), a € R(y),
y € R(z) contradicts cod R(z) well formed. In fact, we may choose y to be £ — 1 dimensional
since a ¢ dom A (because a € E(z), z € B(z) C A) and dom A is a well-formed pasting scheme so
y ¢ dom A, therefore there is some k — 1 dimensional y’ € A, with y € E(y') and therefore with
a € R(y'") and y' ¢ R(z) (since y ¢ R(z)) hence y’ ¢ B(x).

So suppose y, z, and w are all k— 1 dimensional. Now y < 4w since if not then y € A —B(<xqwU
w) = A’ say, which is well formed, but a € R(y), a ¢ A’, contradiction. Similarly z <4 y. However,
244 Yy<aw, with z,w € B(z) and y ¢ B(z) contradicts 4.

(a) Suppose B satisfies 1, 2 and 4, A is a k — 1 dimensional well formed subpasting scheme
of B and z € By with dom R(z) C A. Required to show E(z) N A = 0 so suppose a € E(z) N A.
The proof will follow from three lemmas.

Lemma 3.8 Suppose that A, x and a are as above and that the theorem has been established for
all dimensions less than k then a ¢ dom A.
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Proof. Suppose a € dom A. Since a € E(z) there exists a w € Ex_1(z) with a € E(w). Put
W = 9e0d Rea) (W) U {w}-
Notice (dom R(W))k—2 C dom cod R(z) = dom dom R(z) C A. Let
Y ={y € Ax_1:Er_a(y) N (dom R(W))x_o # 0}.

Since B satisfies 1, 2 and 4, so must |B|y_1 the £ — 1 dimensional skeleton of B. Furthermore,
since |Blg—1 is k — 1 dimensional it satisfies 3 also (since the theorem has been established for
dimensions less than k) and so we may apply Propositions 2.8 and 2.11. Repeated application of
Proposition 2.11 gives A’ = A—B(«4(Y)UY") well formed and hence dom A’ well formed. Repeated
application of Proposition 2.8 gives A" = dom A" UE(<.,q R(m)(w)) —B(<eod R(z) (w)) well formed.

Now a € A" since a € dom A and a ¢ B(a4(Y)UY), a ¢ B(<.oq R(m)(w)) since B has no
direct loops. Also, Bx_2(w) C A”. But A" is well formed k — 2 dimensional, dom R(w) C A" and
a € A" NE(w) contradicting the theorem for dimension k£ — 1.0

Lemma 3.9 Suppose that A, x and a are as above and that the theorem has been established for
dimensions less than k then a is not k — 2 dimensional.

Proof. Suppose a is k — 2 dimensional and note that by Lemma 3.8 a ¢ dom A, and by dualj,_;
of Lemma 3.8 a ¢ cod A.

Now A is k — 1 dimensional. If j < k-1 and a,b € A;, write @ <4 b when there exists
a,B € A1, a<ds f with a € B(a), b € E(8).

Let Y = <4{y € Ax—1:a € E(y)}U{y € A_1 : a € E(y)}, suppose w € E;_; (z) with a € E(w)
and let W = <., R(I)(w) U{w}. Notice that A' = A —B(Y") is, by k£ — 1 dimensional paring down,
well formed, k — 1 dimensional and a € dom A’. Hence if (dom R(W))x_> C A’ we may obtain a
contradiction exactly as in the proof of Lemma 3.8. So suppose there exists b € (dom R(W))s—_o
with b <4 a (i.e., b € B(Y)). Dually, for z € Ex_; () with z € B(z), set Z = g R(I)(Z)U{Z} and
there must exist ¢ € (dom R(z))g—2 with a <4 ¢. But b<4 a means that there exists 8, € Agx_1,
B<aaa with b € Bg_2(8), a € Ex_s(a), and a<4 c means that there exists o,y € Aj_1, with
a' a7y and a € Bi_s(a’), ¢ € Ex_a(7y). Notice f44 a<4 ' 44 v and, using the compatibility of A,
8,7 € Bg_1(z) hence by Lemma 3.11 a,a’ € Bi_;(x) too. But then a ¢ Ex_»(z), contrary to
assumption.O

Lemma 3.10 Suppose that A and x are as above, and that the theorem has been established for
dimensions less than k, then A" = (AUR(x)) — B(x) is well formed k — 1 dimensional.

Proof. A" = (A — B(z)) U (R(z) — B(z)) is a union of subpasting schemes of S (by Theorem 3.6
and k-dimensional (b) which has already been proved) and hence is a subpasting scheme.

A" is compatible since suppose u,v € A} _; with d;u = 0jv, i = j mod 2 then w,v are not both
in A — B(z) nor R(z) — B(x) by the compatibility of those schemes, so without loss of generality,
suppose u € A — B(z), v € cod(R(z)). If 0ju € domR(z) then proceed as in the proof of
Theorem 2.8. If 9;v ¢ dom R(z) then 0;v € E;x_»(x) but 9;v = O;u € A — B(x) C A, contradicting
Lemma 3.9.

Furthermore, dom A = dom A’ since dom A C dom A’ because A" D A — B(z) D dom A (ele-
ments of B(x) are k — 1 dimensional or ends of k¥ — 1 dimensional elements), E(A") C E(A4) U E(x)
(using pasting scheme condition 5), and E(4) Ndom A = ) = E(z) N dom A (using Lemma 3.8);
while dom A D dom A’ because A D dom A’ (elements of E(x) are k—1 dimensional or ends of k—1
dimensional elements), E(4) C E(A") U B(z) (using a dual form of pasting scheme condition 5),
and E(A"YNdom A’ = ) = B(z) N dom A’. Dually (the duali—1), cod A’ = cod A and so all lower
dimensional domains and codomains are compatible pasting schemes.O

Proof of Theorem 3.7 continued. Now finally let a € E(x) N A, w € Ex_i(x), and
a € E(w). Thena € AUR(z) —B(z) = A’ and a ¢ dom A (Lemma 3.8) but a € A so a € E(w') for
some w' € A. Notice w' ¢ B(z) since dom R(z) is well formed. Now w # w' since E,_1(z) N A =
(because if not either Ex_o(z) N A # @ contradicting Lemma 3.9 or A is not compatible). But
w,w' € A’ contradicting Proposition 2.10.0
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3.4 Well-Formed Simplicial Sets

We return to the pasting scheme (5, E, B).

Lemma 3.11 Suppose that A is a well-formed j-dimensional subpasting scheme of S, x € S,, with
sj(R(z)) C A, u,u’ € s;(R(x)), and uqav<au for some v € A; then v € s;(R(x)).

Proof. Suppose u = vg vy < --- qu, = v and v = vp QU1 4 - -+ <vy = u' with v; € A and with
Ej—1(vi) NBj_1(vit1) # 0. We show only that v; € s;(R(z)) and the lemma follows inductively.

By Theorem 3.5, u,u’ € A} (x), say u = A%ﬂl,ﬂa,---yan—j}(w) and u' = A%bl’b%m’bnﬁ}(w).

We obtain v;11 from v; by deleting an even positioned element of v; and inserting a new element
in an odd position. Hence b; > a; because, if not, the element in position b; of 2 would be present
in u and would need to be deleted before reaching «', but being in an odd position it could only
be deleted if something were deleted or inserted before it, whence the something would need to be
inserted/deleted which could only be done if something more were deleted /inserted before it etc.
Similarly the deletions/insertions made in moving from v; to v;41 must occur in positions greater
than a;.

Now u and v; have a face in common which is an even face of u, say Egy(u), and an odd face
of v1, and b > a;. Suppose that the element of z which is deleted from w by the application of
Efsy is in a position greater than or equal to ap but less than api1 where, for simplicity we set
@p—j+1 =n+ 1. Then

E{b} (u) = E{b}A%al,az,...,an,j}('T) = B{ah—(h—l)}A%al,...,ah_l,b+h,ah+1,...,an,j}(x)
= Bian—(n-1)}(w) say,

which shows that Eg;y(u) is an odd face of some w € A; (z) C A which contradicts the compatibility
of A unless vy =w € A; (z) C s;(R(z)) as required.0

In view of Theorem 3.7, Lemma 3.11 completes the demonstration that (S, E,B) is a loop-free
pasting scheme. The well-formed subpasting schemes of (S, E, B) are subcomplexes of S because if
X is a subpasting scheme of S and x € X then y C z implies y € R(z), and so y € X. Thus the
subpasting schemes of S may be viewed as simplicial sets and the well-formed subpasting schemes
are often called well-formed simplicial sets.

By Theorem 2.12 this collection of well-formed simplicial sets forms an w-category with union
(= pasting) as composition. In fact, by Theorem 2.13 it is the free w-category generated by the
R(z), i.e., by the simplexes.

The original construction of “the free w-category on the w-simplex” is due to Street [20]. In
this chapter the pasting scheme (S, E, B) was defined so that the “orientation” of the elements of
S would agree with Streets’ choice of orientation—odd images are beginnings and even images
are ends. However, in many applications, especially those presented in Chapter 4, the opposite
orientation is desirable.

Let (S',E',B’) be the pasting scheme obtained from (S, E,B) by dualizing at all dimensions
greater than one. Thus

(S',E',B") = dualzduals ... (S,E,B)

Notice that the orientation of the 1-dimensional elements is the same in (S, E,B) and (S’,E', B'):
in both cases 1-dimensional elements begin at smaller numbers and end at larger numbers (this is
just a matter of convenience).

Thus defined (S',E’,B’) is a loop-free pasting scheme and its subpasting schemes are sub-
complexes which may be viewed as simplicial sets. In the remainder of this work, “well-formed
simplicial set” will mean “well-formed subpasting scheme of (S',E’, B')”.

Of course the well-formed subpasting schemes of (S’,E’,B') form a free w-category as above.
This w-category will play an important role in Chapter 5 where it will arise as the w-category of
sorts of a co-parametrized-w-category in the category of simplicial sets.
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Chapter 4

Coherence

It is commonplace for mathematicians to identify isomorphic structures. For example, if R is
a commutative ring, and A,B and C are R-modules then the two R-modules A ® (B ® C) and
(A® B) ® C are distinct but isomorphic and rarely distinguished. However, if there is more than
one isomorphism between two structures then, to be precise about our identification, we must
choose one. The chosen isomorphism is often a ‘canonical’ isomorphism (in the example there are
isomorphisms sending a ® (b ® ¢) = (a®b)®c and a ® (b ® ¢) —» —(a ® b) ® ¢ and the former
is the usual canonical isomorphism). Often we will make many identifications at once using many
isomorphisms. Roughly speaking, we call a collection of isomorphisms coherent when any two
composites of elements of the collection, both of which are between the same two structures, are
equal.

Thus coherence theorems are often portrayed as assertions that all of a certain class of diagrams
commute (e.g. [16, page 161] but see also [10]). This description however, must be qualified in two
important respects.

Firstly, returning to the example above, the tensor product of two modules is actually a functor
® : R-Mod x R-Mod — R-Mod and so, if we wish to identify the two associations of the tensor
products of three modules in general, the canonical maps

aspc:A®(BRC) > (A®B)®C

should be the components of a natural transformation a : — ® (— ® —) = (— ® —) ® —. Then
the diagrams whose commutativity is guaranteed by a coherence theorem are diagrams of natural
transformations rather than diagrams of components of natural transformations. The difference is
important: Commutative diagrams of natural transformations give rise to commutative diagrams
of components but not all diagrams of components so arise—if the canonical isomorphisms include
the usual commutativity cap : A ® B - B ® A and identity 145 : A® B — A ® B isomorphisms
then the diagram

CAA

A® A A® A

(4.1)

laa

does not commute in general even though all diagrams manufactured from the natural transfor-
mations ¢, a and 1 do commute. This can happen because the diagram of natural transformations
whose (A, A) component is (4.1) is not even closed being

(—® )t

— ® —
(where t is the twist functor R-Mod x R-Mod — R-Mod x R-Mod defined by (4, B) — (B, A)).
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Secondly, the diagrams of which we speak are formal diagrams independent of any particular
realization. This matters because in a particular realization it might happen that functors which
are the vertices of two logically distinct diagrams of natural transformations might fortuitously
coincide resulting in a single amalgamated diagram. One would not expect this ‘accidental’ diagram
to commute.

In this chapter we describe a fairly general setting for the analysis of coherence questions. Our
approach is to set up machinery to prove assertions that all of a certain class of diagrams commute,
taking account of the above two qualifications in the following way. Firstly, the diagrams which
we investigate will be diagrams in n-categories. This allows us to deal explicitly with diagrams
of natural transformations in their full context as 2- or even 3-cells rather than their ‘shadows’
of components. Secondly, pasting schemes (Chapter 2) are a notion of formal diagram for n-
categories. Working with pasting schemes it is easy to determine which diagrams must exist in all
realizations, and so to avoid the diagrams which arise fortuitously in a particular realization.

Our chief goal is to establish the “higher coherence conditions” for associativities and identities.

4.1 Coherent Situations

A relation R between sets A; and A; is usually defined to be a subset of the product 4; x A; with
a € A; related to b € A; if and only if (a,b) € R. Then, if A} C A; and A} C A; the restriction of
R to A}, A}, denoted R|A;7A;_, is the subset of A} x A’ given by (A} x A;) N R. If R is a relation
between sets A; and A; and R' is a relation between sets A; and A} then

RUR' C (A, XA]')U(A;» XA;) C (AZUA;) X (AJUA;)

may be viewed as a relation between A; U A} and A; U A’

Suppose that (A, E,B) is a pasting scheme. Recall that E stands for a collection of relations E;-
between A; and Aj, j <i. If A" is a subgraded set of A write E|4- for the collection of relations
E;|A2,A; and similarly B|a/, but note that (A’,E|4,B|a/) is not in general a pasting scheme. If
(A',E',B') is another pasting scheme write EU E’ for the collection of relations (EUE')i = E UE':

between A; U A} and A; U A} and similarly B U B’, but note that (4,E,B) U (4',E',B') def (AU
A’ EUE',BUB') need not be a pasting scheme because the two pasting scheme structures might
not agree on their intersection.

A set Q = {(4,E,B),(A’,E',B")} containing two pasting schemes is called allowable when the

pasting schemes (AN A',E|4nar,Blanar) and (AN A’ E'|anar, B’ |anar) are equal whence
J@=(AUuA EUE,BUB)

is a pasting scheme. In general, a set ) of pasting schemes is called allowable when every two
element subset of () is allowable. For example, any collection of subpasting schemes of a fixed
pasting scheme is allowable. If @ is allowable then |JQ is a pasting scheme and is called the total
pasting scheme of Q.

A pasting scheme A of dimension k is called a singleton pasting scheme if Ay, is a singleton.

A situation (P, S, f) is a collection P of well-formed pasting schemes of the same dimension,
say k, a collection S of well-formed singleton pasting schemes of dimension k + 1, and a realization
f satisfying

1. PU S is an allowable collection of pasting schemes with total pasting scheme T say
2. f A€ P and s € S with doms C A then cod (AU s) € P
3. f is a realization of T" in some w-category C'.

A situation is called coherent when any two well-formed k + 1 dimensional subpasting schemes
of the total pasting scheme T, with the same domain and codomain, both in P, have the same
realization.
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Example 4.1 Suppose that K is a category on which is defined a multiplication functor ® :
K x K — K which is associative up to a specified natural isomorphism

a:—Q(-®-)>(—-0-)®—.

Let C be the 3-category with one object %, the natural numbers as 1-cells and addition as 0-
composition, functors K™ — K™ as 2-cells from n to m, and natural transformations between
functors as 3-cells. Let P be the collection of 2-dimensional well-formed simplicial sets and let
S be the collection of singleton 3-dimensional well-formed simplicial sets. Then P U S is cer-
tainly allowable with total pasting scheme T' the w-simplex viewed as a loop-free pasting scheme
(Section 3.3) and truncated at the third dimension. We realize T in the 3-category C' as follows:

fo(x) = x forallzeT,
fi(z) = 1 forallzeT)
folz) = & forallzeTy
fa(x) = a forallzeTs

This defines an appropriate realization (Section 2.6).
Now (P, S, f) so defined forms a situation. Furthermore, if the natural associativity a satisfies
Mac Lane’s pentagon condition [15]

(a®1) %3 a*x (I1®a)=a*xa:—Q(-(—-0-) =3 (-9 —-)® —)® —

(cf. (4.3) below) then the situation is coherent. We will prove coherence in Section 4.3.

4.2 Coherence Lemmas

We establish two lemmas to assist us in proving coherence. The lemmas correspond to two com-
mon types of coherence problems: In the second the maps whose coherence is sought are usually
isomorphisms and the proof is inspired by Mac Lane’s original study of coherence for associativity
isomorphisms [15]; the first lemma is inspired be Laplaza’s treatment of coherence for associativities
which are not isomorphisms [14]. We begin with some definitions.

A situation is said to be loop free if its total pasting scheme is a loop-free pasting scheme.
Suppose X is a well-formed subpasting scheme of the total pasting scheme of a loop-free situation
(P,S,f), and dom X = A, cod X = B with A, B € P, then X will be referred to as a path from
A to B (often just as a path). Because a well-formed k + 1 dimensional subpasting scheme X of a
loop-free pasting scheme can be decomposed as

X =dom X UR(z1) UR(z2) U---UR(xp,)

with z; € Xj41 and dom R(z;) C dom XUE({z; : j < i})—B({z; : j < i}), we will sometimes write
the path X from A to B as (1,22, ... &,) and depict it as a string of arrows 4 —-"2 ... I B
(but do not be fooled—a path is really k& + 1 dimensional and different strings may correspond to
the same path).

If X is a k + 1 dimensional pasting scheme denote the cardinality of X1 by |X|. When we
think of X as a path we call |X| the length of X. If (P, S, f) is a loop-free situation and A € P
then let the rank of A, rank A, be the least upper bound of the lengths of paths from A, i.e.

rank A = sup{|X|: X C T is well formed and dom X = A}.

If every A € P has finite rank say that (P, S, f) has rank. Write rank A (rel B) for the least upper
bound of the lengths of paths from A to B.

Suppose (P, S, f) is a situation. A fork in (P, S, f) (or just a fork when the situation is under-
stood) is an element A € P and two distinct elements z,y € S with domz,domy C A. The fork
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(A, z,y) is depicted by
A
RN

A fork (A, z,y) is said to have a commuting completion when there exist X,Y well-formed sub-
pasting schemes of T with

l.zCcX,yCY
2. domX =domY = A
3. codX =codY

4. f(X) = f(Y)

If cod X = D then the commuting completion is said to have codomain D. Note that a commuting
completion need not commute in 7" where formally different subpasting schemes are different, but
must commute when realized.

A loop-free situation (P, S, f) is called coherent into B, where B € P, when, for any A € P,
and any two paths U,V from A to B, U and V have the same realization.

Lemma 4.2 Suppose (P, S, f) is a loop-free situation which has rank, and suppose B € P. If for
any A € P and any two paths (z,...),(y,...) from A to B, the fork (A,z,y) has a commuling
completion with codomain D such that either D = B or there exists a path from D to B, then
(P, S, f) is coherent into B. If the hypotheses hold for all B € P, then (P, S, f) is coherent.

Proof. We prove that for all A € P, all paths from A to B have the same realization by induction
over rank A (rel B). If rank A (rel B) = 0 then there is nothing to prove.

Suppose that for all A € P with rank A (rel B) < j all paths from A to B have the same
realization. Suppose A € P has rank A (rel B) = j and that U = (z,...), V = (y,...) are two
paths from A to B. Now (A,z,y) is a fork which can be commutatively completed with the
codomain of the completion D say, and cod (A U z) and cod (AU y) have rank (rel B) less than j.
Therefore, in the following diagram, the ‘square’ and the two ‘triangles’ commute when realized,
hence the two paths U and V are equal when realized.O

N

D

B

Suppose (A, (sn,tn, *n)new) i an w-category and z a k-cell of A. We say that = is k — 1
monic (respectively epic, iso) when z is monic (respectively epic, iso) in the ordinary category
(A, 8k—1,tk—1,%K—1)-

Lemma 4.3 Suppose given a loop-free situation (P, S, f) which has rank and satisfies
1. Every fork in (P, S, f) has a commuting completion

2. For all z € S, x is of dimension k and f(z) is k — 1 monic
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then (P, S, f) is coherent.

Proof. We establish first that for any A € P, if there exist paths U from A to B, and V from A
to B, with B, B’ € P and rank B = rank B’ = 0, then B = B’. The proof is by induction over the
rank of A. If rank A = 0 then there is nothing to prove.

Suppose that the result is established for all A with rank A < j and suppose A € P, rank A = j,
and U = (z,...) and V = (y,...) are two paths from A to B and B’ respectively. Then (A, z,y)
can be commutatively completed. Let the codomain of the commutative completion be D. Now
cod (AU z) and cod (A U y) have rank less than j so if rank D = 0 then applying the inductive
hypothesis B = D = B’, while if rank D > 0 then there is a path from D to some B" of rank zero
whence, applying the inductive hypothesis to cod (A U x), B” = B, and to cod (AUy), B" = B'.

Furthermore we have shown that for all B of rank zero the hypotheses for Lemma 4.2 are
satisfied and so (P, S, f) is coherent into such B.

Now finally suppose A, A’ € P and U,V are paths from A to A’. If rank A’ = 0 then U and V'
have the same realization by Lemma 4.2. Otherwise there exists a path X from A’ to some B of
rank zero and X xj_1 U, X *,_1 V both have the same realization being paths from A to B. But
then, since f(X) can be expressed as a xj_1-composite of monics, f(U) = f(V).O

Remark 4.4 If the maps whose coherence we seek are isomorphisms, as in Example 4.1 and in
many of our applications, then in order to obtain a situation (P,S,f) which is loop free and
has rank, we must include in S only one of each pair of inverse isomorphisms. Then however,
Lemma 4.3 only asserts coherence for the maps in S. To extend the result to the isomorphisms in
S and their inverses we use an observation of Mac Lane [15].

Suppose (P, S, f) is loop free and has rank and let S~! be the collection of singleton pasting
schemes obtained by taking the dualy, of each pasting scheme in S. Suppose that U is a path from
A to A’ with elements from SUS~!. We depict such a path as a string of arrows with each arrow
pointing in the direction chosen for S and note that, by the proof of Lemma 4.3, there exists a
unique B of rank zero with each arrow part of a path in (P, S, f) to B.

A—r<—— ‘_A'

IR
Now since all the ‘rectangles’ commute when realized the realization of the path from A to A’ is
fully determined by the realizations of the paths X from A to B and X' from A’ to B which are
independent of the particular path from A to A’. Thus (P, S, f) coherent implies (P,S U S, g)
coherent where g is the realization defined for x € S by g(z) = f(z) and g(dualy, ) = f(z)~!, and
for A€ P by g(A) = f(4).

Remark 4.5 In both of Lemmas 4.2 and 4.3 it is not necessary to check that all forks can be
commutatively completed—for many of them commutative completions are automatic: Suppose
(P, S, f) is a situation with the elements of P k-dimensional and (A, z,y) a fork in (P, S, f) with
Br(z) "By (y) = 0 then (A, z,y) can be commutatively completed since AUz and (cod (AUz))Uy,
and AUy and (cod (AUy)) Uz are both well formed and k-composable with composite AUz Uy.
If Bx(z) N Bg(y) = 0, say that z and y have no overlap. We need only check for commutative
completion those forks which have overlap.

4.3 Coherence of Multiplications and Associativities

In this and the next section we apply the coherence lemmas to establish in a unified way several
known coherence results.

Example 4.6 Coherence of Multiplication: Suppose that K is a set equipped with a multiplication
function M : K x K — K. Let C be the 2-category with one object %, with the natural numbers
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as 1-cells and addition as 0-composition, and with functions K™ — K™ as 2-cells from n to m.
Let P be the collection of 1-dimensional well-formed simplicial sets and let S be the collection of
singleton 2-dimensional well-formed simplicial sets. Let T' be the total pasting scheme of P U S
and realize T in C by

fo(x) = x forallzx €T,
filz) = 1 forallzeT)
fol) = M forallxz €Ty

Thus defined (P, S, f) forms a situation which is loop free and has rank, with
rank A = |A| — 1.

To say that (P, S, f) is coherent is to say that any two composites of iterated M’s K™ — K™ are
equal—i.e., M is associative. Lemma 4.2 gives sufficient conditions for the coherence of (P, S, f).
We will show that the hypotheses of the lemma are always satisfied by paths (z,...), (y,...) where
z and y have no overlap, and that for x and y with overlap, the hypotheses amount precisely to
the usual associativity condition M (1 x M) = M (M x 1).

Suppose A € P, say A is the simplicial set ap = a1 — -+ — aj, a; € w, and let (z,...), (y,...)
be two paths from A to some B € P. Then

ap+1 Qg+1

O

T = apyz andy = a;— a4

for some p,q € [j — 2]. Suppose without loss of generality ¢ > p. If  and y have no overlap then
(A, z,,y) can be commutatively completed (Remark 4.5) with codomain

D=ag—--ap = appo = -+ Qg = Qg2 = -+ — Q.

To see that there is a path from D to B notice that the vertices of B are contained in the vertices
of D and that applying elements of S simply eliminates vertices.

If z and y have some overlap it must be that ap;1 = a, whence we can complete the fork
(A, z,y) by following = by z' and y by y’ as shown

Gpt+1 — Ggt1

Uz
4a'

ag — -+ — a4y —+ Qgy2 —> ce— ay

ap+1 —— Gg+1

Jy
4y

ap — - — 4 —+ Qg2 —> S aj
and again there will be a path from

D=aqap---—a, = ag—---a;
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to B. It remains only to check that the completion is commutative (and then Lemma 4.2 will
apply to give coherence). Commutativity will be obtained if and only if

K> % > %
Um Ym
BN
% e

(4.2)
which depicts the usual associativity condition.

Example 4.7 Coherence of Associativity Isomorphisms: Suppose that K is a category with a
multiplication functor ® as in Example 4.1. We could require ® to satisfy the same condition (4.2)
as M in which case ® is called strictly associative, but when K is a category it is more reasonable
to ask for a natural isomorphism a in place of the equality in (4.2). We investigate the coherence
of such an isomorphism.

Suppose (P, S, f) is the loop-free situation described in Example 4.1, which has rank because,
if we view a well-formed 2-dimensional simplicial set as a bracketing of the 1-dimensional elements
of its domain, then applying an element of S moves a pair of brackets towards the left, which
can only be done finitely many times. Because a, being an isomorphism, is monic we will apply
Lemma 4.3 and Remark 4.4, so we need only check that any fork (A4,z,y) in (P, S, f) can be
commutatively completed. As before if 2 and y have no overlap then commutatively completing
(A, z,y) is straightforward. Suppose z and y have some overlap. Geometrically z and y are
tetrahedra, and the requirement that Bs(z) N By(y) # @, means that their domains must overlap

by at least a triangle so we obtain
<>
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Further applications of the elements of S shown yield the pentagonal completion

AN
N

NP
O — T .

If this completion is always commutative then (P, S, f) is coherent. The commutativity of (4.3)
when realized is precisely Mac Lane’s pentagonal condition for the coherence of associativity iso-
morphisms.

Furthermore, Laplaza [14] has shown that the completions (4.3) and the trivial completions
satisfy the hypotheses of Lemma 4.2 so that when a is not an isomorphism we again obtain
coherence provided that (4.3) commutes when realized.

4.4 Coherence of Identities and Commutativities

Example 4.8 Coherence of Identities: Suppose that K is a set equipped with a multiplication
M : K x K — K (cf. Example 4.6). An identity for the multiplication M is usually given by a
function j : K° = I — K which picks out the identity element.
Let C be the 2-category described in Example 4.6: one object %, natural numbers as arrows,
and functions as 2-cells. Then the function j may be written as a 2-cell
0

* Uj *
1

but in order to maintain the geometry we write it as a function j : K° x K° — K and obtain the
triangle

This departure from the normal description is not necessary to obtain the results below, but it
does simplify the treatment because all the pasting schemes we use can be made into labelled
well-formed simplicial sets. Let T be the pasting scheme given by

T() = w
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Tl = {(manaa)im,new,m<n,a€[1]}

T, = {(,m,n,a,b):l,mmn€w,l<m<n,abe][l]}
and with
Bl(lamanaaab) = {(lamaa)a(manab)}
Bo(l,m,n,a,b) = {m}
Ei(l,m,n,a,b) = {({,n,1)}
EO(lamanaaab) = (D
Bo(m,n,a) = {m}
Eo(m,n,a) = {n}
For example:
m m
0 1 0 0
N VN
R(lamanaoa 1) - | ——n ’ R(l,m,n,0,0) - | ———n ’ and
1 1

m
1 1
R(l,m,n,1,1) = l/(4lf>\n

Then T is a loop-free pasting digram because it’s just the 2-dimensional well-formed simplicial
sets except that there are two copies of each 1-dimensional element and four copies of each 2-
dimensional element. Let P be the well-formed 1-dimensional subpasting schemes of 7', and let S
be the well-formed singleton 2-dimensional subpasting schemes of T'. Realize T in C' by

folz) = =, for all x € Ty
film,n,a) = 0, ifa=0
= 1, ifa=1
fo(lym,n,a,b) = M, ifa=b=1
= 4, ifa=b=0

= Identity ifa=1,0=00ra=0,b=1

Thus defined (P, S, f) forms a situation which is loop free and has rank.
As in Example 4.6, Lemma 4.2 will apply provided that all the completions of the form

[ b m b m
a ‘U( (& a ‘U( c
U U
Ek—n kF—n (4.4)

commute when realized. We investigate what this means for the operations j7 and M.

When a = b = ¢ = 1 we obtain (4.2) and so discover, as there, that M is associative. When
two of a, b, and ¢ are 1 then the two sides of (4.4) are both M and so commutativity is automatic.
When a = b = ¢ = 0 the two sides of (4.4) are both j and so commutativity is automatic. When
a =c=0and b =1 the two sides of (4.4) are both the same identity 2-cell and so commutativity is
automatic. Finally, whena =b=0andc=1orb=c¢ =0 and a = 1 commutativity is respectively

x_ 0 % x__ 0 % x__ 0 % x__ 0«

Y1 o and Vi o (4.5)
0 m 1 =0 bt 1 1 Yt 0 = 1 M 0
* *
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which are precisely the two usual identity laws.
Thus (P, S, f) is coherent if and only if K is a monoid (a set with an associative multiplication
which has a two-sided identity).

Example 4.9 Coherence of Identity Isomorphisms: Suppose that K is a category with a multi-
plication functor ® : K x K — K as in Example 4.7. Suppose further that j : K° — K is a
functor. If j and ® satisfy (4.5) and (4.2) (with ® in place of M) then K is a strict monoidal
category. Suppose that (4.5) and (4.2) are only satisfied up to specified isomorphisms, say I, r,
and a respectively. We investigate the coherence of such isomorphisms.

Let C be the 3-category described in Example 4.1. Let T" be the pasting schemes described in
Example 4.8, but with an extra dimension

T; = {(k,l,m,n,a,b,c) : k,l,mn€w, k<l <m<mn,a,b,c, €[1]}
and extend the realization of Example 4.8 by

f?)(kalamana]-a]-a]-) = a,
fa(k,l,m,n,0,0,1) = I,
f3(k7l7m7n717070) =7 and
fa(k,l,m,n,a,b,c) = Identity, for all other a,b,c.

Let P be the collection of well-formed subpasting schemes of T" and let S be the collection
of well-formed singleton 3-dimensional subpasting schemes of T'. Then (P, S, f) is loop free and
has rank and, since all the cells in the image of f3 are isomorphisms we may prove coherence by
applying Lemma 4.3 provided that all forks can be commutatively completed. Of course, forks
which have no overlap may be commutatively completed. Those which have overlap come in a
number of types.

Since two overlapping tetrahedra must have a common triangle in their domains, we obtain
diagrams of the form (4.3). In such a diagram, label the common external 1-cells as shown:

N
\

In all but the following cases the two ‘legs’ of the pentagon (4.3) are automatically equal when
realized. If a = b = ¢ = d = 1 then asking for commutativity is precisely asking for Mac Lane’s
pentagonal coherence of associativity condition to hold. If a = d = 1 and b = ¢ = 0 then equality
of the legs of (4.3) when realized is, up to choice of orientation, Kelly’s refinement [7] of Mac Lane’s
conditions [15] for the coherence of an identity isomorphism.

We have proved the usual coherence theorem for monoidal categories.

Example 4.10 Coherence for Commutativity Isomorphisms: The theory of coherent situations
presented so far is quite sufficient for our main purpose—the establishment of the higher coherence
conditions. However, in its present form, it is not sufficient for the analysis of all coherence
questions. This example is included to show how the simple minded analyses above will not always
lead directly to the required conditions, and is presented less rigorously—the aim is only to exhibit
the difficulties which arise.

Suppose that K is a monoidal category i.e., a category Ky together with a multiplication functor
® : Ko x K9 — Ky which is associative and has identities up to specified coherent isomorphisms
a,l,r as in Example 4.9. Recall that the twist functor ¢ : Ko x Ky — Ky x Ky is defined by

(f,9) = (g, f)-
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We will view a commutativity isomorphism as a natural transformation ®t — ® i.e.,

A®

Notice that we have not managed to force the geometry into the well-formed simplicial set mould
because at the 2-dimensional level we need a ‘quadrilateral’

(4.6)

Yt

*

L7 N

* *

Therefore, to be precise we must define a new pasting scheme @) generated by squares and triangles,
and verify for it properties like loop-freeness (as we did for well-formed simplicial sets in Chapter 3).
We will not attempt to formally define the pasting scheme here, but suppose that we had done so.
Then let P be the collection of well-formed 2-dimensional subschemes of ). Let S be the collection
of singleton pasting schemes of the form ¢ (4.6) or a (Example 4.1). Suppose P U S is allowable
and let T" be the total pasting scheme of P U S. Realize T in the 3-category C of Example 4.1 in
the obvious way.

Now to investigate the coherence of the situation just sketched we aim to apply Lemma 4.3 and
so we look for forks (A, z,y) which overlap. We will find forks where x and y are two instances of a,
which may be commutatively completed if the usual pentagonal condition holds. Forks involving
two instances of ¢ either fail to overlap or overlap completely and so commutative completions are
automatic. Finally, the interesting case is a fork where one of z and y is an instance of a, say x,
and the other, y, is an instance of ¢ (in the following diagrams the quadrilaterals which contain a
twist functor have been left blank):

|

b3 U@ b3 U@
Yo a U
*
P —
b —t
U
*

— \

Jo

4.*
=
®
Kt———————%

|

(4.7)

Unfortunately, this fork cannot be commutatively completed as it stands—the application of an
instance of a shown in the upper right of (4.7) is the ony path which can be appended to the fork.
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Nevertheless, a little ingenuity will produce the usual condition for coherence of a commutativity
isomorphism!
We begin by introducing a further twist functor:

Ue @ Yo
* k * k
X
\M
Jo
% %
——%

(4.8)
Whether such an addition can be justified in the current framework will not be argued because a
more severe difficutly remains. Once again the fork cannot be completed—(4.8) shows the most
that can be done without the realization that

b b
% % 3 %
*4/67,* N
a\ b ~u® @ fe a U® c
Yo - / Yo
K—————»% ————— %

(4.9)

(moving a past b and ¢ and then multiplying b and ¢ is the same as multiplying b and ¢ and moving
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a past the product). Using this we obtain

U
WﬁygTﬁxw
RN

(4.10)
which depicts the usual hexagonal condition for coherence of a commutativity.

But what does the Equation 4.9 really say? Certainly it cannot be an equation of pasting
schemes because formally different schemes are always distinct, and if the pasting schemes are not
equal then the lower “path” in (4.10) is not a path in (P, S, f) at all.

It appears that the analysis of coherence described so far is a little too strict to treat coherence
for a commutativity although the idea of searching for commutative completions of forks with
overlap does seem to be right. Some untested modifications which may extend the applicability of
the theory are recorded in the prospectus.

4.5 The Higher Coherence Conditions

Notice that in Examples 4.6 and 4.7 above, a single instance of a multiplication, M or ®, is a
2-simplex viewed as a pasting scheme. To require that M be coherent is to require commutativity
(upon realization) of a 3-simplex—the associative law. If the associative law is weakened to an
isomorphism a, then the coherence of a follows from the commutativity (when realized) of a 4-
simplex. In this section we prove that this process continues. The higher coherence conditions for
associativity are simply commutativities of n-simplexes for appropriate n, and such commutativities
are easy to understand in the light of our knowledge of the well-formed simplicial sets.

The first higher coherence question arises from a multiplication ® with specified reassociating
maps a (Example 4.1) for which (4.3) need not necessarily commute when realized, but is equipped
with a specified 4-cell isomorphism p between its left and right legs.

The situation which expresses this question is obtained by letting P be the collection of well-
formed simplicial sets of dimension 3, letting S be the collection of singleton well-formed simplicial
sets of dimension 4, and letting f be the evident extension of the realization of Example 4.1. By
Lemma 4.3, (P, S, f) is coherent if every fork can be commutatively completed. By Remark 4.5
it suffices to check forks which have overlap so suppose (4, x,y) is such a fork. Naively, z and y
may overlap in several ways—since each has a domain consisting of three tetrahedra they might
overlap by one, two or three tetrahedra. However, counting vertices we see that there is only one
possible form of overlap: x and y are each 4-simplexes and so have five vertices, a tetrahedron has
four vertices and, to overlap at all, z and y must have a tetrahedron, i.e. four of their five vertices,
in common. Any greater overlap would make them equal, any lesser overlap would be no overlap
at all (B3(z) N Bs(y) = @). Thus, by Lemma 4.3 we have:
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Proposition 4.11 The situation (P, S, f) just described is coherent if the realization of every 5-
simplex commutes.O

We will show that this continues.

Let W be the set of well-formed simplicial sets and let ST/ be the set of singleton well-formed
simplicial sets. Write (W);, for the set of elements of W of dimension k and (SW);, for the set
of elements of SW of dimension k. Recall that (S’,E’,B’) is the pasting scheme defined on the
w-simplex on page 25 and that |.S’|,, is the subpasting scheme of S’ with elements of dimension n
or less. Thus for k < n, elements of (SW);, and (W) are well-formed subpasting schemes of |S'|,,.
In fact |S|,, is the total pasting scheme of the collection (W),,—1 U (SW),,.

Proposition 4.12 Suppose that f is a realization of |S'|,, with f(u) (n — 1)-monic for each u €
(S)n then (W)p—1,(SW)y, f) is a loop free situation which is coherent if and only if for every
a € (S")p+1, f(domR(a)) = f(codR(a)) (i.e. if and only if the realization of every n + 1 simplex
commutes).

Proof. The fact that ((W),—1, (SW),, f) forms a loop-free situation follows from the remarks
immediately preceeding the proposition.

Suppose the situation is coherent and a € (S'),+1 then dom dom R(a) = dom cod R(a) = A say
and coddomR(a) = codcodR(a) = B say are both in (W),_1 by Theorem 3.6. But domR(a),
codR(a) are two paths from A to B in |S’|,, (Theorem 3.6 again) so they must have the same
realization by the definition of coherence.

Conversely, suppose the realization of every n + 1 simplex commutes. Suppose (A,z,y) is
a fork in (W)p—1,(SW)p, f), say © = R({z1,22,...2p11}) and y = R{y1,y2,.- - ynt1}). Iz
and y have overlap then B, _1(xz) N B,_1(y) # @ so exactly n of the z; occur as y;’s. Thus
a={z;} U{yi} € (8')n41. Furthermore, z and y are not both contained in dom a nor in coda by
the compatibility of those schemes. Thus dom a and cod a form a completion of (A, z,y) which must
be commutative by assumption and so Lemma 4.3 applies giving (W)n—1, (SW)p, f) coherent.O

Remark 4.13 The argument of Proposition 4.12 remains unchanged if we replace well formed
simplicial sets with labelled well formed simplicial sets. Thus the result gives the higher coherence
conditions (commutativity of appropriate simplexes) for associativities and identities jointly as well
as for associativies.
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Chapter 5

Parametrized Theories

The Moore construction of a category of paths in a topological space has a number of forms. One
variant is as follows.

Let I,, denote the real interval [0,n] of length n with the usual Euclidean topology. For each
n let [0] be the continuous map Iy — I, given by [0](0) = 0 and let [n] be the continuous map
Iy — I, given by [n](0) = n. Let X be any topological space and let Mx = > _ Top(l,,X)
denote the set of continuous maps into X each of which has some I,, as its domain. Then Mx
has a category structure given by: Suppose f € Mx, say f : I; = X then let s(f) be the map
f10] : Iy = X and t(f) the map f[n] : Iy = X, and if f : [; - X, g : I, — X are such that
s(g) = t(f) then we define g * f : I;; 1 — X by

gxfla) = fl@) f0<a<y
= gla—j) fj<a<j+k.

The verification that this definition satisfies the associative and identity laws (with identities given
by maps Iy — X) is routine.

The Moore construction is functorial: Given any other topological space X’ and a continuous
map h: X — X' then composition with h defines a functor My, : Mx — Mx.. Arguments due to
Eckmann-Hilton (see e.g. [6]) show that if such an algebraic structure is borne by a single hom set
C(D, X), then the parametrizing object D is a coalgebra in C (Section 1.3). However, the ‘multi-
sorted’ case, where D is replaced by many objects (I,), and C(D, X) by a coproduct of many hom
sets (3_,,c., Top(I,, X)) has not been treated.

This chapter develops the multi-sorted theory in order to understand, in the manner of Eckmann-
Hilton, the basis of the Moore construction. Our chief goal is to generalize the Moore construction
to include information about ‘higher dimensional paths’ (paths between paths) in a ‘higher dimen-
sional category’ (an w-category).

In section 1 we define parametrized (multi-sorted) algebras in a category C by shifting our
attention to a category of families of objects of C. Section 2 returns the problem to the cate-
gory C and gives an alternative description of parametrized algebras as algebras in C for certain
theories—the parametrized theories. Section 3 explores some of the relationships between a theory
(e.g. the theory of categories) and its parametrized forms (the parametrized theories of categories)
and their respective algebras. Finally Section 4 includes examples of algebras for parametrized
theories demonstrating that several well known constructions are examples of ‘multi-sorted hom-
ming out constructions’ although they are not representable in the ordinary sense; and that the
well-formed simplicial sets form a co-parametrized-w-category providing a solution to the problem
of generalizing the Moore construction to higher dimensions.

5.1 Parametrized Algebras

The Moore construction and several others (see below) depend upon homming out of a collec-
tion of objects (D;);er of a category C and obtaining a structure on the collection of morphisms
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> ic1 C(Dy, X). In this section we interpret constructions of this sort in the category Fam C°P.

The section begins by showing that the collection of morphisms ), ; C(D;, X) is a single hom
set in Fam C°?. We then define parametrized algebras, show that Moore’s domains (I,),e, are a
co-parametrized category in Top, and note that this yields a ‘classical’ explanation of the Moore
construction.

Notice first that C is a full subcategory of (Fam C°P)°P with the inclusion I given by IC is the
singleton family (C) and for f : C — C', f°P : ¢! — C in C°P is the single component of a map
(C") = (C) in Fam C°? whose opposite is by definition If.

Lemma 5.1 Suppose C is a category and (D;)icr a collection of objects of C then for any X € C

Z C(D;, X) = FamC°?(I°’ X, (D;)icr)
iel

Proof. The bijection is clear if we note that a morphism in the right hand side is a function ¢
from the indexing set of the family I°PX, i.e. from a one point set {x}, into the set I, together
with a C® morphism X — Dy(,. In other words, an element of the right hand side is given by an
element i € I, and a C morphism D; — X.0O

Now suppose T is a theory and C a category. A parametrized algebra of T in C is an (ordinary)
algebra of T in Fam C and a co-parametrized algebra of T in C is a T-algebra in Fam C°P.

Example 5.2 The collection (I,,)new is a co-parametrized category in Top. To see this we verify
that (I,)neo has a category structure in Fam Top°P.

Firstly define s : (In)necw — (In)new by 8 = (@, (8n)new) With ¢ : w — w given by ¢(n) = 0,
and sy, : I, = I4(n) in Top®® given by the map [0] : Iy — I,, in Top. Similarly ¢ = (¢, (tn)new)
with &, : I, — I(n) determined by the map [n] : Iy — I,. It is easy to see that s and ¢ satisfy
the equations required for source and target maps in a category.

The ‘composable maps’ in the category (I,,) are given by the pullback

M (In)nGw

([n)nEw ¢ ([n)nEw

which is easily calculated in Fam Top®?: M is the family of pushouts (calculated in Top)

Mm7n In

I, Iy

tm

indexed by w x w. Notice that M,,, may be chosen to be I, with the injections given by
a(x) =z, z € [0,m] and b(y) = m +y, y € [0,n] (and of course any other choice of pushout is
canonically isomorphic to this).

The ‘composition’ in the category is a Fam Top°® morphism ¢ : (M n)m.newxw = (In)new- TO
give such a morphism is to give, for each m,n € w X w a natural number ¢(m,n) and a continuous
map Cmn * Lpm,n) = Mm,n- In this case ¢ is given by ¢(m,n) = m +n and ¢y, , is the identity
Im+n — My, (or the canonical isomorphism if some other choice of pushout is made above).
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That ¢ is associative is easy to see. Identities for ¢ come from the object of objects (the equalizer
of s and the identity (I,) — (I,) or equivalently of ¢ and the identity) which is the singleton family
(Ip). ‘Composable maps’, the first of which is an identity, are given by the pullback

(In)TLGw - (In)nGw

(IO) 45’ ([n)nEw

(where ¢’ is the composition of ¢ with the equalizer) and then c is equal to the projection of the
pullback onto the second factor. Similarly for left identities.OI

Thus, by the classical argument of Eckmann-Hilton, homming into (I,,) in Fam Top®?, which by
Lemma 5.1 is the same as homming out of each of the I,, in Top, yields an ordinary category—the
Moore category.

5.2 Parametrized Theories

The fact that C(X, D) inherits an algebra structure if D is an algebra in C has long been understood.
The work of Eckmann-Hilton demonstrated that C(D, X) inherits an algebra structure if D is an
algebra, not in C, but in C°?. The preceding section demonstrates that ) .., C(D;, X) inherits
an algebra structure if (D;) is an algebra in FamC°P and that this is the basis of the Moore
construction.

Although a coalgebra D in C is defined as an algebra in C°P, the structure that D bears in C is
easy to describe. In this section we describe the structure borne in C by the collection of objects
D; which corresponds to an algebra structure on the family (D;) in Fam C°P.

Let T be a theory, C a category and F a co-parametrized T-algebra in C (i.e. F': T — Fam C°P
preserves finite limits). Recall that p : Fam C°® — Set given by (C;);cr — I and (¢, (fi)icr) — ¢
preserves finite limits. The composite G = pF : T — Set is a T-algebra and will be called the
algebra of sorts of F.

Example 5.3 Section 5.1 showed that the family (I),)ncw is a co-parametrized category. Its
algebra of sorts is the category w which has a single object and arrows corresponding to the
natural numbers with composition given by addition. Explicitly: If we write the elements of the
set w as n (as usual) then source and target maps are given by s(n) = 0 = t(n) for all n € w;
the composable pairs are given by the pullback of s along ¢ which is w x w (the set indexing the
composable maps of the category (I,,)); and composition is given by the image of the indexing map
¢ for the composition ¢ of (I),) which sends (n,m) — n +m.

Let % be a one point set. If F': T — Set recall that e/ F', the category of elements of F, is
the comma category x/F. The elements construction is functorial—considering the category set
of small sets as an object of Cat, we have a functor e/ : Cat/set — Cat. The Fam construction
used above is also functorial with Fam : Cat — Cat/set.

Proposition 5.4 The functor el is left adjoint to the functor Fam .
Proof. The isomorphism
Cat(el (G : A — set),C) = Cat/set(G : A — set,p: FamC — set)

is easily seen: A functor in the left hand side gives for each A € A a collection of objects of C, one
for each element of GA, while functors in the right hand side give a family of objects of C indexed
by the set GA.O
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Remark 5.5 Indeed the bijection is an isomorphism of categories, so we have a 2-adjoint, and it
carries left exact functors to left exact functors.

Proposition 5.6 Suppose T is small and finitely complete, and G : T — Set preserves finite
limits then el G is small and finitely complete.

Proof. The projection @ : e/ G — T creates limits (see [16, page 117]).0

Thus for any theory T and any T-algebra G the comma category ef G is a theory. The remark
says that the category of parametrized algebras of T in C with algebra of sorts G is isomorphic
to the category of ef G-algebras in C. In other words to give a T-algebra structure on (D;) in
FamC is to give an ef G-algebra structure on the objects D; in C and dually (replacing Fam C by
Fam C°? and el G-algebra by el G-coalgebra). Thus el G is the theory of parametrized T-algebras
with algebra of sorts G.

In what follows we will move freely between descriptions of parametrized T-algebras in C as
T-algebras in FamC and as el G-algebras in C for an appropriate choice of G.

An explicit description of the structure of a parametrized monoid in Set appears in Section 5.4.

5.3 Algebras and Parametrized Algebras

This section records a few elementary results about the relationships between ordinary and para-
metrized algebras and their theories. Specifically, it demonstrates that every algebra is a degenerate
parametrized algebra, and every parametrized algebra can be made into an ordinary algebra by
‘joining up the sorts’.

Let T be a theory and let G be a T-algebra. Let T' = e/G be the theory of parametrized
T-algebras with algebra of sorts G. Since T' = e/G = x/G (where * is a one point set and
G : T — Set), there is a projection @ of the comma category T’ onto the theory T.

Lemma 5.7 The projection Q : T' — T preserves finite limits.
Proof. Immediate from [16, page 113, Theorem 2] since @ creates limits.O
Corollary 5.8 Every algebra in C is a parametrized algebra in C.

Proof. Suppose F': T — C is an algebra in C and G : T — Set an algebra in Set. Let T’ be the
theory of parametrized T-algebras with algebra of sorts G, and let @ be the projection T' — T.
Since () preserves finite limits the composite FQ is a T'-algebra. The corollary as stated is the
usual abuse of notation: If D € C is the image under F' of a generic object of T then D is often
referred to as a T-algebra and D is also the image under F'Q of the many generic objects of T' and
so is called a T'-algebra.O

A parametrized T-algebra F' : T' — C which factors as FQ where F : T — C is a T-algebra
and @ : T' = T is the projection of the comma, category T’, is called a degenerate parametrized
T-algebra. In the Fam C description of a parametrized T-algebra the degeneracy manifests itself
through the image containing only families of the form (C);cr (that is, a copy of the same object
C of C for each i € I). Notice however that the algebra of sorts of a parametrized T-algebra retains
its structure even when the parametrized T-algebra is degenerate.

Conversely every parametrized T-algebra (in Set) yields, by Kan extension, an ordinary T-
algebra.

Proposition 5.9 Suppose F' : T' — Set is a parametrized T-algebra and let Q : T' — T be the
projection of the comma category T' then the left Kan extension of F' along Q preserves finite
limits.

Proof. Since the comma category @Q/B is a filtered category for each B € T, the colimits involved
in computing the Kan extension [16, page 234] are filtered colimits. The proposition follows since
filtered colimits commute with finite limits in Set.O

Furthermore, the left Kan extension is easy to compute.
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Proposition 5.10 Suppose F' : T' — Set is a parametrized T-algebra with algebra of sorts G and
Q : T' — T is the projection of the comma category el G = T' onto T. If B € T then

(LangF)B= Y F'B
B'eGB

Proof. In @Q/B the full subcategory determined by the objects QB’ 19, B is final and discrete so
the colimit may be computed over this subcategory and becomes a coproduct.O

The preceding two results provide another explanation of the Moore construction of a category
of paths in a topological space. In Top the collection of objects I,,, n € w, forms a co-parametrized
category (an el G-coalgebra where G is the category w described in Example 5.3). Thus, classically,
homming out of the I,, yields a parametrized category (an ef G-algebra in Set). The parametrized
category in turn yields an ordinary category—the Moore category—via Proposition 5.10. Indeed
the coproduct which is computed there amounts to ‘forgetting’ the distinction between the different
sorts which in this case means collecting all the paths together irrespective of the length of their
domains [0, n].

5.4 Further Examples

Example 5.11 The first example is the description of a parametrized monoid (in Set) showing
its structure both in Fam Set and as an algebra for a theory of the form e/ G. This example plays
no direct part in the analysis of the Moore and related constructions, but because monoids are
well understood it may illuminate some of the preceding definitions.

A parametrized monoid is an object in Fam Set, say (M;);cr, together with a multiplication
m : (M;)ier x (M;)ier = (M;)ier which is associative and has a left and right identity given by
e: (x) = (M;);er (where (x) is a terminal object in Fam Set, say the singleton family containing a
one point set x). Of course this is strictly only a presentation of a monoid in Fam Set—the whole
structure is given by a finite limit preserving functor from the theory T of monoids into Fam Set,
but the relationships between such a presentation and a T-algebra are well understood and will
not be entered into here.

In terms of sets a parametrized monoid is a collection of sets M;, one for each ¢ € I, together
with a number of multiplications. The multiplication given in Fam Set

m : (Mi)ier X (Mi)ier = (M; X Mj) i jyerxr = (Mi)ier

gives for each (i, j) € I x I an index ¢(i,j) and a function m; j : M; x Mj — My; ;). Associativity
amounts to asking that

o(#(i, ), k) = (i, ¢(j, k)) (5.1)
and that

Mg (i), (Mg X 1) =My gy (1 X myg) © My x My X My = M (p(i,5),k)-

The identity amounts to choosing a ¢)(x) € I and an element of M) which acts as a left and right
identity in any multiplication m. () ;j or mj y(«), j € I, in which it is involved. (We are allowing *
to ambiguously denote either the one point set or its single element.)

The sets M;, i € I, are called sorts and the parametrized monoid is sometimes called a multi-
sorted monoid—it is a monoid in the sense that any two elements can be multiplied together
(associatively) and there exists left and right identities, but the sorts are a partitioning of the
elements into sets which behave similarly in that the product of any two elements from the sets
M; and Mj is an element of the set Mg ;.

Notice that the sorts themselves have a monoid structure (the monoid of sorts of the paramet-
rized monoid). Any two sorts may be multiplied with the product of M; and M; given by Me; ;-
This product is associative by (5.1) and My, acts as a left and right identity. The reader may
wish to convince himself that if this monoid of sorts is thought of as a monoid G : T — Set then
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the category el GG has all the structure required of a multi-sorted monoid and that the collection
M; is an ef G-algebra in Set.

Finally Proposition 5.10 says that the left Kan extension of this e/ G-algebra along the projec-
tion e/G — T (which by Proposition 5.9 gives a monoid) is the monoid obtained by forming the
coproduct of the M;—forgetting the partitioning and viewing the whole collection of elements as
a single ordinary monoid.

Dually a co-parametrized monoid is a monoid in Fam Set®® which amounts to a multi-sorted
comonoid—a collection of sets M; together with, for each (i,j) € I x I, a comultiplication m, ; :
My i,5) = M; + M; which is coassociative etc.

Example 5.12 Write [k] = {0,1,...k—1} and hence [0] = () (note that this is a different definition
of [k] to that used in earlier chapters). In Set the collection [k] for £ = 0,1, ... is a co-parametrized
monoid. To verify this we show that ([k])re. is a monoid in Fam Set°?.

The multiplication m : ([k])rew X ([F])rew = ([F]1+F]) (k) cwxw — ([E])kew in Fam Set®® is given
by a function ¢ : w X w — w which sends (j,k) — j + k and functions m; x : [¢(j, k)] — [j] + [K]
in Set. Notice that [j + k] is canonically isomorphic to [j] + [k] and choose m;; to be this
isomorphism. Finally let e : (x) — ([k])rew be given by (¢, e,) where 9 picks out the index 0 and
e is the opposite of the unique map [0] = 0 — . The verification that (¢, (m;)) and (1, es)
satisfy the associative and identity laws is routine.

Since the collection [k] is a co-parametrized monoid we know that homming out of it into some
set X say yields a parametrized monoid. Furthermore Proposition 5.10 says that forgetting the
distinctions between the sorts gives an ordinary monoid. The ordinary monoid has as elements
functions from {0,1,...k — 1} into X which may be thought of as words of length k in elements
of X. The identity for this ordinary monoid is the empty word, and the multiplication is given by
concatenation of words.

Thus homming out of this co-parametrized monoid into a set X is a construction of the free
monoid on X . In a sense the collection [k] is a representing collection of objects for the free monoid
construction.

Example 5.13 Let L be the category with two distinct objects and two parallel non-identity
arrows, then Set’” is the category Graph of graphs and graph morphisms. In Graph the graphs

k]=0—=21—>--- 2k

for k =0,1,... form a co-parametrized category. Homming out of the [k] into some graph G gives
a parametrized category which becomes a category if we forget the distinctions between the sorts.
The category so obtained is the free category on the graph G.

Example 5.14 In the category of simplicial sets the well-formed simplicial sets form a co-para-
metrized-w-category. To see this let (17;) be the family of well-formed simplicial sets which is an
object in Fam[A°P,Set]°P. Define sy, t, : (W;) = (W;) by sp = (¢n,sn,) and tn, = (&),,tn,:)
where ¢, (i) is the index of the n-dimensional source of W; (Chapter 3) and s, ; is the opposite
of the inclusion of the n-dimensional source of W; into W; in [A°P, Set] (and similarly for ¢!, and
tni)-

The *,-composable arrows are given by the pullback of s, along ¢,, which may be chosen to
be a differently indexed family of well formed simplicial sets since the pushout of the inclusion of
an n-dimensional source of a well formed simplicial set along the inclusion of an n-dimensional
target of another well formed simplicial set is again a well formed simplicial set (by Theorem 2.12).
As before we may define the composition %, to be the identity on each of its components. The
verification that s,, t, and %, satisfy the axioms of an w-category is routine.

Thus homming out of (W;) in the category of simplicial sets, or equivalently homming out of the
realizations of the (W;) in Top, yields an w-category. This provides a solution to the problem of
generalizing the Moore construction to an w-category of ‘higher dimensional paths’ in a topological
space.
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Prospectus

This thesis explores a number of closely related problems—the pasting theorem, Street’s orientals,
the higher coherence conditions, and the Moore n-category of a space. As such, its scope is rather
narrow—questions and research possibilities which became apparent during the work have not
been addressed because they are not an integral part of “the story”. This Prospectus records some
of the related work which is being carried out as well as some suggestions for future research.

Theory of Pasting Schemes

The notion of pasting schemes presented here was motivated by Street’s consideration in [20] of
what amounts to the particular pasting scheme (S, E,B) of Chapter 3, and by the need to specify
composable diagrams for the treatment of the pasting theorem. Street went on to work with
Aitchison on the cubical analogue of (S, E,B). They obtained a clear description of the cubical
complex and provided notation which, together with Theorem 3.7 led the author to a proof that
a certain pasting scheme structure on the w-cube is loop free, and hence to a construction of the
“free n-category on the n-cube”.

The development of the general theory has continued. Street and the author have obtained
a construction of the product of two loop-free pasting schemes and they hope to continue the
development in joint work. Currently, Street is working on improving the axioms for a loop-free
pasting scheme.

Concurrently Eilenberg-Street have been working on explicit constructions of free n-categories.
It is the author’s hope that better developed theories of pasting schemes and parametrized n-
categories will have an influence on this work.

Coherence

As noted in Chapter 4 the framework for the analysis of coherence questions presented there is not
sufficiently general. The problem seems to be that pasting schemes are “too free”—equations like
(4.9) may be clear enough in particular realizations but they can never hold in pasting schemes.
This suggests that the theory should be developed in ‘quotients’ of pasting schemes where the
independence of a particular realization remains but extra equations which hold in all intended
realizations can be introduced. In addition the use of Eilenberg-Kelly generalized natural transfor-
mations may be more appropriate than the ordinary natural transformations used in Chapter 4.

One of the intended applications of the results of Chapter 4 is the definition of a pseudo-n-
category. A bicategory may be thought of as a pseudo-2-category because some of the axioms
of a 2-category are only satisfied up to coherent isomorphisms. The idea of extending this to
3-categories and higher is quite old but the requisite coherence conditions have not been available.
The higher coherence conditions proved in Chapter 4 solve this problem for associativities and
identities and so the definition may now be within reach.
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Categories of Paths

The Moore w-category of paths which was defined in Chapter 5 was constructed for use in algebraic
topology. Walters has conjectured that the homotopy groups of a space may be obtained from its
path w-category and that generalized homotopy theory should be carried out in a topos containing
a co-parametrized-w-category. These ideas are as yet little developed but Walters and the author
hope to continue the work.

The general theory of parametrized theories is only beginning. As noted in the introduction,
algebras for parametrized theories include parametrized notions such as indexed categories and
fibrations but whether there is anything to be gained from this observation has not yet been
explored.

Finally, current joint work of Carboni and the author has shed light on the role played by
(Fam C°P)°P in Chapter 5. Our present goal is to obtain explicit criteria for the existence of a
co-parametrized-T-algebra which represents (in (Fam C°P)°P) the construction of free T-algebras in
C.
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