

The Evolution of Massive AGN Host Galaxies to $z \sim 4$ with ZFOURGE

Cowley, M.J¹, Spitler, L^{1, 2}, Rees, G^{1, 3} and ZFOURGE Team

¹ Department of Physics & Astronomy, Macquarie University, North Ryde, NSW 2109 Australia

² Australian Astronomical Observatory, PO Box 915 North Ryde, NSW 1670, Australia

³ CSIRO Astronomy & Space Science, PO Box 76 Epping, NSW 1710, Australia

1 Abstract

We present preliminary measurements of the comoving space density of massive AGN host galaxies using a sample of 183 AGN identified in the UDS, COSMOS and CDFS legacy fields. Our mass-complete sample is constructed using deep near-infrared imaging from the Four Star Galaxy Evolution Survey (ZFOURGE), complemented with far infrared, radio and X-ray data. We find radio-selected AGN are more prevalent at $z < 1.5$ than X-ray and IR-selected AGN, of which the latter shows a steep decline towards the present epoch.

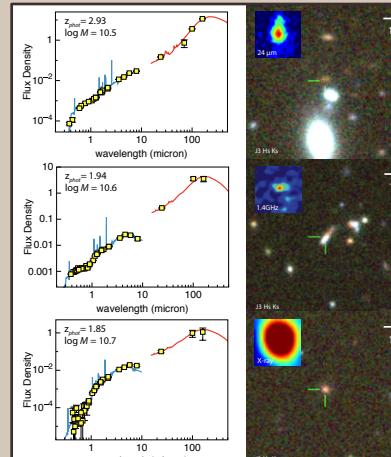


Figure 1: Selection of infrared, radio and X-ray AGN spectral energy distributions and associated images.

2 ZFOURGE Survey

ZFOURGE uniquely depends on deep near-infrared images taken with innovative medium-bandwidth filters equipped on the FourStar imager (Persson et al. 2013) on the 6.5m Magellan Baade telescope. These filters allow for more accurate wavelength sampling by bracketing the rest-frame 4000Å/Balmer breaks, leading to more well constrained photometric redshifts than with broadband filters alone. The 5σ AB mag depths in these fields are ~ 26 in J_1 , J_2 and J_3 and ~ 25 in H_s , H_l and K_s . More details of ZFOURGE will be provided in the forthcoming work of Straatman et al. (in prep).

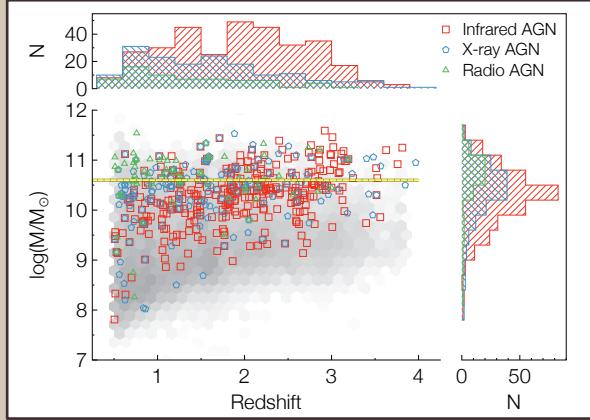


Figure 2: Host galaxy mass as a function of redshift for our **infrared**, **X-ray** and **radio**-selected AGN. We limit the sample to **stellar masses of $\log M/M_\odot > 10.6$** , where we estimate to be complete to $z = 4$.

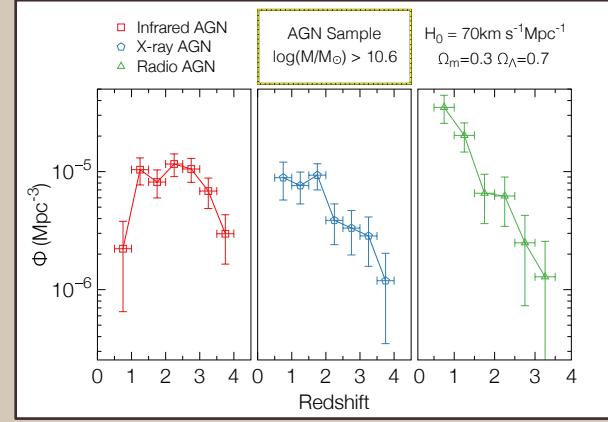


Figure 3: The comoving space density ($1/V_a$ method, Schmidt 1968) of our AGN sample as a function of redshift. Horizontal errors represent the redshift bin size, while the vertical errors are derived from Poisson statistics.

3 AGN Sample Selection

To mitigate selection bias, we adopt the latest AGN selection criteria and cross-match with multi-wavelength data sets. We briefly describe our methodology below:

Infrared AGN: A source within the colour-colour spaces defined by Messias et al. (2012) is identified as an infrared AGN.

X-ray AGN: A source with an X-ray luminosity of $L_{0.5-8}$ keV $\geq 10^{42}$ ergs s^{-1} is identified as a X-ray AGN (Ueda et al. 2008; Civano et al. 2012; Xue et al. 2011).

Radio AGN: A source with $SFR_{\text{Radio}}/(SFR_{\text{UV}} + SFR_{\text{MIPS}}) > 3$ is identified as a radio AGN (Schinnerer et al. 2010; Miller et al. 2013; Rees et al. 2014; in prep).

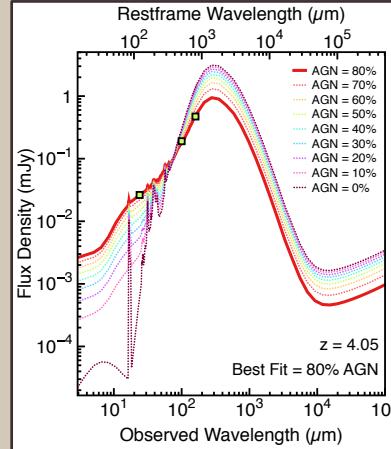


Figure 4: Best fit FIR SED template for a ZFOURGE AGN (Dale et al. 2014). The dotted lines portray the different fractional contribution of AGN infrared emission, normalised to $75\mu\text{m}$.

4 Future Work

We plan to extend our sample out to a redshift of $z \sim 6$ to study the evolution of AGN in the early universe. Our initial focus will be on overcoming the challenge of distinguishing between the star-formation and accretion components in the energy budget of active galaxies at high redshifts. To achieve this, we will combine ZFOURGE data with new *Herschel* far-infrared photometry to assist with the decomposition of AGN and starburst emissions. Figure 4 shows preliminary fits to far-infrared data for a high redshift AGN. The fits are greatly aided by the high-quality ZFOURGE photometric redshifts.

Contact

Michael Cowley
Macquarie University
Sydney, Australia
michael.cowley@students.mq.edu.au
Phone: +61 2 9850 4887
Fax: +61 2 9850 8115
Websites: <http://physics.mq.edu.au/> and <http://zfourge.tamu.edu/>

References

1. Persson, S. E., et al. 2013, PASP, 125, 654–682
2. Schmidt, M. 1968, ApJ, 151, 393
3. Messias, H., et al. 2012, ApJ, 754, 120
4. Ueda, Y., et al. 2008, ApJSS, 179, 124
5. Civano, F., et al. 2012, ApJSS, 201, 30
6. Xue, Y. Q., et al. 2011, ApJSS, 195, 10
7. Schinnerer, E., et al. 2010, ApJSS, 188, 384
8. Miller, N. A., et al. 2013, ApJSS, 205, 13
9. Dale, D. A., et al. 2014, ApJ, 784, 1

ZFOURGE Publications

1. FIRST RESULTS FROM ZFOURGE: DISCOVERY OF A CANDIDATE CLUSTER AT $z = 2.2$ IN COSMOS, Spitler, L.R., et al. 2012, ApJ, 748, L21
2. DISCOVERY OF LYMAN BREAK GALAXIES AT $z \sim 7$ FROM THE ZFOURGE SURVEY, Tilvi, V., et al. 2013, ApJ, 768, 56
3. GALAXY STELLAR MASS FUNCTIONS FROM ZFOURGE/CANDELS: AN EXCESS OF LOW-MASS GALAXIES SINCE $z = 2$ AND THE BUILDUP OF QUIESCENT GALAXIES, Tomczak A.R., et al. 2014, ApJ, 783, 85
4. A SUBSTANTIAL POPULATION OF MASSIVE QUIESCENT GALAXIES AT $z \sim 4$ FROM ZFOURGE, Straatman, C.M.S., et al. 2014, ApJ, 783, L14
5. EXPLORING THE $z = 3 - 4$ MASSIVE GALAXY POPULATION WITH ZFOURGE: THE PREVALENCE OF DUSTY AND QUIESCENT GALAXIES, Spitler, L.R., et al. 2014, ApJ, in press