Ant Colony Optimisation and Local Search for Bin Packing and Cutting Stock Problems

Writers: John Levine and Fredrick Ducatelle

Bin Packing Problem (BPP)

- Placing things in bins.
- Bins have a maximum volume they can hold.
- We want to minimise the bins that we need to use.
- Real World Applications include:
 - Filling Containers
 - Loading Trucks
 - Creating Backup files in removable media

BPP Example

We have items with the values 3,4,6,7 and a maximum bin size of 10

Inefficient Solution:

Optimized Solution:

Cutting Stock Problem (CSP)

- We have a slab/store of resources.
- We also have a list of stock items we need to cut.
- We want to see how we can best cut our stock to limit the amount of wastage we need.
- Real World Applications include:
 - Stock generation (e.g. Paper, Wood, Metal sheets, etc.)

CSP Example A paper machine can produce an unlimited number of master (jumbo) rolls, each 5600 mm wide. The following items must be cut:

Width	Rolls	Width	Rolls
1380	22	1930	20
1520	25	2000	10
1560	12	2050	12
4740		2100	14
1710	14	2140	16
1820	18	2150	18
1880	18	2200	20

CSP Example

There are 308 possible patterns for this small instance. The optimal answer requires 73 master rolls and has 0.401% waste.

		0) 1120 	22	2 4 0 	3360 	44	80	5600 m
2x	٠		1820	ľ	1820		1820		ľ
3x	•		1380		2150		1930		
12x	•		1380		2150		2050		
7x	•		1380	:	2100	ĺ	21	00	
12x	•		2200		1820		1560		
8x	•		2200		1520		1880		Ċ
1x	•		1520		1930		21	50	
16x	•		1520		1930		2140		
10x	•		1710	Ì	2000		1	880	
2x	•		1710		1710	Î	21	50	

What are the similarities and differences?

- Both have partitions they need to fit in a certain space (also see knapsack problem).
- The format of the items is different.
- This difference in items is enough to make a significant change in the implementation of most algorithms.

Traditional Methods used for BPP

Heuristics

- First Fit Decreasing
- Best Fit Decreasing
- Martello & Toth Reduction Procedure (MTP)

Evolutionary Approaches

Falkenauer's HGGA (Genetic Algorithm)

Traditional Methods used for CSP

Linear Programming

 Inspired by Column Generation Algorithms (developed by Gilmore and Goromy).

Sequential Heuristic Procedures

- Most construct one pattern at a time then implement it as many times as they can.
- This continues until all of the stock is cut.
- Evolutionary Approaches
 Liangs et Al.'s EP

Ant Colony Solution

- For these algorithms CSP will be treated in the same manner as BPP.
- The pheromone trail will refer to the favourability of having and object of size x to an object of size y.
- Only the best ant is allowed to place pheromone
- The heuristic they used was a modified FFD algorithm.

The fitness function used

- The fitness function determines how good the solution was and how much pheromone should be placed.
- Many solutions have a value of the optimal + 1 and so it does us no good to rate these with the same strength.

N k

• $F(s) = E_{i=0}(Fi/C) / N$

N = Total number of bins

C = Max contents of a bin

Ant Colony Parameters

- Optimal Parameters used:
 - $\beta = 2,5,10$
 - ho
 ho = 0.95
 - $\gamma = \text{ceiling}(500/n)$
 - □ k = 2
 - nants = n

ACO Results for BPP

Bins indicates how far the solution was above the optimum:

Prob	HG	HGGA		MTP		ACO	
Proble m Sets	Bins	Time	Bins	Time	Bins	Time	
u120	+2	381	+2	370	+2	376	
u250	+3	1337	+12	1516	+12	1414	
u500	0	1015	+44	1535	+42	1487	
u1000	0	7059	+70	9393	+70	9272	

ACO Results for CSP

Prob	EP				ACO	
	Avg	Best	Time	Avg	Best	Time
6a	80.8	80	347	79.0	79	166
7a	69.0	68	351	69.0	68	351
8a	148.1	147	713	146.0	145	714
9a	152.4	152	1679	151.0	151	1652
10a	220.3	219	4921	218.9	218	4925

Improving on ACO

- It has been shown that ACO algorithms can be improved by Local Search algorithms (LSA).
- The LSA used here destroyed the least n filled bins and tried to distribute these items over the bins remaining.
- Any free items are distributed into new bins.
- This continues until there is no improvement from the solution before the search to the solution after the search.

HACO Parameters

- Optimal Parameters used:
 - $\square \beta = 2$
 - $\square \ \rho = 0.75$
 - $\Box \ \gamma = 1$
 - □ k = 2
 - nants = 10
 - bins = 4

HACO results for BPP

Prob	HGGA		MTP		HACO	
	Bins	Time	Bins	Time	Bins	Time
u120	+2	381	+2	370	0	1
u250	+3	1337	+12	1516	+2	52
u500	0	1015	+44	1535	0	50
u1000	0	7059	+78	9393	0	147
u2000	-	-	-	-	0	531
u4000	-	-	-	-	0	7190
u8000	-	-	-	-	0	43746

HACO Results for CSP

Prob	EP				HACO	
	Avg	Best	Time	Avg	Best	Time
6a	81.8	80	347	79.0	79	1
7a	69.0	68	351	68.0	68	1
8a	148.1	147	713	143.0	143	5
9a	152.4	152	1679	149.0	149	10
10a	220.3	219	4921	215.0	215	249

Local Search Effect

- Is the Ant Colony adding anything?
- How will the local search algorithm perform on its own.
- We still had the original pheromone matrix entries but no pheromone update occurred.

Local Search Results for BPP

Prob	HACO		No Memory	
	bins	time	bins	time
u120	0	1	0	1
u250	+2	52	+6	166
u500	0	50	+5	432
u1000	0	147	+10	1850
u2000	0	531	+43	19286
u4000	0	7190	+118	131137

Local Search Results for CSP

Prob	HACO			N	o Memo	ry
	avg	best	time	avg	best	time
6a	79.0	79	1	79.0	79	24
7a	68.0	68	1	68.0	68	1
8a	143.0	143	5	144.0	144	1064
9a	149.0	149	10	150.0	150	997
10a	215.0	215	249	216.8	216	1707

Evaluation

- The hybrid ACO algorithm is comparable to the best known heuristic solutions.
- It is also much faster which allows us to implement problems of much bigger size.
- The Ant Colony adds a significant amount of improvement from the local search algorithm alone.