Network layer

1: Introduction to TCP/IP, IP design
2: IP addressing, Address resolution
3: IP Routing

Overview Slide

Key Issues:
- Addressing
- Routing
- Group Communication
- QoS
- Security

INTERNET

Autonomous System (AS)
Host
External Router

Internet Protocol

- Network layer protocol for routing data across Internet.
- Objective: Fulfil DoD requirements:
 - Accommodate use of hosts/routers built by different vendors.
 - Encompass a growing variety of network types.
 - Enable network to grow without interrupting service.
 - Support higher layer sessions/message oriented services.
- IP network layer architecture designed to meet these needs.
- IP network layer: Part of TCP/IP protocol suite.
TCP/IP: History of Internet

- An industry standard suite of protocols designed for WANs.
- **1960s**: Mainframes were standalone, computers from different manufacturers could not communicate.
- Advanced Research Project Agency (ARPA) in the Department of Defense (DoD) initiated a research project for connecting different computers together.
 - For Researchers.
- Result: ARPANET comes into existence in **1969**: A small network of connected computers.
 - Consists of 4 nodes and a specialized computer called Interface Message Processor (IMP).

History of Internet

- Birth of Internet: Vinton Cerf and Robert Kahn develop the Gateway.
- Some important milestones:
 - **1972**: Ad Hoc Telnet Specification (RFC 317)
 - **1973**: Kahn and Cerf’s landmark paper on TCP for end-to-end packet delivery.
 - ARPA hands ARPANET to Defence Communications Agency (DCA).
 - **1981**: TCP split into two protocols TCP and IP.
 - IP standard published in RFC 791.

1981: UNIX modified by Berkeley to include TCP/IP
- Unix: an open implementation.
- TCP/IP official protocol for ARPANET.
- ARPANET split into 2 networks
 - MILNET and ARPANET.
- **1984**: DNS introduced.
- **1990**: ARPANET replaced by NSFNET.
- NSFNET evolved into ANSNET (**1991**) and finally into Internet.

TCP/IP

- Standard, routable enterprise networking protocol.
- Technology for connecting dissimilar systems.
- Robust, scalable, cross-platform client-server framework.
- Method of gaining access to Internet.
Internet Standards Process

- Development associated with administration of internet.
- No organization owns Internet.
- Internet Society (ISOC).
- Internet Architecture Board (IAB).
 - Internet Engineering Task Force (IETF).
 - Internet Assigned Number Authority (IANA).
 - Internet Research Task Force (IRTF).

TCP/IP Protocol Stack

- Four layer conceptual model.
- Network Interface layer: (OSI physical, data link layer functionality).
 - Protocols defined by underlying networks.
- Internet layer: (OSI network layer)
 - Addressing, Routing
 - Houses other support protocols.

TCP/IP Protocol Stack

- Transport layer (OSI Transport-Session layer functionality)
 - Connection Oriented, reliable (TCP)
 - Connectionless, Unreliable (UDP)
- Application Layer (OSI Application-Presentation layer Functionality)
TCP/IP Versions

- Six versions of TCP/IP since its inception.
- Three later versions are:
 - Address length 32 bits.
 - Address space divided into classes.
 - Not sufficient to handle projected number of users.
 - Classes limit the available addresses.
 - Version 5: Based on OSI model
 - Never went beyond the proposal stage.
 - Also known as IPng (ng: New generation).
 - Uses 128 bit addresses.
 - Simplified/flexible packet format.
 - Support for security features.
 - Handles congestion and route discovery better than version 4.

Internet Architecture

- Internet consists of groups of networks and routers.
- Each group: Single administrative authority.
- Group: Autonomous system.
- Autonomous systems: Multiple independent networks.
 - Internal routes governed by local authority.
 - Routes consistent and viable.
- Reachability to Internet via advertisements.

Global consistency of routing information: Routing Arbiter (RA).
RA: Replicated authenticated database of reachability information.
Major ISPs interconnect at Network Access Point (NAP). (Core AS)
Each ISP represents one or more ASs.
NAP: Boundary between several ASs.
NAP includes Route Server (RS).

Internet Architecture
Internet Architecture

- RS: Supplies each ISP with reachability information.
- Each ISP designates one router to interact with Route server.

Internet Protocol

- Maps onto OSI Network layer protocol.
- Offers
 - Connectionless
 - Unreliable
 - Datagram delivery service.
- Two tools used by IP
 - Addressing (Subnet mask)
 - Routing (IP Routing table).

Primary IP Function

- Accept data from upper transport layer (TCP/UDP)
- Create a datagram
- Route datagram through internetwork.
- Deliver datagram to recipient transport layer and finally the intended application.
- Need to examine datagram before we discuss the above bullet points.

IP Datagram

- Packets in IP layer called datagrams.
- Maximum length of the datagram is 65,536 bytes.
- Packets:
 - Variable length
 - Header and data.

Reference: C4 (Comer) chapter 7
IP Datagram

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>IP version</td>
</tr>
<tr>
<td>IHL</td>
<td>.Length</td>
</tr>
<tr>
<td>DS service type</td>
<td></td>
</tr>
<tr>
<td>Total Length</td>
<td></td>
</tr>
<tr>
<td>Identification</td>
<td>Identification number</td>
</tr>
<tr>
<td>Flags</td>
<td>Flags</td>
</tr>
<tr>
<td>Fragment offset (13)</td>
<td>Fragment offset</td>
</tr>
<tr>
<td>Time to Live (TTL)</td>
<td>TTL</td>
</tr>
<tr>
<td>Protocol</td>
<td>Protocol</td>
</tr>
<tr>
<td>Header Checksum</td>
<td>Header Checksum</td>
</tr>
<tr>
<td>Source Address</td>
<td>Source Address</td>
</tr>
<tr>
<td>Destination Address</td>
<td>Destination Address</td>
</tr>
<tr>
<td>Options</td>
<td>Options</td>
</tr>
<tr>
<td>Data</td>
<td>Data</td>
</tr>
</tbody>
</table>

Figure 3: IP Options

![Option Format Diagram]

IP Datagram Options Fields

- Options Sub-Field: Used for network testing and debugging.
- Contains 4 fields:
 - A code that identifies option
 - Option length
 - Pointer: As an offset
 - Specific data

IP Datagram Options Fields

- **Code**: Contains three sub-fields:
 - Copy
 - Class
 - Number
- Copy: Controls presence of options in fragments.
- Class: Defines general purpose of option.
- Number: Defines the type of options.
IP Datagram (Options Field)

- Options defined by **Number** sub-field:
 - Record Route: used to record Internet routers that handle the datagram.
 - Strict Source Route: Source predetermines a route a datagram travels through Internet. Why??
 - Loose Source Route: Similar to strict route option but datagram can visit other routers as well.
 - Timestamp: Records time of datagram processing by a router.
 - O-Flow
 - Flags

Timestamp Option

<table>
<thead>
<tr>
<th>Code</th>
<th>Length</th>
<th>Pointer</th>
<th>O-Flow</th>
<th>Flags</th>
</tr>
</thead>
</table>

IP Datagram Options Fields

- **No Operation**: Padding between options
- **End of Option List**: Padding after last option

- **Length**: Defines total length of option.
- **Pointer**: An offset integer field containing the byte number of the first empty entry.
- **Value**: Contains the data that specific options require.
Encapsulation

- Technique used by layered protocols.
- Higher level protocol packet placed in data portion of lower level protocol packet.
- E.g. IP datagram within a Data Link frame.
 - This makes sense
 - IP resides above data link frame.
 - Sometimes IP packets are encapsulated within IP packets.
 - Can you think of a situation when this would happen and why?

Ideal Case: One entire datagram fits into the link layer frame.

This may not always be the case.

How to solve this Problem??

IP Fragmentation

- Datagram can travel through different networks.
 - Different networks have different physical layer specifications.
 - Token ring, Ethernet
 - Format, size of frame are governed by specifications.
 - Maximum Transfer Unit (MTU)
 - Largest size data unit that a network can handle.
 - Limitation imposed by DL layer.
 - Value of MTU varies.
 - Solution: Path MTU Discovery/IP Fragmentation

Path MTU Discovery

- Source specifies a “don’t fragment” option.
 - Initially a large sized packet is sent.
 - Maximum size of local MTU.
 - Maximum segment size negotiated by TCP Handshake.
 - If a network is encountered with a small MTU, ICMP error message generated to wards the source.
 - MTU size specified.
 - Source learns of the correct size.
IP Fragmentation

- Fragmentation: Division of packet into smaller units to accommodate a protocol’s MTU.
- Each fragment has its own header.
- Fragment can be further fragmented.
- Datagram fragmented at source or any other router in the path.
- Reassembly done only at destination.
 - Why??

Fragmentation Example

Reassembly at Destination

- Advantage
 - No need to assemble datagrams immediately after it passes a network with a small MTU.
- Disadvantages
 - Smaller fragments traverse networks with large MTU capability.
 - If fragments are lost, then datagram cannot be reassembled.
Fragmenting a Fragment

- Last fragment has MF=0; set MF=1 in all but last new fragments.
- First and middle fragments have MF=1; set MF=1 in all new fragments.
- Only 1 fragment has MF set to 0 regardless of the number of times fragmentation is performed.
- Offset always calculated relative to the original datagram.
- Receiver does not see multiple layers of fragment.

IP Design

- Simplified bare bones design of IP: Involves eight components
 - Header adding module
 - Processing Module
 - Routing Module
 - Fragmentation Module
 - Reassembly module
 - Routing table
 - MTU table
 - Reassembly table

IP Components

- Header Adding Module
 - Encapsulate data in IP datagrams.
 - Calculate Checksum, insert in checksum field.
 - Send data to corresponding input queue.
 - Return
IP Components

- Processing Module
 - Remove one datagram from input queue.
 - If destination local:
 - Send datagram to reassembly module.
 - Return.
 - If machine (A router)
 - Decrement TTL.
 - If TTL = 0
 - Discard datagram.
 - Send ICMP Error message.
 - Return
 - Send datagram to routing module.
 - Return

- Routing Module (Discussed in detail in routing subsection)
 - Receive IP packet from processing module.
 - If destination local, deliver packet using link layer.
 - If destination remote
 - Find IP address of next station towards destination.
 - Determine interface to deliver the packet.
 - Packet sent to fragmentation Module.

IP Components

- Fragmentation Module
 - Receive packet from Routing module.
 - Extract size of datagram.
 - If size >MTU (Of corresponding network)
 - If D bit set
 - Discard datagram, send ICMP error message.
 - Return.
 - Else
 - Calculate maximum size, divide datagram into fragments.
 - Add header, required options to each fragment.
 - Send datagram
 - Return.

- Reassembly Module.
 - Receive IP datagram from processing module.
 - Find datagram to which a fragment belongs.
 - Reassemble fragments of datagram (when all fragments arrive)
 - Time out expires, fragment missing: Discard datagram.
 - Return.
IP Components

- Queues:
 - Input
 - Output.
- Routing Table:
 - To determine next hop.
- MTU:
 - To find Max. Transfer Unit of interface.

Summary: IP Working

- IP on the router
 - Packet received at router.
 - IP decrements TTL by 1. If TTL = 0, discard packet.
 - IP may fragment packet.
 - If fragmented, add new header.
 - Fragment Id, Identification Flag, Fragment Offset.
 - IP calculates new checksum.
 - IP obtains destination hardware address of next router.
 - IP forwards packets.
 - Process repeated until packet reaches final destination.

Section 2

IP Addressing/Address Resolution

IP Addressing

- Internet: a combination of different physical networks.
- Packets travel different physical networks to destination.
- A global identification system necessary for hosts (and routers).
- Solution: Unique identifier is IP address in Internet.
- IP address:
 - Unique
 - Universal.
- Location not names.
Address Format

- 32 bits long
 - Four 8 bit fields, called octets.
- Each octet represented as decimal number in the range 0-255.
 - Octets separated by periods.
 - Dotted decimal notation.
- Address divided into two parts:
 - Netid: identifies systems located on same physical segment.
 - Hostid: Identifies individual entity (host, server, router) within the segment.

IP Address Format

<table>
<thead>
<tr>
<th>Network ID</th>
<th>Host ID</th>
</tr>
</thead>
</table>

Address Classes

- **Class**: Defines
 - bits for **netid** and **hostid**.
 - number of networks/number of hosts per network.
- Five classes defined
 - A, B, C, D, and E.
- We shall examine Class A, B and C.
- Class D is a Multicast Address.
- Class E is for Experimental use (Not defined).
Address Class Summary

<table>
<thead>
<tr>
<th>Class</th>
<th>Number of networks</th>
<th>Number of Hosts per Network</th>
<th>Range of Network Ids (First Octet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class A</td>
<td>126</td>
<td>16,777,214</td>
<td>1 - 126</td>
</tr>
<tr>
<td>Class B</td>
<td>16,384</td>
<td>65,534</td>
<td>128 - 191</td>
</tr>
<tr>
<td>Class C</td>
<td>2,097,152</td>
<td>254</td>
<td>192 - 223</td>
</tr>
</tbody>
</table>

Multihomed Devices

- Internet address defines node’s connection to its network.
- Multihomed: A device connected to more than one network.
 - Different address for each network.
 - Address can be of different classes.
 - Can you think of such a multihomed device??

Special Addresses

- Some parts of address space (A,B,C) are used for special addresses.
- Network address: A,B,C, address with hostid set to zero.
 - Defines the network itself.
- Direct Broadcast Address
 - True for A, B, C.
 - All hostid’s are set to 1.
 - Packets sent to all hosts in a specific network.

Special Addresses

- Limited Broadcast Address
 - True for A, B, C.
 - All 1s in the netid and host id.
 - Broadcast within the current network.
- This host on this network
 - True for A only.
 - All zeroes address.
- Specific host on this network
 - True for A only.
 - Netid of all zeroes.
Special Addresses

- Loopback Address.
 - (This is a class A address)
 - First byte set to 127.
 - To test IP software in a machine.
 - Packet returns to protocol software: Does not leave machine.

Unicast, Multicast and Broadcast

- Unicast: One to one communication.
 - Addresses belong to class A, B, or C.
- Multicast: One to many communication.
- Broadcast: One to all communication.
 - Internet limits broadcast to local level.
 - No global level broadcast. Why??
 - Example: Limited broadcast, direct broadcast.

Private Networks

- For organisations not requiring internet access.
- Organisation uses TCP/IP.
- Addressing scheme options:
 - Apply for unique address and NOT connect to Internet.
 - Use any class A, B, C without registering with authority.
 - Use reserved block of private addresses.

Applying for IP addresses

- Organization applies for netid. (A, B, C)
- Problem: Class A addresses depleted, very few B addresses left.
- Proof for procuring A.
- Organization assigns hostids from the given netid.
- Application for netid: Network Information Centers.
Assigning NetIDs and HostIDs

- Network Id (Netid): identifies host located on same physical segment.
- Unique id for each router interface
- Figure 5:
 - Networks 1 and 3 represent two routed networks.
 - Network 2: Wide area connection between two routers.
 - Network 2 requires network id so that interfaces between two routers can be assigned unique host ids.

Assigning Host IDs

- Host id: identifies a host in network.
 - Unique to network id.
 - Assigned to: hosts, interfaces to routers.
- Hostid of router interface: Default gateway for other hosts.
- Suggestions
 - No rules for assigning valid host ids.
 - Guidelines:
 - Assign host ids in groups based on host or server type.
 - Designate routers by their IP address.
Table 2: Valid Host IDs

<table>
<thead>
<tr>
<th>Address Class</th>
<th>Beginning Range</th>
<th>Ending range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class A</td>
<td>w.0.0.1</td>
<td>w.255.255.254</td>
</tr>
<tr>
<td>Class B</td>
<td>w.x.0.1</td>
<td>w.x.255.254</td>
</tr>
<tr>
<td>Class C</td>
<td>w.x.y.1</td>
<td>w.x.y.254</td>
</tr>
</tbody>
</table>

Subnet Mask

- What is a subnet mask?
 - Distinguishes network id from host id.
 - Specifies if destination host is local or remote.
- Default subnet mask
 - Used on networks not divided into subnets.
- What is a subnet??
 - All hosts on TCP/IP network need a subnet mask.
 - Its use depends on address class.
 - All bits corresponding to network id are set to 1.
 - All bits corresponding to host id are set to 0.

Subnetting

- Subnet
 - Division of a single class A, B, or C network into smaller pieces.
 - Each piece: A physical network in TCP/IP environment.
 - Uses IP address derived from single network ID.
 - Result: Single network (Single Netid) divided into smaller subnets.
 - Each subnet has different network ID.
 - Determining local vs remote hosts
 - ANDing: Internal process to determine whether a packet is local or remote.
 - Host's IP address and remote address ANDed with default subnet mask.
 - If both match, they belong to same network.
Need for Subnetting

- IP addresses rapidly getting saturated.
- Internet Routing tables beginning to grow.
- Local administrators must request another network number from Internet before a new network could be installed.

Subnetting:
- Organization gets one Net ID from InterNIC.
- One Net ID divided into multiple sub IDs.
- Each sub ID can represent a single physical network.

Subnetting

Benefits
- Mix different technologies.
- Overcome limitations of current technologies.
- Reduce network congestion.
- Subnetworks appear as a single network to the rest of the Internet.

Note: Subnetting defined in RFC 950.

Fig 7: Extended Network Prefix

| Network-Prefix | Subnet Number | Host-Number |

Subnet Design Considerations

Key Questions
- How many total subnets does the organization need today?
- How many total subnets will the organization need in the future?
- How many hosts are there on the organization’s largest subnet today?
- How many hosts will there be in the organization’s largest subnet in the future?
Special Subnet Addresses

- Initially, it was prohibited to use all-0s and all-1s subnet.
 - Reason: To eliminate situations that could potentially confuse a router.
- Today a router has functionality to support this feature.
- In our examples we will label these as special addresses.

Subnetting Procedure

- Defining subnet mask:
 - Determine number of physical segments required.
 - Convert this number **minus 1** to binary.
 - Count number of bits required to represent number of physical segments in binary.
 - Convert required number of bits to decimal format in high order.

Subnetting example

- Class B network:
 - Subnet mask is 255.255.0.0
 - E.g. 131.73.0.0/16
 - 6 subnets
 - 5 in Binary 101: 3 bits for subnet
 - Subnet mask bits 11100000
 - Decimal 128+64+32 = 224
 - Subnet mask is 255.255.224.0

Subnetting Procedure

- Defining subnet IDs.
 - List number of bits in high order used for subnet id.
 - Convert the bit with lowest value to decimal format.
 - Increment value.
 - Starting with zero, increment value for each bit combination until next value is 256.
 - Tip: If you know number of bits you need, you can raise 2 to the power of bit, then subtract 2 to determine possible bit combinations.
Subnet IDs Example

- Network 131.73.0.0/16
- 8 subnets: 131.73.0.0/19
 - mask 255.255.224.0
- First network ID (binary) 00100000
 - Decimal 32
- Network IDs:
 - 131.73.0.0/19 131.73.128.0/19
 - 131.73.32.0/19 131.73.160.0/19
 - 131.73.64.0/19 131.73.192.0/19
 - 131.73.96.0/19 131.73.224.0/19
 - (131.73.256.0 check)

Subnetting Procedure

- To determine number of hosts per subnet.
 - $N = \text{How many bits are available for the host ID?}$
 - Raise 2 to the power of N
 - Subtract 2 (all 0 host ID disallowed, all 1 disallowed).
- Example
 - Class B, 8 subnets, subnet mask 255.255.224.0
 - Binary 11111111.11111111.11100000.00000000
 - 13 bits for hostID $\rightarrow 2^{13} - 2 = 8192 - 2 = 8190$ hosts/subnet.

Variable Length Subnetting

- Divide a subnet further into smaller subnets.
 - Class B 131.73.0.0/16 8 subnets 131.73.x.0/19
 - 16 subnets of 131.73.160.0 as 131.73.y.0/23
- Subnetted network uses more than one subnet mask.
- Mask can be of variable length: Variable Length Subnet Mask (VLSM)
- VLSM Benefits:
 - Efficient use of Organization’s assigned IP address space.
 - Route aggregation.

Subnetting Strategy for VLSM

- 140.25.0.0/16
 - Level 1: 10 subnets 140.25.x.0/20
 - 0 1 2 3 4 5 6 7 8 9
 - Level 2: 140.25.64.0/20
 - 5 subnets 140.25.y.0/23
 - 0 1 2 3
 - Level 2: 140.25.128.0/20
 - 4 subnets 140.25.y.0/22
 - 0 1 2 3
 - Level 3: 140.25.132.0/22
 - 6 subnets 140.25.z.a/25
 - 0 1 2 3 4 5
VLSM Design Considerations

- How many total subnets does this level need today?
- How many total subnets will this level need in the future?
- How many hosts are there on this level’s largest subnet today?
- How many hosts will there be on this level’s largest subnet in the future?

CIDR

- Classless Inter-Domain Routing
- Assigns blocks of addresses to an organisation
 - E.g. 128.211.168.0/21 – part of old class B
 - E.g. 193.11.12.0/22 – block of 4 old class C
- Allows more sensible block sizes than classes
- Helps solve shortage of address space
 - More details later...

Address Resolution

- At network level: Host id is logical address: IP
 - Jurisdiction is universal.
- At physical level, hosts, routers recognized by physical address.
 - Jurisdiction is local.
 - MAC addresses.
- Two unique identifiers (logical and physical) essential. Why??
- Delivery of packet needs two levels of addressing.
- Mapping essential.
Address Resolution Protocol (ARP)

- Map IP (Logical) address to a hardware (Physical) address.
 - Called Address resolution
- ARP uses local broadcast to obtain a hardware address.
- Address mappings are stored in cache for future reference.
- Two cases of resolution:
 - Local
 - Remote

ARP: Resolving local IP address

- ARP request initiated
- Check IP address: Is it local/remote?
- If local:
 - Check ARP cache.
 - If no cached mapping found
 - Generate ARP request
 - Broadcast request to all hosts.
 - Concerned target host
 - Recognises IP address in request.
 - Generates ARP reply
 - Sender updates its cache.

ARP: Remote Addresses

- IP address is remote:
 - Determine IP address of default gateway
 - Find hardware address of gateway as normal (cache/ARP)
 - Send data packet to gateway
- Gateway:
 - Follows same address resolution procedure:
 - If remote, determine default gateway
 - If local, use cache/ARP to find hardware address

ARP Cache

- Maintains static/dynamic entries.
- Dynamic entries added/deleted automatically.
- Hardware broadcast address maintained as static entry.
- Each entry has potential lifetime: 10 minutes.
- Each entry, when added is timestamped.
- Default timeout: 2 minutes for unused entries, 10 minutes for used entries.
ARP Command

- Cache examined using `arp` command.
 - `-a`: displays all entries in ARP cache.
 - `-d`: deletes entry from arp cache.
 - `-s`: adds entry into arp cache
- Sender’s ARP data included in ARP request
- What does Reverse ARP do? (C4 chap 6)
- Gratuitous ARP: An ARP message broadcasting your IP address and your corresponding physical address.
 - Why is this used?
- What is Proxy ARP? (C4 p150)