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Abstract. Motivated by the model proposed by Gandhi et al. in [J. R. Soc. Interface 15, 20180508],
we propose a two-component reaction-advection-diffusion model for vegetation density and soil water
concentration on a curved terrain with elevation given by z = ζ(x, y) and metric tensor g(x, y). It accounts
for downhill flow of soil water, spatially dependent effective evaporation of soil water, and vertical rainfall
on a curved surface. In the singularly perturbed limit of slow vegetation diffusion 0 < ε2 � 1, we
use a hybrid asymptotic-numerical method to construct a localized quasi-equilibrium one-spot solution
corresponding to one spot of a spotted vegetation pattern. We derive an ODE for the slow motion of the
spot, finding that it is governed by three factors that arise at two different orders in ε. The leading order
O(ε2| log ε|) effects are that of soil water advection and effective evaporation rate, the first driving the spot
uphill while the second drive it toward regions of slow effective evaporation (e.g., valleys). Entering at
O(ε2) are effects due to surface curvature along with higher order contributions of advection and variable
evaporation rate. The combined effect of these three factors is encoded in the gradient of the regular part
of a surface Green’s function for a second order linear operator of the form ∆g + v(x, y) · ∇ + V (x, y),
for some velocity vector v(x, y) and effective potential V (x, y), where ∆g is the Laplace-Beltrami operator
corresponding to metric tensor g(x, y). We compute this quantity using the analytic-numerical framework
that we first introduced in [Nonlinearity, 33, pp. 643-674], and demonstrate that it is critical for the
accurate prediction of spot motion. All numerical results are confirmed by finite element solutions of the
full PDE system.

Keywords: singularly perturbed reaction-advection-diffusion system, localized vegetation patterns, sur-
face Green’s function, matched asymptotic analysis, Hadamard parametrix, microlocal analysis

1. Introduction

Reaction-diffusion systems of activator-inhibitor types have long been used to study pattern formation in
various biological, chemical, and ecological systems (see e.g., [35, 43]). With sufficiently small activator-
inhibitor diffusivity ratio, Turing showed that spatially homogeneous steady-state solutions can become
unstable to spatial perturbations when a bifurcation parameter is varied [51]. Near onset, the system
can support small-amplitude periodic spatial patterns characterized by a certain wavelength predicted
by linear stability analysis. A weakly nonlinear analysis, based on that developed for the one-component
system in [36], can be used to derive amplitude equations that describe slow time and long spatial scale
evolution of the small-amplitude patterns and identify secondary instabilities. This theory, however, has
limited application well above onset where patterns may exhibit large amplitudes with high degrees of
spatial localization and complex dynamics. Such patterns were first computed numerically by Pearson in
the two-dimensional Gray-Scott model [41], and observed experimentally in a chemical reaction by Lee
et al. [33]. See [56] for a brief survey of asymptotic methods for analyzing small- and large-amplitude
patterns.

Since the computations of [41], many works have sought to analytically describe the existence, stability,
and dynamics of such patterns [56]. The specific regime where the activator-inhibitor diffusivity ratio
is asymptotically small (O(ε2) � 1) has received particularly strong interest due to its amenability
to analysis through matched asymptotic methods. In this singularly perturbed regime, solutions exist
characterized by an activator component that is exponentially small everywhere in the domain except for
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localized regions of extent O(ε) in which it is large. Interaction between spots is mediated through the
inhibitor component, which varies on an O(1) spatial scale. The presence of large amplitudes far from
the uniform equilibrium, along with large gradients in the activator component, necessitate the use of
analytic techniques beyond those of the traditional linear and weakly nonlinear analyses used to treat
small amplitude patterns near the Turing threshold.

In one-dimension, the geometric singular perturbation theory approach of Doelman et al. [13, 16, 15, 12]
and the matched asymptotics/Green’s function approach of Ward et al. [21, 58, 27] were successfully
employed to obtain explicit results for the existence, stability and dynamics of localized spike solutions
in reaction diffusion systems such as the Schnakenberg, Gray-Scott, and Gierer-Meinhardt models. For
the two-dimensional Schnakenberg model on the unit disk, the hybrid asymptotic-numerical method
of Ward et al. [57] was used to derive a threshold for the spot self-replication instability, along with
a system of differential-algebraic equations describing the slow drift of spots. Using an adaptation of
the same techniques, the analogous problem inside the three-dimensional unit sphere was solved for the
Schnakenberg model [53].

While there have been many numerical studies of pattern formation on curved surfaces (see, e.g., [31,
40, 2, 7]), analytic results are much more sparse. For large amplitude localized spot patterns, [44, 49]
and [52] analyzed the stability and dynamics of spot patterns on the surface of the unit sphere and
torus, respectively. In the latter case, a new analytic-numerical framework based on techniques from
microlocal analysis was developed for the accurate computation of the regular part of Green’s functions
along with its gradient. This framework was combined with the hybrid asymptotic-numerical framework
to describe curvature-driven spot dynamics due to non-constant surface curvature. While this framework
was developed to compute Green’s functions for a general second order linear operator with spatially
dependent first order and potential terms on a general curved surface, [52] only considered a simple model
with no advection and a constant potential. In this work, we utilize the framework in its full generality.
To provide a physical context for scenarios in which this generality of framework is required, we will
demonstrate our methods on a model for patterned vegetation on a curved terrain, which, as proposed
in [18], naturally gives rise to spatially dependent advection and potential terms. We also demonstrate
how to incorporate these effects into the asymptotic analysis within the setting of a curved surface.
We note, however, that the methods we employ here may be applicable to analyses of localized spot
patterns in other reaction-advection-diffusion models on curved surfaces pertaining to other ecological
and/or biological systems. We refer the reader to [30, 29] and the references therein for a sampling of
such applications.

Beginning with the introduction of the original Klausmeier model [22], many works have studied the for-
mation of vegetation patterns in semi-arid environments in the context of pattern formation in reaction-
diffusion systems (see e.g., [46, 47, 42, 19, 38, 9, 45] and references therein). Most models consider the
simple case of the two-component system for soil water concentration and vegetation density. Different
models have been proposed for the modeling of the groundwater component. The original Klausmeier
model considered only flow of the water down a (flat) hill with an advection term, omitting diffusion
effects. In [54], linear and nonlinear diffusion of the groundwater were considered, leading to the ‘gen-
eralized Klausmeier-Gray-Scott model’, reducing to the classic Gray-Scott model [16] in the absence of
advection. In one-dimensional versions of such models, it is well-known that the effect of the constant
slope is to cause an uphill drift of the (one-dimensional) vegetation stripe patterns [6, 47]. In the two-
dimensional extension, it has recently been shown [48, 25, 3] that a sufficiently steep slope can stabilize
a stripe pattern and prevent a transition into a spotted pattern via a zigzag or breakup instability [23].

More detailed models have sought to account for the varying topography of the terrain on which the
vegetation patterns form (see [18] for an overview of different models). In [18], terrain curvature was
modeled using a non-constant advection term in the groundwater dynamics, along with a linear term
accounting for dispersion of water from ridges and accumulation in valleys. It was shown numerically
that the inclusion of the latter term produced the arcing of vegetation stripes observed in nature [34].
In [1], a detailed numerical study of the effect of terrain topography on the dynamics and distribution of
vegetation stripes was performed.
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Instabilities due to decreasing resources [20, 42] or landscape features [25] can cause vegetation stripe
patterns to break up into localized spot patterns. These spot patterns can subsequently undergo further
instabilities and dynamics, such as self-replication, annihilation, and drift [5]. While hybrid asymptotic-
numerical methods for spot patterns in reaction-diffusion systems have been developed for flat domains
[28] along with spherical [49, 44] and toroidal [52] surfaces, such analyses have not been performed with
general advection terms on general surfaces. Motivated by numerical studies of the effect of curvature
on vegetation patterns [18, 1], we seek to develop a framework to tackle the problem from a hybrid
analytic-numerical perspective.

Our goal here is to provide this new framework in the context of spotted vegetation patterns in a system
of reaction-advection-diffusion equations with spatially-dependent advection and potential terms. We
seek to analytically describe ways in which spot motion is impacted by the topography of the surface on
which it forms. While we perform the analysis in the context of a specific model for vegetation patterns,
we emphasize that our method is applicable to a general curved surface and to general advection and
potential terms. For example, [29] studies the influence of advection on pattern formation on the surface
of the sphere, while [30, 55, 2] considers the dynamics of patterns on an evolving surface. We remark that
the latter scenario of growing domains (in the asymptotic limit of slow growth) gives rise to advection
and linear growth and decay terms similar in form to those in the model that we consider below.

We now introduce a coordinate-invariant reaction-advection-diffusion system for vegetation density and
soil water on a terrain with elevation given by Z = ζ̃(X,Y ). The system involves only operators and
quantities that account for the intrinsic geometry of the surface on which it is posed, allowing it to be
written in a coordinate-free formulation.

1.1. A coordinate-invariant model. Inspired by [18] (cf. Table 1.1, along with Eqs. (1.1)-(1.2)),
which studies effects of topography on banded vegetation patterns, the model that we propose accounts
for the heterogeneous rates of water flow and dispersal due to the slope and curvature of the terrain. Our
modified system involves quantities intrinsic to the surface on which the system is posed, as well as the
natural definitions of operators with respect to the corresponding curved metric. Thus, for vegetation
density V and soil water concentration U on a terrain with elevation described by Z̃ = ζ̃(X,Y ), we
propose the coupled system of equations

Vt = D̃V ∆g̃V − m̃V + UV 2 , t > 0 , (X,Y ) ∈ [0, LX ]× [0, LY ] , (1.1a)

Ut = D̃U∆g̃U + divg̃(c̃U) +
a√
|g̃|
− p̃
√
|g̃|U − UV 2 , t > 0 , (X,Y ) ∈ [0, LX ]× [0, LY ] , (1.1b)

where m̃, D̃, and p̃ are constants. We make a few remarks regarding the form of and terms in (1.1).

We have included a second order term D̃∆g̃U to account for the diffusion of soil water, where ∆g̃ is the

Laplace-Beltrami operator with respect to the metric tensor g̃ specified by the graph Z̃ = ζ̃(X,Y ). The
transport term, c̃divg̃(c̃U), with constant c̃ and vector c̃ specified and discussed below and in Appendix

A, models transport of water in the direction opposite to the gradient of ζ̃. Importantly, c̃ will account
only for the component of the velocity of transport in the X-Y plane and is given by

c̃ = c̃(1 + ζ̃2
X + ζ̃2

Y )−1(ζ̃X , ζ̃Y ) , (1.1c)

in the coordinate given by (X,Y ) 7→ (X,Y, ζ̃(X,Y )); herein, we consider the surface from an intrinsic

perspective rather than as an object embedded in R3. The scaling by the surface element
√
|g̃| for the

rainfall term a/
√
|g̃| models vertical rainfall on a curved surface; indeed, the total amount of rainfall over

a fixed region in the X-Y plane must be independent of the features of the surface within that region.
Similarly, the rate of evaporation must be proportional to the exposed surface area; hence the prefactor√
|g̃| on the decay term in (1.1b). Here, |g̃| denotes the determinant of the metric tensor g̃.
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Under a rescaling of (1.1) (see Appendix A), on the surface z = ζ(θ1, θ2) we obtain the coupled system

vt = ε2∆gv − v +Auv2 , t > 0 , (θ1, θ2) ∈ [0, 2π]× [0, Lθ2 ] , (1.2a)

τut = D∆gu− c(θ) · ∇u+
1√
|g(θ)|

− V(θ)u− uv2 , t > 0 , (θ1, θ2) ∈ [0, 2π]× [0, Lθ2 ] , (1.2b)

c(θ) ≡ −c 1

|g(θ)|
∇ζ , V(θ) ≡

√
|g(θ)| − c 2√

|g(θ)|
H(θ) , ζ = ζ(θ) ; θ ≡

(
θ1

θ2

)
, (1.2c)

with positive O(1) constants c and D, while for the spot regime, we require A ∼ O(ε| log ε|) (see [8]).
For (1.2), we impose periodic conditions in θ1 and θ2. As such, we study a patch of the terrain that is
assumed to be periodically extended; i.e., ζ(θ1, θ2) is 2π-periodic in θ1 and Lθ2-periodic in θ2. In (1.2b)
and(1.2c), the gradient ∇ and dot product · operators are both defined with respect to the flat (identity)

metric,
√
|g(θ)| is the surface element of the graph ζ(θ), while H(θ) denotes the mean curvature of the

surface M at the point θ, and is given by

H(θ) =
1

2
√
|g|
gijζθiθj ; |g| = 1 + ζ2

θ1 + ζ2
θ2 , (1.2d)

where we have used the Einstein summation notation. The components gij of the metric tensor g are
given below in terms of ζ(θ) and its partial derivatives. In (1.2d), gij denotes the i-j-th component of
the inverse of the metric tensor g, while fθi denotes the partial derivative of f(θ) with respect to θj .
With this scaling, (1.2) reduces to the rescaled Gray-Scott model considered in [8] when the surface is
flat (e.g., ζ ≡ 0).

We make several remarks regarding (1.2), which will be the form of the model that we consider in §2
- §4. First, we note that the divergence term in (1.1b) integrates to zero over the periodic domain. In
(1.2b) and (1.2c), we have written the divergence term as the sum of a transport term c · ∇u along with

a growth/decay term 2c|g|−1/2H(θ)u. The latter term may be interpreted (see [18]) as the accumulation
of water on “valley lines” and the diversion of water away from “ridge lines,” and together with the
evaporation term

√
|g(θ)|, make up the spatially variable potential −V(θ). The former term models

the transport of water in the direction of steepest decrease of ζ. Compared to [18], it contains two

extra factors of |g|−1/2; in Appendix A, we discuss this origin of this term from both a physical and

mathematical perspective. We also emphasize that the 1/
√
|g| term does not correspond to spatially-

dependent precipitation, but rather to the uniform vertical rainfall reaching the surface at non-uniform
concentrations due to the latter’s curved topography.

For completeness, we now express the PDE system of (1.1) in a geometric and coordinate-free form, which
will demonstrate that (1.1) is coordinate-invariant. We remark that coordinate-invariance may apply to
any hypersurface S, which need not be periodic as the surface M that we consider here. Furthermore,
all of the analytic and numerical methods that we employ in §2 are valid for any boundary condition on
S. In Appendix A, we discuss in detail the equivalence between (1.1) and (1.3).

Endow R3 with the usual Euclidean metric 〈·, ·〉e and let E be a parallel (i.e. constant) unit vector field
with respect to the Levi-Civita connection. This vector field represents gravity. LetM be a hyper-surface
which is transversal to E. The system (1.1) can be written as

Vt = ∆g̃V − m̃V + UV 2 , (1.3a)

Ut = D̃∆g̃U + divg̃(c̃U) + a|〈E, ν̃〉e| − p̃|〈E, ν̃〉e|−1U − UV 2 , (1.3b)
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where c̃ ∈ TM is the unique vector satisfying DιMc̃ = E−〈E, ν̃〉eν̃, the projection of E onto TM⊂ TR3.
That is, c̃ is the tangential component of E to M with respect to the Euclidean metric. Here, ν̃ is the
unit normal vector to M in the E direction, and ιM :M ↪→ R3 denotes the inclusion map, and DιM is
the differential map/pushforward mapping TM to TR3.

Finally, we remark on the coordinate invariance of (1.2). We observe that divg(cu) = udivgc + du(c).
Since c = E − 〈ν̃, E〉eν̃, we have that divg(cu) = udivg (c) + du(E) owing to the fact that ν̃ vanishes on
T ∗M by definition, where T ∗M is the cotangent bundle ofM. The quantity divgc can be calculated by
using the fact that in the coordinate system given by (X,Y, ζ(X,Y )), c is given by (1.2c). We compute

divgc = −c
ζθ1θ1(1 + ζ2

θ2
) + ζθ2θ2(1 + ζ2

θ1
)− 2ζθ1ζθ2ζθ1θ2

(1 + ζ2
θ1

+ ζ2
θ2

)2
= −2c|〈ν,E〉e|H ,

where H is the mean curvature given in (1.2d). This leads to the following coordinate-free formulation
of (1.2)

vt = ε2∆gv − v +Auv2 , t > 0 , (1.4a)

τut = D∆gu+ cdu(E) + |〈ν,E〉e|+
(
2c|〈ν,E〉e|H − |〈ν,E〉e|−1

)
u− uv2 , t > 0 , (1.4b)

demonstrating that (1.2) is indeed coordinate-invariant. We emphasize that we make no claim that our
model is in any way more accurate than that introduced in [18], on which our model is based. We only
submit that when considering diffusive and advective transport on a curved surfaceM, our model in (1.2),
and its coordinate-free formulation (1.4), takes account only of the intrinsic geometry ofM (modulo the
direction transverse to the surface required for rainfall), which may make it a more natural formulation
from a geometric perspective. Our primary purpose here, however, remains to demonstrate a method
for analyzing localized spot solutions to a singularly perturbed reaction-advection-diffusion system on a
curved surface.

In the 0 < ε2 � 1 limit of slow activator diffusivity, we use the hybrid asymptotic-numerical method
pioneered by Ward et al. (see e.g, [57, 28, 24]) to construct a quasi-equilibrium localized one-spot solution
to (1.2) on a curved surface M. Furthermore, we analyze the impact of the surface curvature and slope
on the drift dynamics of the spots; in particular, we show that the advection due to the slope of the
surface M along with the spatially variable potential and source term both have an O(ε2| log ε|) effect
on motion, while the curvature of M has an O(ε2) effect. These effects differ by a | log ε| factor and are
thus comparable when ε is only moderately small; we show that accurate computation of all terms is
required to predict spot motion.

The outline of the paper is as follows. In §2, begin with geometric preliminaries before constructing a one-
spot quasi-equilibrium solution to (1.2). We then we derive a system of differential-algebraic equations
(DAE) that couples the slow motion of the spot with its amplitude as it moves over the surface of varying
potential and source. In contrast to previous works on spot dynamics, our analysis accounts for a general
advection, potential terms, and source terms in the global variable. We find that the motion is a function
of three effects: surface curvature, advection, and the spatially varying potential and source term. While
the latter two effects are larger by a factor of | log ε| � 1, we show that all three effects must be accounted
for in order to accurately predict spot motion. To do so, we will require an accurate computation of the
gradient of the regular part R of a certain Green’s function, defined in (2.3b). To simplify analysis, we
will compute this quantity in the normal coordinates centered about the center of the spot. In §3, we
will isolate these effects to understand how they each affect spot motion, and compare the asymptotic
predictions of spot motion to full numerical solutions of the PDE system (1.2b). In §4, we demonstrate
the dynamic triggering of the spot splitting instability (see [8] and [28]) due to slow drift of the spot,
and numerically demonstrate the transition from spots patterns to stripe-like structures as the feed-rate
is slowly increased. In §5, we summarize our findings and discuss some open problems.
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2. Quasi-equilibrium solution and spot dynamics

2.1. Geometric preliminaries. To construct a quasi-equilibrium one-spot solution and determine its
slow dynamics, we will require the accurate computation of a certain Green’s function. To this end, we
will apply the analytic-numerical method first developed in [52] for the purpose of analyzing spot patterns
on the surface of a ring torus. In [52], the method was used to compute properties of the regular part of
two Green’s functions: the source-neutral Green’s function GN satisfying

∆gGN =
1

|Ω|
− δ(θ;θ0) ;

∫
Ω
GN dθ = 0 , (2.1a)

GN (θ;θ0) ∼ − 1

2π
log dg(θ,θ0) +RN (θ;θ0) as θ → θ0 , (2.1b)

and the Helmholtz Green’s function GH satisfying

∆gGH − kGH = −δ(θ;θ0) , (2.2a)

GH(θ;θ0) ∼ − 1

2π
log dg(θ,θ0) +RH(θ;θ0) as θ → θ0 , (2.2b)

for some constant k and periodic conditions in θ. In (2.1) and (2.2), as well as below, we denote as
dg(θ,θ0) the geodesic distance between θ and θ0 with respect to the metric tensor g. We also recall the
definition of θ = (θ1, θ2)T ∈ Ω in (1.2c) as the vector of the two variables parametrizing the surface. In
order to analyze the more general reaction-advection-diffusion system of (1.2), however, we must consider
the more involved case of the Green’s function G satisfying

−∆gG+
1

D
c(θ) · ∇G+

1

D
V(θ)G = δ(θ;θ0) , (2.3a)

G(θ;θ0) ∼ − 1

2π
log dg(θ,θ0)+γ ·(θ−θ0) log dg(θ,θ0)+R(θ0;θ0)+(θ−θ0) ·∇ R(θ;θ0)|θ0

, as θ → θ0 ,

(2.3b)

with periodicity conditions in θ1 and θ2. The dot product involving the γ term in (2.3b), which appears
due to the presence of the advection term of (2.3a), is with respect to the flat metric. In [59], an
expression for γ was derived for the special case of rotational advection in the unit disk. Here, we show
in this more general case that the term arises naturally via the construction of a parametrix near θ0.
From a computational perspective, its presence increases the difficulty of numerically isolating the regular
part R(θ;θ0) and subsequently computing ∇R(θ;θ0)|θ=θ0 , the value of the gradient of R at θ0.

The computation of ∇R(θ;θ0)|θ=θ0 , along with the asymptotic analysis of slow spot dynamics in §2.2,
will be performed in Riemannian normal coordinates, which are obtained via an exponential map defined
below. We define here some quantities required to compute map; for more details, see [32, 11]. The
metric tensor gij(θ) is specified by the graph z = ζ(θ). That is, let J(θ) be the Jacobian matrix given
by

J(θ) =

 1 0
0 1
ζθ1 ζθ2

 .

The (positive-definite) metric tensor (gij(θ)) is then given by (gij(θ)) = JTJ as

(gij) =

(
Ẽ F̃

F̃ G̃

)
, Ẽ ≡ 1 + ζ2

θ1 , F̃ ≡ ζθ1ζθ2 , G̃ ≡ 1 + ζ2
θ2 ; |g| = 1 + ζ2

θ1 + ζ2
θ2 , (2.4)
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where ·T denotes the transpose. The eigenvalues λ1 and λ2 and corresponding normalized eigenvectors
v1 and v2 of the matrix g in (2.4) are given by

λ1 = 1 + ζ2
θ1 + ζ2

θ2 , v1 =
1√

ζ2
θ1

+ ζ2
θ2

(
ζθ1
ζθ2

)
; λ2 = 1 , v2 =

1√
ζ2
θ1

+ ζ2
θ2

(
−ζθ2
ζθ1

)
. (2.5)

With (gij) in (2.5) symmetric, we define the orthogonal matrix P and diagonal matrix Λ

P (θ) = (v1 v2) , Λ(θ) =

(
λ1 0
0 λ2

)
, (2.6)

so that (gij) = PΛP T . We thus have that, for some x ∈ R2, xT (gij)x = xT (PΛ1/2)(PΛ1/2)Tx. That is,

under the transformation x = PΛ−1/2w, the metric tensor (gij) transforms to the identity matrix at θ.

The Christoffel symbols, which we require for an exponential map to be discussed below, are given in
terms of Ẽ, F̃ , and G̃ by

αΓ1
11 = G̃Ẽθ1 − 2F̃ F̃θ1 + F̃ Ẽθ2 , αΓ1

12 = G̃Ẽθ2 − F̃ G̃θ1 , αΓ1
22 = 2G̃F̃θ2 − G̃G̃θ1 − F̃ G̃θ2

αΓ2
11 = 2ẼF̃θ1 − ẼẼθ2 − F̃ Ẽθ1 , αΓ2

12 = ẼG̃θ1 − F̃ Ẽθ2 , αΓ2
22 = ẼG̃θ2 − 2F̃ F̃θ2 + F̃ G̃θ1 ,

(2.7)

where α ≡ 2(ẼG̃− F̃ 2) and Γk12 = Γk21. Also needed for the exponential map is the second fundamental
form for the surface z = ζ(θ), the matrix for which is given by

IIp =

(
L̃ M̃

M̃ Ñ

)
, L̃ =

ζθ1θ1√
|g|

, M̃ =
ζθ1θ2√
|g|

, Ñ =
ζθ2θ2√
|g|

. (2.8)

The gradient and Laplace-Beltrami operators with respect to the metric g are

(∇g)i ≡ gij∂θj , ∆g ≡
1√
|g|
∂θi

(√
|g|gij∂θj

)
, (2.9)

where gij is the i-jth component of the inverse of the matrix g(θ), and is given by(
gij
)

=
1

|g|

(
G̃ −F̃
−F̃ Ẽ

)
. (2.10)

Lastly, the surface element on z = ζ(θ) is given by
√
|g|, and so the delta source on the right-hand side

of (2.3) is given explicitly by

δ(θ;θ0) =
1√
|g|
δ(θ1 − θ0

1)δ(θ2 − θ0
2) , θ0 ≡

(
θ0

1

θ0
2

)
, (2.11)

where δ(θj − θ0
j ) is the one-dimensional Dirac delta function centered at θ0

j .

The matched asymptotic analysis, whereby the inner solutions near the O(ε) region of the spot are
matched to a global outer solution, will proceed as in [49, 44] for the surface of the unit sphere and [52]
for the surface of the ring torus. In these works, the inner coordinates near the point r ∈ R3 on the
surface were of the form r(θ) = r(θ0) + εP (θ0)s, where r specifies the embedding of the surface in R3,
and s ∈ R2. The matrix P (θ0) is a 3 × 2 matrix chosen so that, in the local tangent plane coordinates
s = (s1, s2) centered at θ0, the Laplace-Beltrami operator ∆g of (2.9) takes the form
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∆g ∼
1

ε2

(
∂2
s1 + ∂2

s2

)
+O(ε−1) . (2.12)

The O(ε−1) correction term in (2.12) for the surface curvature at r(θ0) gives rise to a nonhomogeneous
term in the expansion for which an additional analysis is required in order to resolve the spot dynamics.

In this paper, we will instead exploit the properties of Riemannian normal coordinates near θ0 in order to
obtain an asymptotic for ∆g for which the correction term is O(1) instead of O(ε−1) (see Appendix A of
[50]). That is, let x ≡ (x1, x2)T ∈ R2. Then the exponential map is given by θθ0(x) = γ̃PΛ−1/2x(1), where

γ̃PΛ−1/2x is the unique geodesic satisfying the initial conditions γ̃PΛ−1/2x(0) = θ0 and ˙̃γPΛ−1/2x(0) =

PΛ−1/2x. Here, P = P (θ0) and Λ = Λ(θ0) are matrices defined in (2.6). For γ̃PΛ−1/2x(t) ≡ (γ̃1(t), γ̃2(t)),
the geodesic equation is given by

˙̃γk(t) = ξk(t) , ξ̇k(t) = −ξi(t)ξj(t)Γkij(γ̃PΛ−1/2x(t)) ; k = 1, 2 , (2.13a)

(γ̃1(0), γ̃2(0)) = θ0 , (ξ1(0), ξ2(0)) = P (θ0)Λ−1/2(θ0)x , (2.13b)

θ(x) = γ̃PΛ−1/2x(1) , (2.13c)

where the Christoffel symbols Γkij are given in (2.7). In (2.13), x are the Riemannian normal coordinates,
while θ are the original coordinates parametrizing the surface.The lower bound for the radius of injectivity
on M, denoted inj(M), is given in terms of σ, the largest eigenvalue of the matrix IIp of (2.8), by

inj(M) =
π

σ
. (2.14)

Under the transformation (2.13c), the Laplace-Beltrami operator ∆g in θ coordinates with metric tensor
g transforms to ∆ĝ in x-coordinates. The metric tensor ĝ(x) is given by

ĝ(x) =

(
Dθ

Dx

)T
g(θ(x))

Dθ

Dx
;

Dθ

Dx
≡
(
∂x1θ ∂x2θ

)
. (2.15)

As shown in [52], the metric tensor ĝ(x) satisfies the property ĝ(x) = ĝ(0) + O(|x|2). With θ(0) = θ0

and (Dθ/Dx)|x=0 = P (θ0)Λ−1/2(θ0), we have that ĝ(0) = I2, where I2 is the 2 × 2 identity matrix.
With θ(x) = γPΛ−1/2x(1), the Laplace-Beltrami operator ∆g in θ coordinates transforms to ∆ĝ, which
to leading order near x = 0 is the Laplace operator on the flat metric. That is,

∆ĝ ∼ ∆x +O(|x|)∂xi +O(|x|2)∂2
xi , (2.16)

where ∆x denotes the (flat) Laplacian in the x coordinates. The inner coordinates y describing the
solution in the O(ε) region of the spot are then taken to be

y ≡
(
y1

y2

)
=

1

ε
x ; x ≡

(
x1

x2

)
. (2.17)

We thereby obtain that the Laplace-Beltrami operator ∆g in (2.9) has the expansion near θ0 given by

∆g ∼
1

ε2
∆y ≡

1

ε2

(
∂2
y1 + ∂2

y2

)
+O(1) , (2.18)
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as desired. In particular, the correction term of (2.18) is O(1) instead of O(ε−1) as in (2.12). In this
way, for points near θ0, we have the following relationships between dg(θ(x),θ0), |x|, and |y|:

dg(θ(x),θ0) = |x| = ε|y| , (2.19)

where | · | denotes the Euclidean norm, and dg(θ(x),θ0) the geodesic distance between θ and θ0. While
most of the analysis will be performed in the normal coordinates, our results for spot motion will be
given in terms of the original θ-coordinates.

We make a final remark that, while the framework that we present below can be applied to a general
surface z = ζ(θ), for concreteness, we will consider the surface

ζ(θ) = k cos(θ1) cos(2θ2) ; θ1 ∈ [0, 2π) , θ2 ∈ [0, π) , (2.20)

(i.e., Lθ1 = 2π, Lθ2 = π in (1.2)) for some constant k ≥ 0 that is O(1) with respect to ε; the analysis
of §2.2 is valid for such surfaces whose curvature is independent of ε. Note that this surface satisfies
periodicity conditions in both θ1 and θ2. For this surface, in Fig. 1, we plot the diagonal of the regular
part R(θ0;θ0), along with two components of its gradient, ∂θ1R(θ;θ0)|θ=θ0 , and ∂θ2R(θ;θ0)|θ=θ0 on the
surface given by (2.20). The colors correspond to the value of the quantity being plotted, not the height
of the surface itself.

(a) R(θ0;θ0) (b) ∂θ1R(θ;θ0)|θ=θ0 (c) ∂θ2R(θ;θ0)|θ=θ0

Figure 1. Plots on the surface given by (2.20) of (a) the regular part R(θ0;θ0) along
with the two components of ∇R|θ=θ0 in (b),(c). The parameters are D = 0.7, k = 0.6,
c = 0.3.

2.2. Asymptotic analysis of quasi-equilibrium one-spot solution. We now proceed with an as-
ymptotic construction of a quasi-equilibrium solution to (1.2) consisting of one spot localized near an

O(ε) region around θ0(ε2t). We then derive an expression for θ̇0, the slow evolution of the center of the
spot. To begin, near θ0, we let

v(θ, t) =

√
D

ε
V (y(θ), t) , u(θ, t) =

ε

A
√
D
U(y(θ), t) ; y(θ) ≡ 1

ε
x(θ) , (2.21)

where x(θ) is the inverse of the Riemannian coordinate system centered at θ0 defined in (2.13). Note
that the θ0 is a parameter in the map, and thus x is a function of θ0; in particular, x(θ0) = 0. In the y
coordinates, retaining up to O(ε) terms, and assuming that τUt � O(ε−1), the system (1.2) transforms
to

Vt = ∆yV − V + UV 2 (2.22a)
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0 = ∆yU − UV 2 − εb · ∇yU +
εA√
D

1√
|g(θ0)|

, (2.22b)

We show below that, with u ∼ O(1) in the outer region, A ∼ O(ε| log ε|) and thus εA � ε so that the
last term in (2.22b) does not enter at O(ε). The vector b is defined in terms of the original advection
term c by

b(y) =
1

D

(
Dθ

Dx

)−1

c(θ(εy)) , (2.23)

where c is defined in (1.2).

In (2.22), we expand U and V as

U ∼ U0(ρ) + εU1(y) , V ∼ V0(ρ) + εV1(y) ; y = ρ

(
cosω
sinω

)
, 0 < ρ <∞ , 0 ≤ ω < 2π . (2.24)

In (2.24), we have assumed that the leading order spot profile is radially symmetric about its center.
Substituting (2.24) into (2.22), we obtain the leading order core problem [28, 8],

∆ρV0 − V0 + U0V
2

0 = 0 , ∆ρU0 − U0V
2

0 = 0 , (2.25a)

V0 → 0 , U0 → S log ρ+ χ(S) , as ρ→∞ , (2.25b)

where we have defined the operator ∆ρ ≡ ∂ρρ + ρ−1∂ρ. Applying the divergence theorem to the second
equation of (2.25a) along with the far-field conditions for U0 in (2.25b), we compute that the spot strength
S satisfies

S =

∫ ∞
0

U0V
2

0 ρdρ , (2.25c)

In (2.25b), χ(S) is a nonlinear function of S that must be computed numerically. In Fig. 2, we show some
typical profiles for U0 and V0, along with the relationship χ(S). We note the result from [8] that a single
spot is unstable to a self-replication instability when its strength S exceeds Σ2 ≈ 4.31. This instability
is a local instability the analysis of which, to leading order, does not depend on the local curvature or
variable potential. In §4, we demonstrate that a slow drift can trigger a self-replication instability.

0 5 10 15 20 25 30
0

5
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15

(a) U0(ρ)

0 5 10 15 20 25 30
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(b) V0(ρ)
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(c) χ(S)

Figure 2. (a) and (b) Numerical solutions of (2.25) for S ≈ 3.92 (solid) and S ≈ 5.07
(dashed). As found in [28, 8], the spot profile Vj0 develops a volcano shape when S & 4.78.
(c) The relationship χ(S), defined in (2.25b).
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To compute the O(ε) terms of (2.22), we first compute ∂tV0(ρ). Note that ρ = |y| in (2.24), and y depends
on θ0(ε2t) through y = ε−1x, where θ(x) is given by the Riemannian normal coordinates (2.13c). Thus,
we have that

∂tV0 = V ′0(ρ)ρt , ρt = εeω ·
dx

dσ
; eω ≡

(
cosω
sinω

)
, σ ≡ ε2t , (2.26)

where ω is defined in (2.24). We thus have, from (2.26) that

∂tV0 = εV ′0(ρ)eω · ẋ , ẋ ≡ dx

dσ
. (2.27)

Recalling that A� O(1), we thus have for the O(ε) terms of (2.22)

∆yW +MW = d ; W ≡
(
V1

U1

)
, M ≡

(
−1 + 2U0V0 V 2

0

−2U0V0 −V 2
0

)
, (2.28a)

with d and the far-field conditions conditions given by

d ≡
(

V ′0eω · ẋ
U ′0b(0) · eω

)
, W ∼

(
0

−f · y + h · y log |y|

)
as |y| → ∞ . (2.28b)

Before computing f in (2.28b), we first remark that, since U ′0 ∼ S/ρ, the nonhomogeneous term d
generates the h · y log |y| term in the far-field that will be matched by the term proportional to γ in
(2.3b). We will determine h in terms of γ explicitly below, where we construct the parametrix solution
for the Green’s function G near θ0.

The expression for f will be obtained from matching of the local behavior of the outer solution of u in
(1.2b) to the far-field behavior of U in (2.22b). We proceed as in, e.g., [28, 8], and represent, in the
sense of distributions, the uv2 term in (1.2b) as a weighted delta function located at the spot location
θ0. Using (2.21) and (2.25c), we obtain

uv2 ∼ ε
√
D

A
2πSδ(θ;θ0) . (2.29)

With (2.29) in (1.2b), we obtain the leading order outer equation for u,

D∆gu− c(θ) · ∇u+
1√
|g|
− V(θ)u = ε

√
D

A
2πSδ(θ;θ0) , (2.30a)

with required local behavior obtained from (2.25b),

u ∼ ε

A
√
D

[
S

ν
+ S log |x|+ χ(S) + · · ·

]
as θ → θ0 ; ν ≡ − 1

log ε
. (2.30b)

In (2.30b), we have recalled the fact that the exponential map of (2.13c) was constructed so that the
Euclidean norm, |x|, is equal to the geodesic distance dg(θ,θ0) between θ and θ0. With u ∼ O(1) in the
outer region, we require the leading order term of (2.30b) to be O(1), leading to the scaling adopted in
[8],
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A =
Aε
ν
√
D
, A ∼ O(1) . (2.31)

This scaling leads to the leading order solution for u,

u ∼ uc(θ)− 2πνS

A
G(θ;θ0) , (2.32a)

where uc(θ) is the solution satisfying the nonhomogeneous elliptic equation

−∆guc +
1

D
c(θ) · ∇uc +

1

D
V(θ)uc =

1

D
√
|g|

, (2.32b)

with periodic conditions in θ. Note that, in the special case where ζ(θ) is a constant (i.e., the surface
was flat), we would have V ≡ 1 and |g| ≡ 1 for all θ, leading to uc ≡ 1. In (2.32a), G(θ;θ0) is the Green’s
function satisfying (2.3).

In order to match the outer solution u(θ) in (2.32a) to the inner solution constructed in the normal
coordinates x, we must write the local behavior of u in terms of x. We thus define

ue(x) = u(θ(x)) , uce(x) = uc(θ(x)) , Re(x;0) = R(θ(x);θ0) . (2.33)

In (2.33) and below, all functions with the subscript ·e denote quantities that are in terms of the Rie-
mannian normal coordinates x. Using the local behavior of G in (2.3b) along with (2.32a), we obtain the
local behavior of the outer solution ue(x) in terms of the Riemannian normal coordinates

ue(x) ∼ νS

A
log |x|+ uce(0)− 2πνS

A
Re(0;0)− 2πνS

A
γe · x log |x|+ β · x , (2.34a)

β ≡ ∇x uce(x)|x=0 −
2πνS

A
∇x Re(x;0)|x=0 , (2.34b)

for some γe to be computed below. Comparing the leading order terms in (2.34a) and (2.30b), and noting
that the log |x| terms match by construction, we obtain the matching condition

Auce(0) = S [1 + 2πνRe(0;0)] + νχ(S) , (2.35a)

or equivalently,

Auc(θ0) = S [1 + 2πνR(θ0;θ0)] + νχ(S) , (2.35b)

which is a nonlinear equation for the spot strength S.

To determine f in (2.28b), we first begin by computing γe in (2.34a). To do so, we recall from [52]
that the two most singular terms in the expansion of G around θ0 are contained in leading term of the
parametrix
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Q0(x) ≡ α0(x)F0(|x|) . (2.36a)

In (2.36a), x is the normal coordinate, F0(r) = (2π)−1K0(r) is the zeroth order modified Bessel function
of the second kind, and α0(x) the smooth function on R2 given explicitly by (cf. (2.19) of [52]),

α0(x) = |ĝ(x)|−1/4|ĝ(0)|1/4exp

(∫ 1

0

xj ĝjk(0)bk(tx)

2
dt

)
; x ≡

(
x1

x2

)
, b(x) ≡

(
b1(x)
b2(x)

)
. (2.36b)

Recalling that |ĝ(x)| ∼ 1 +O(|x|2), and with

F0(x) ∼ −(2π)−1 log |x| , α0(x) ∼ 1 + x · ∇x α0(x)|x=0 , (2.37)

a simple calculation yields that

γe = − 1

4π
b(0) . (2.38)

Having obtained γe explicitly, we now proceed with the higher order matching of the inner and outer
solutions of u by substituting x = εy into (2.34a) to obtain

ue(εx) ∼ νS

A
log |εx|+ uce(0)− 2πνS

A
Re(0;0)− ε2πνS

A
γe · y log |y|+ εα · y , (2.39a)

where α is given in terms of β in (2.34b) and γe in (2.38) by

α ≡ 2πSγe
A

+ β . (2.39b)

With the scaling of (2.21), we compare far-field behavior of U1 defined in (2.28b) to the local behavior
of ue(x) in (2.39a) to determine f and h of (2.28b),

f = −A
ν
α , h =

1

2
Sb(0) . (2.40)

We remark that there are three contributions to f in (2.40). The first contribution is from the term
proportional to γe, which arises due to the presence of the advection term c(θ) in (1.2b). The second
contribution is from the ∇xuce term from β in (2.34b), which is due to the spatially variable potential
along with the (effective) spatially variable background feed. Both of these terms are O(ν−1) � O(1).
The third and final contribution is from the ∇xRe term in (2.34b). This is an O(1) term, and is where
the effect of surface curvature enters the dynamics. This term also encodes higher order effects of the
aforementioned advection and variable potential.

Before relating ẋ to f , we first note that the expression for h in (2.40) matches exactly the far-field
behavior of U1 generated by the nonhomogeneous term d in (2.28). To see this, first observe that V0 → 0

exponentially and U ′0 → S/ρ as |y| → ∞. Thus, in the far-field, U1 ∼ Uf1 , with Uf1 satisfying
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∆yU
f
1 = Sb(0) · eω

1

ρ
, (2.41)

the solution of which is given by

Uf1 = Sb(0) · eω
1

4
ρ [2 log ρ− 1] . (2.42)

Recalling that y = ρeω, where eω is the unit vector given in (2.26), we find that the coefficient of y log |y|
is Sb(0)/2, indeed agreeing with h given in (2.40).

To determine ẋ, we proceed as in, e.g., [59, 28], and apply a solvability condition on the nonhomogeneous
terms in (2.28). To do so, we consider the homogeneous adjoint problem to (2.28), given by

∆yW
† +MTW† = 0 , W† ≡

(
V †

U †

)
. (2.43)

Noting that homogeneous forward problem yields at least two nontrivial solutions corresponding to the
translation modes ∂yj (V0, U0)T , j = 1, 2, (2.43) must also have a nontrivial null space of dimension at
least two. We write these two solutions as

Pc = P(ρ) cosω , Ps = P(ρ) sinω ; P ≡
(
P1

P2

)
, (2.44a)

where P(ρ) satisfies

∆1P +MTP = 0 , P ∼
(

0
1/ρ

)
as ρ→∞ ; ∆1 ≡ ∂ρρ +

1

ρ
∂ρ −

1

ρ2
. (2.44b)

We note that imposing the normalizing 1/ρ far-field condition for P2 uniquely defines P.

We next multiply (2.28a) by PT
c and integrate over Ωr, the disk of radius r centered at the origin in the

y1-y2 plane. By Green’s identity, we obtain

∫
∂ΩR

PT
c ∂nW −WT∂nPC dSy =

∫
Ωr

PT
c d dΩy . (2.45a)

In (2.45a), ∂Ωr denotes the boundary of Ωr, and ∂n denotes the outward normal derivative. As r →∞,
the limiting behavior of the terms in the first integral are given by

Pc ∼
(

0
1/ρ

)
cosω , ∂nPc ∼

(
0

−1/ρ2

)
cosω (2.45b)

W ∼
(

0
A
ν α · eωr + 1

2Sb(0) · eωr log r

)
, ∂nW ∼

(
0

A
ν α · eω + 1

2Sb(0) · eω (log r + 1)

)
(2.45c)

where we have used (2.44) to obtain (2.45b), and (2.28b) and (2.40) to obtain (2.45c).

The right-hand side of (2.45a) may be split into two radial integrals as
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∫
Ωr

PT
c d dΩy = πẋ1

∫ r

0
P1V

′
0ρdρ+ πb1(0)

∫ r

0
P2U

′
0ρdρ . (2.46a)

Integrating by parts on the third integral of (2.46a) and computing the left-hand side of (2.45a) using
(2.45b)-(2.45c), we obtain

2π
A

ν
α1 +

π

2
Sb1(0) [2 log r + 1] = πẋ1

∫ r

0
P1V

′
0ρdρ+ πb1(0)

[
S log r −

∫ r

0
(U0 − χ(S))(P2ρ)′ dρ

]
(2.46b)

Note that, as a consequence of the y log |y| terms matching in the inner and outer regions, the terms
proportional to log r in (2.46b) cancel. Thus, in the limit that r →∞, we obtain the ODE for ẋ1

−ẋ1 =
−2Aν α1 − 1

2Sb
1(0)− κ2b

1(0)

κ1
, (2.47a)

κ1(S) ≡
∫ ∞

0
P1V

′
0ρ dρ , κ2(S) ≡

∫ ∞
0

(U0 − χ(S))(P2ρ)′ dρ , (2.47b)

where we have used for κ2(S) the fact that
∫∞

0 (P2ρ)′ dρ = 1. We remark that the definitions for κ1 and
κ2 are the same as those given in [59] for the motion of a single spot on the (flat) unit disk. We plot
them in Fig. 3 for completeness; note that κ1 < 0 for all S below the splitting threshold.
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(b) κ2

Figure 3. Plots of (a) κ1(S) and (b) κ2(S) as defined in (2.47b). Note that a spot with
strength S & 4.31 is unstable to a self-replication instability.

Repeating the procedure from (2.45a)-(2.47a) by imposing orthogonality with respect to Ps yields an
analogous expression for ẋ2. In vector form, we have for ẋ = (ẋ1, ẋ2)T

−ẋ =
1

κ1

[(
S

ν
− S

2
− κ2

)
b(0)− 2

A
ν
∇x uce(x)|x=0 + 4πS∇x Re(x;0)|x=0

]
. (2.48)

All quantities in (2.48) are given in terms of the normal coordinates x. We now revert (2.48) back to an

expression for θ̇0 in terms of quantities involving the original θ coordinates.

For the ∇xuce term in (2.48), the chain rule gives
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∇xuce(θ(x)) =

(
Dθ

Dx

)T
∇uc(θ) , (2.49)

where ∇ in (2.49) is the flat gradient in the θ variables, and Dθ/Dx is the Jacobian matrix defined in

(2.15). At x = 0 (i.e., θ = θ0), we have that Dθ/Dx = P (θ0)Λ−1/2(θ0), where P and Λ are, respectively,
the orthogonal and diagonal matrices defined in (2.6). Thus, at x = 0, (2.49) becomes

∇x uce(θ(x))|x=0 = Λ−1/2P T∇ uc(θ)|θ=θ0
. (2.50a)

In (2.50a), we have dropped the θ0 arguments in P and Λ for the sake of brevity. Similarly, for the ∇xRe
term of (2.48),

∇x Re(θ(x);0)|x=0 = Λ−1/2P T∇ R(θ;θ0)|θ=θ0
. (2.50b)

To convert b(0) back to the original variable c, we use (2.23) to write

b(0) = D−1Λ1/2P T c(θ0) , (2.50c)

where D is the diffusivity constant. Lastly, to compute ẋ of (2.48) in terms of θ̇0, we note the dependence
of x on θ0(σ) through (2.13c) and compute

ẋ =
Dx

Dθ0

∣∣∣∣
θ

θ̇0 ;
Dx

Dθ0

∣∣∣∣
θ

=
(

∂x
∂θ01

∂x
∂θ02

)
. (2.50d)

Now, from (2.13c), we have that θ ∼ θ0 + PΛ−1/2x + O(ε). Recalling that we require ẋ at x = 0 (i.e.,
at θ = θ0), it follows immediately that

Dx

Dθ0

∣∣∣∣
θ=θ0

= −Λ−1/2P T . (2.50e)

Substituting (2.50a)-(2.50e) into (2.48), and noting that
(
gij
)

= (gij)
−1 = PΛ−1P T , we arrive at the

final equation for the slow evolution of the center of a single spot:

dθ0

dt
= ε2

{
1

κ1D

[
S

ν
− S

2
− κ2

]
c(θ0)− 2A

νκ1

(
gij(θ0)

)
∇ uc|θ=θ0

+
4πS

κ1

(
gij(θ0)

)
∇ R|θ=θ0

}
(2.51)

We make several remarks regarding (2.51). First, together with (2.35b), this forms a coupled differential-
algebraic equation for the location θ0 and strength S of the spot. Second, we observe that the leading
order contributions of advection (c(θ0)) and variable potential and source (∇uc) are O(ε2ν−1). The
advection term accounts for the downhill flow of groundwater. Note that, with κ1 < 0 in Fig. 3(a), the
downhill flow of water acts to transport a spot uphill. Analyses of stripe patterns on sloped terrain (e.g.,
[25, 45, 48, 47]) has shown that the stripes also move uphill. The ∇uc term accounts for three spatially
dependent effects: the variable rate of evaporation of groundwater due to varying surface exposure,
the non-uniform concentration of rainfall reaching the surface, and the accumulation (dispersion) of
groundwater at (from) the valley lines (ridge lines). Note that the spatial dependence of all of these three
effects stems from the curvature of the surface M. Indeed, if M had no curvature (i.e., a flat surface
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with any slope), the surface element
√
|g| would be a constant, while the mean curvature H in (1.2d)

would be equal to 0. In this case, the solution for uc in (2.32b) would be constant, leading to ∇uc = 0.
As such, we may say that the leading order effect of surface curvature to the spot dynamics is contained
in the ∇uc term, entering at O(ε2ν−1). However, the strength of curvature-driven dynamics, such as
that computed explicitly for the torus in [52], is a smaller O(ε2) effect and is contained in the ∇R term.
This term also contains higher order effects of advection and variable potential. Lastly, we remark that
both terms in (2.51) that arise due to the curvature of the surface involve the operator grad ≡ gij∂j , the
natural definition of the gradient on a surface with metric tensor gij .

3. Competing effects of advection, spatially varying potential, and curvature

In this section, we discuss the competing effects of downhill advection of groundwater, accumulation at
and dispersion from valley lines and ridge lines, respectively, as well as curvature. In Figs. 4(a) - 4(c),
we plot the velocity fields of each of the three terms in (2.51) in isolation, while in Fig. 4(d), we plot
their sum, which results in the right-hand side of (2.51). The contours correspond to that of the surface
specified in (2.20), with yellow (blue) indicating regions of high (low) elevation. In Fig. 4(a), we observe
that downhill flow of the water induces an uphill drift of the spot in the direction of steepest increase.
Conversely, 4(b) shows that the variable potential tends drive the spot towards the valleys, where there
is an accumulation of water due to curvature. Fig. 4(c) plots the vector field of the

(
gij(θ0)

)
∇uc term

of (2.51), which encodes the effects of curvature-driven dynamics as well as higher order contributions
of advection and variable potential. In Fig. 4(d), the two red curves show the region where the sum of
the three velocity fields (i.e., the right-hand side of (2.51)) is small and where the surrounding velocity
field points toward it. We emphasize that the red curves do not indicate equilibrium points, but regions
toward which spots are attracted and on which they evolve slowly. As we show in §4 below, as A in (1.2)
is increased slowly towards the parameter regime where spots give way to stripe patterns, spots near the
red curve are the first ones to coalesce into stripes.

In Figs. 5(a)-5(c), we demonstrate for ε = 0.05, the asymptotic prediction of the differential-algebraic
equation (2.51) with (2.35b) for the spot location θ0(t) and spot height (heavy solid curve). The open
circles are obtained from a finite elements solution of the full PDE system (1.2) using the finite elements
software package FlexPDE7 [17], which employs adaptive meshing and timestepping. The dashed curve
shows the asymptotic prediction of (2.51) without the ∇R term, demonstrating that while this term
is O(ν) � O(1) with respect to the advection and potential terms in (2.51), its omission leads to the
wrong spot path and also the wrong equilibrium location. We remark that the system (2.35b) is highly
nonhomogeneous, which causes θ(t) computed from the finite elements solution to be rather sensitive to
both the initial conditions as well as the tolerance of the PDE solver. Our tests showed that the numerical
results became closer to the asymptotic results as the tolerance of the solver was tightened; doing so,
however, quickly became computationally infeasible. As such, the agreement between the asymptotic
prediction and the full numerical solution cannot be expected to agree to an extremely high degree of
accuracy. Nevertheless, θ0(t) as predicted by (2.51) and (2.35b) deviates from the numerical solution by
no more than 0.0364 over the entire duration, while the error in the height never exceeds 7%. In Fig.
5(d), we show snapshots of the spot during its evolution from its initial location near the top of a peak
(t = 0) to its equilibrium location on the side of the hill (t → ∞). The white curve indicates the path
predicted by the asymptotic analysis, showing excellent agreement.

In Fig. 6, for the same parameters but different initial conditions, we demonstrate the reaching of a
different stable equilibrium location, at the edge of the (periodic) computational domain. In Fig. 4(d),
this location corresponds to the bottom/top of the right red red stripe. The half spots spots as t→∞ are
due to the periodic domain. We remark that a detailed study of the existence and stability of solutions
to the nonlinear equation (2.35b) is performed in [8]. In particular, the solution structure consists of two
branches on either side of a saddle node; the solutions shown in Figs. 5 and 6 are from the upper branch.
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Figure 4. The velocity fields corresponding to the terms (a) 1
κ1D

[
S
ν −

S
2 − κ2

]
c(θ0), (b)

− 2A
νκ1

(
gij(θ0)

)
∇ uc|θ=θ0

, (c) 4πS
κ1

(
gij(θ0)

)
∇ R|θ=θ0

in (2.51). In (a), the advection term

acts to transport a spot uphill in the direction of steepest ascent on the surface. In (b),
the variable potential drives the spot toward the valleys where there is an accumulation
of water. In (c), the velocity plot is a combination of curvature-driven dynamics along
with higher order effects of advection and variable potential. In (d), we plot the sum of
the velocity fields of (a)-(c); i.e., the right-hand side of (2.51). The red curves indicate
regions toward which spots are attracted and on which they evolve slowly. In the contour
plots, yellow (blue) indicates regions of high (low) elevation. The parameter values are
k = 0.6, c = 0.3, D = 0.7, A = 4.7, and ε = 0.05.

4. Dynamic triggering of self-replication and the stripe regime

In this section, we show that the slow drift dynamics of a spot can trigger an O(1) self-replication
instability. The splitting results from a drift towards a valley region where water accumulates. In Fig.
7(a), we plot S from the upper branch of the solution to the nonlinear equation (2.35b) for the spot
strength S. The parameters are identical to those of Figs. 5 and 6. As the spot drifts according to
(2.51), its strength evolves due to the presence of θ0 in (2.35b). The yellow regions in Fig. 7(a) are
regions in which S(θ0) > Σ2 ≈ 4.31, the self-replication threshold. The white arrows indicate the
velocity field shown in Fig. 4(d). An initially stable spot located at, for example, θ0 = (0,−π/4), will
undergo a dynamically triggered self-replication instability as it drifts towards θ0 = (0,−π/2), which
would otherwise be a stable equilibrium of (2.51). In Fig. 7(b), we plot snapshots of the single spot
quasi-equilibrium as it drifts. At time t = 198, a self-replication instability is initiated due to a unstable
“peanut-splitting” mode (cf. [8]). After the splitting event, the two spots drift apart and settle in a
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Figure 5. Numerical result (dots) versus asymptotic prediction (solid) from (2.51) of
θ0(t) = (θ1

0(t), θ2
0(t)) ((a) and (b)) along with the height of the spot (c). The dashed curve

in (a)-(c) shows the asymptotic prediction without the∇R term in (2.51), showing that the
two leading order O(ν−1) terms are not enough to accurately predict the spot evolution.
(d) Snapshots of the spot on the surface (2.20) at various times during its evolution (t =
0, 400, 850, and equilibrium location). The white line indicates the asymptotic prediction.
The parameters are k = 0.6, c = 0.3, D = 0.7, ε = 0.05, and A = 4.7.
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Figure 6. Numerical result (dots) versus asymptotic prediction (solid) from (2.51) of
θ0(t) = (θ1

0(t), θ2
0(t)) ((a) and (b)). The dashed curves shows the asymptotic prediction

without the ∇R term in (2.51). (c) Snapshots of the spot on the surface (2.20) at various
times during its evolution (t = 0, 120, 220, and equilibrium location). The white line
indicates the asymptotic prediction, while the half spots as t→∞ are due to the periodic
domain. The parameters are k = 0.6, c = 0.3, D = 0.7, ε = 0.05, and A = 4.7.
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two-spot equilibrium configuration. In this case, the splitting direction is orthogonal to the direction of
drift.
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(a) S(θ0) (b) snapshots of a splitting event

Figure 7. A dynamically triggered self-replication event. (a) A plot of S(θ0); the yellow
regions indicate S(θ0) > Σ2 ≈ 4.31. (b) Snapshots of a single spot drifting towards the
valley θ0 = (0,−π/2). At t = 198, an instability is triggered as the spot enters a region in
which the spot strength S exceeds Σ2. The spots then drift apart, reaching an equilibrium
configuration as t→∞. The half-spots are due to the periodic domain. The parameters
are k = 0.6, c = 0.3, D = 0.7, ε = 0.05, and A = 4.7.

Self-replication instabilities may also be triggered through a slow increase in A, the rate of rainfall. A
detailed study of this phenomenon was done in [53] for 3-D spot patterns in the sphere in which successive
splitting events resulted from a slow linear ramp of the feed-rate parameter, leading to a slow increase
in the number of spots. As this linear ramp continues, we expect stripe-like structures to form as A
increases into the “stripe regime”; in the case of a flat rectangular domain, a homoclinic stripe can be
constructed by extending a one-dimensional spike trivially in the transverse direction (see [23]). As such,
for our generalized Gray-Scott model (1.2b), we expect the stripe regime to correspond to the 1-D spike
regime. Three distinct spike regimes were identified in [39] for the Gray-Scott model: the low feed-rate

regime A ∼ O(ε−1/2ν) analyzed in [26], the intermediate feed-rate regime O(ε−1/2ν) � A � O(ε−1ν)
analyzed in [13, 14], and the high feed-rate regime A ∼ O(ε−1ν), analyzed in [27]. In Fig. 8, we perform
a slow ramp in A to demonstrate the transition from a localized spot pattern to the initial formation of
stripe-like structures, and finally to full vegetation coverage.

In Fig. 8(a), we show a spot pattern that is near “saturation”; i.e., the next splitting event resulting from
an increase in A will not result in the formation of two separate spots, but instead in the coalescing of
spots into stripe-like structures. In Fig. 8(b), we show the resulting stripe-like structures that form near
the two red curves of Fig. 4(d), which indicate regions where the velocity field of a one-spot pattern is
small and where the surrounding velocity field points toward it. In Fig. 8(c), we observe that an increase
in A results in a largely uniform vegetation coverage with the exception of the steep sloped regions; this is
due to the nature of our model, which assumes that these regions receive lower per unit area rainfall. In
Fig. 8(d), we show that a further increase in A leads to these spots coalescing into stripe-like structures
before the surface reaches near-uniform vegetation coverage (not shown).

5. Discussion

Based on that introduced in [18], we have proposed a reaction-advection-diffusion model for vegetation
density and soil water concentration on an arbitrary terrain with elevation given by z = ζ(θ1, θ2). Our
model involves operators and quantities that account for the geometry of the surface, allowing for a
coordinate-free formulation. While we make no claim regarding the physical accuracy of our model in
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(a) A = 29.7 (b) A = 37.4

(c) A = 47.1 (d) A = 54.2

Figure 8. Evolution of a spot pattern under a slow linear increase in A. (a) Nearly
“saturated” spot pattern; the next splitting event will begin the process of spots coalescing
into stripe-like structures. (b) Stripe-like structures beginning to form near the two red
curves of Fig. 4(d). (c) A largely uniform coverage state with the exception of the sloped
regions due to a lower per unit area rainfall. (d) The spots on the slopes coalescing into
stripes before the surface reaches near-uniform vegetation coverage (not shown).

comparison to that of [18], we submit that it leads to a more natural formulation from a geometric
perspective for physical systems involving diffusive and advective transport on a curved surface. In
contrast to that of Gandhi et al., the system takes account only of the intrinsic geometry of the surface
M modulo a vector field transverse to the surface which accounts for the vertical direction of rainfall.
The resulting model can be viewed as generalized Gray-Scott model, with spatially varying advection,
potential, and feed-rate.

Our primary goal in this work was to demonstrate a method for analysis of localized solutions to a
reaction-advection-diffusion system on a curved surface. In particular, upon transforming to Riemann-
ian normal coordinates in the local region of the spot, we performed a matched asymptotic analysis
to construct a quasi-equilibrium one-spot solution. We then derived an differential-algebraic equation
describing its slow drift on the surface; for a system that includes advection and a spatially variable
potential, this analysis is new. The result showed that the presence of advection and variable potential
effects lead to an O(ε2| log ε|) drift velocity instead of the usual O(ε2) velocity observed in the absence of
these effects [8]. We further showed that higher order effects of advection and variable potential, along
with effects of surface curvature, arise at O(ε2), and are encoded in the gradient of the regular part of
a certain Green’s function. Numerical tests confirmed that this higher order effect must be included in
order to accurately predict the spot’s motion.
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To compute the gradient of the Green’s function, we employed a generalization of the analytic-numerical
method first developed in [52] for a simpler Green’s function on the surface of a torus. This method
allowed for the computation of a Green’s function of a general second order linear operator on a general
surface, allowing us to account for a spatially varying advection as well as spatially varying potential.
Accurately computing this Green’s function, in particular, the gradient of its regular part, was the key
to accurately predicting the spot’s motion.

While the analytic methods that we have used here are conducive to the study of localized spot patterns,
it would be interesting to develop techniques for the study of localized stripe patterns on curved surfaces.
The computational results of [18] indicate that vegetation stripes may arc according to contours of the
terrain. It would also be interesting to understand how human pressures such as woodcutting and
systematic grazing [4, 1], or natural terrain features such as preferential water flow paths [1, 37], may
impact the behavior of patterns. To analyze such features may require the detailed computation of
certain Green’s functions on domains containing small holes or cracks. Lastly, we remark that the utility
of our analytic-numerical method for computing Green’s functions extends beyond applications in pattern
formation. For example, analysis of the narrow escape problem on the surface of the unit sphere was
solved using a known formula for the Green’s function for the sphere [10]. On an arbitrary surface,
with anisotropic diffusion or advection, explicit formulae for the Green’s function may not exist. Our
analytic-numerical method offers a way forward for analysis of these more complex problems.
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Appendix A. Rescaling of (1.1) and its coordinate-free form (1.3)

We first demonstrate the rescaling of (1.1) that leads to (1.2). We first divide by (1.1a) by a, the rate of
per unit area rainfall (in the X-Y plane), and divide (1.1b) by m, the rate of plant death, to obtain

1

m̃
Vt =

D̃V

m̃
∆g̃V − V +

1

m̃
UV 2 , t > 0 , (X,Y ) ∈ [0, LX ]× [0, LY ] , (A.1a)

1

a
Ut =

D̃U

a
∆g̃U+

1

a
divg̃(c̃U)+

1√
|g̃|
− p̃
a

√
|g̃|U− 1

a
UV 2 , t > 0 , (X,Y ) ∈ [0, LX ]×[0, LY ] . (A.1b)

We then let mt→ t and (p̃/a)U → u, leading to

Vt =
D̃V

m̃
∆g̃V − V +

a

p̃m̃
uV 2 , (A.2a)

m

p̃
ut =

D̃U

p̃
∆g̃u+

1

p̃
divg̃(c̃u) +

1√
|g̃|
−
√
|g̃|u− 1

p̃
uV 2 . (A.2b)

Next, we let V →
√
p̃v, which results in

vt =
D̃V

m̃
∆g̃v − v +

a

m̃
uv2 , (A.3a)

m

p̃
ut =

D̃U

p̃
∆g̃u+

1

p̃
divg̃(c̃u) +

1√
|g̃|
−
√
|g̃|u− uv2 . (A.3b)

We then rescale the spatial variables X and Y as (X,Y )→ (2π)−1Lx(θ1, θ2) so that (θ1, θ2) ∈ (0, 2π)×
(0, 2πLY /LX). Lastly, we rename 2πLY /LX → Lθ2 , m̃/p̃→ τ , (2π/LX)2D̃U/p̃→ D, c̃/p̃→ c, a/m̃→ A,

(2π/LX)2D̃V /m→ ε2, g̃ → g, and expand the divg(c̃u) term to arrive at (1.2).
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We now give a simple physical motivation for the form of the velocity vector c̃ in (1.1c). Consider a mass
moving down an inclined plane of angle φ with respect to the horizontal. In the limit where high drag
proportional to velocity dominates the inertial term, the velocity of the object is proportional to sinφ.
On a surface with level curves ζ̃(X,Y ) = k, the mass travels in the direction opposite ∇ζ̃ in the X-Y
plane. Considering the embedding of the surface in R3, the unit vector n̂ pointing in the direction of
velocity is then

n̂ = − 1

|∇ζ̃|
√

1 + |∇ζ̃|2
(∇ζ̃, |∇ζ̃|2) ; ∇ζ̃ = (ζ̃X , ζ̃Y ) . (A.4)

On the other hand, the sine of the angle φ that n̂ makes with the X-Y plane is given by

sinφ =
|∇ζ̃|√

1 + |∇ζ̃|2
. (A.5)

The velocity vector ṽ in R3 must then given by ṽ = c̃ n̂ sinφ, for some positive constant c̃, or, using (A.4)
and (A.5),

ṽ = −c̃ 1

1 + |∇ζ̃|2
(∇ζ̃, |∇ζ̃|2) . (A.6)

Since we treat the surface from an intrinsic perspective rather than as an object embedded in R3, we
take for the velocity vector c̃ the (negative of the) first two components of ṽ, yielding (1.1c). We note

that, in the limit |∇ζ̃| → ∞, c̃→ 0 as required.

There are two primary reasons for expressing (1.1) in its coordinate-free form (1.3). First, the model
that we propose must be independent of the chosen coordinate system, and being able to express (1.1)
in the form (1.3) shows that our model is indeed coordinate-invariant.

Coordinate invariance can also be a powerful ally in various calculations. If we know that our model is
independent of coordinates, we are free to choose any coordinate system in our analyses and computations.
This allows us to use convenient coordinate systems which simplify some calculation significantly. This
is a common idea in Riemannian geometry which we repeatedly use in this article when performing
computations in geodesic coordinates.

To see that (1.3) is indeed the coordinate-free expression of (1.1), we actually choose a coordinate
system for which (1.1) is the expression of (1.3) in this particular coordinate system. For a reference on
differential geometry notation and terminology, see [32]. Let P be a plane which meets E orthogonally
so that geodesics (straight lines) starting on P in the direction of −E meet M in positive time. As
P endowed with the metric obtained by pulling back the Euclidean metric in R3 by ιM is isometric to
R2 (with Euclidean metric), we can choose a global isometry (X,Y ) : P → R2 which now acts as a

coordinate system on P . We define a function Z̃ on R3 by the following procedure. For each point p ∈ R3

let projP (p) be the orthogonal projection of p onto the plane P . The point p can then be reached from

projP (p) by flowing along the vector field −E after time Z̃(p) ∈ R (allowing for negative time). The

functions (X,Y, Z̃) now forms a new coordinate system in R3 for which

E = −∂Z̃ . (A.7)

Note that this is simply a special case of a normal coordinate system for the Euclidean metric along the
hyperplane P .

Owing to the fact that E is transverse toM, we can expressM in the (X,Y, Z̃) coordinate as {(X,Y, Z̃) |
Z̃ = ζ̃(X,Y )} for some smooth function ζ. The metric tensor for R3 in this coordinate is of course

dX2 + dY 2 + dZ̃2. To compute the coordinate expression for the metric g̃ = ιM(dX2 + dY 2 + dZ̃2), we

simply substitute Z = ζ̃(X,Y ) into dZ̃2 to obtain

g̃ = (1 + ζ̃2
X)dX2 + (1 + ζ̃2

Y )dY 2 + 2ζ̃X ζ̃Y dXdY. (A.8)

In these coordinates the unit normal vector to M is

ν̃ = (1 + ζ̃2
X + ζ̃2

Y )−1/2(ζ̃X∂X + ζ̃Y ∂Y − ∂Z̃) , (A.9)
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so that

|〈E, ν̃〉e| = (1 + ζ̃2
X + ζ̃2

Y )−1/2. (A.10)

We now observe the determinant of the coordinate expression of the metric tensor in (A.8) is given by

|g̃| = 1 + ζ̃2
X + ζ̃2

Y . Therefore, we may replace |〈E, ν̃〉e| in (1.3) by 1/
√
g̃ when expressed in coordinates.

Thus we see that (1.1) is just (1.3) in the coordinates (X,Y, Z̃).

To verify that c̃ ∈ TM defined as the unique vector on M satisfying DιMc̃ = E − 〈E, ν̃〉eν̃ is given

by (1.1c) in the (X,Y, Z̃) coordinates, observe that ιM in these coordinates is given by ιM : (X,Y ) 7→
(X,Y, ζ̃(X,Y ) (recall that DιM is the differential map/pushforward mapping TM to TR3). Therefore

DιM(a∂X + b∂Y ) = a∂X + b∂Y + (aζX + bζY )∂Z̃ .

Setting c̃ = a∂X + b∂Y , the equation DιMc̃ = E − 〈E, ν̃〉eν is now given by

−(1+ ζ̃2
X + ζ̃2

Y )−1(ζ̃2
X + ζ̃2

Y )∂Z−(1+ ζ̃2
X + ζ̃2

Y )−1ζ̃X∂X−(1+ ζ̃2
X + ζ̃2

Y )−1ζ̃Y ∂Y = a∂X +b∂Y +(aζ̃X +bζ̃Y )∂Z .

This yields a = −(1 + ζ̃2
X + ζ̃2

Y )−1ζ̃X and b = −(1 + ζ̃2
X + ζ̃2

Y )−1ζ̃Y which is precisely (1.1c).

We finally remark that that |g̃|−1∇ζ̃ · ∇u = du(dζ̃]), where ] denotes the raising of the index by metric

tensor g̃, and is simply the inner product between the exterior derivatives of the functions u and ζ̃ with
respect to the metric obtained by pulling back the Euclidean metric by ιM.

Appendix B. Derivation of γe in (2.38)

In this appendix, we derive γe in (2.38), the coefficient of x log |x| in the local behavior of the Green’s
function G in Riemannian normal coordinates. Here, x(θ) = (x1(θ), x2(θ))T is the inverse of the Rie-
mannian coordinate system centered at θ0 defined in (2.13); in particular, x = 0 corresponds to θ = θ0,
the location of the source. In these coordinates, G satisfying (2.3) has the local behavior

G ∼ − 1

2π
log |x|+ γe · x log |x|+Re(0;0) + x · ∇xRe(0;0) , (B.1)

where Re(x;0) = R(θ(x);θ0). We now seek γe of (B.1) in terms of b, which is defined in terms of c in
(2.23). We first recall from §2.3 of [52] that an asymptotic for G near x = 0 is given by

G ∼
N∑
j=0

αj(x)F0(|x|) , (B.2)

where the coefficients αj(x) are solutions of transport equations (cf. (2.19) and (2.27) of [52]), and Fj
are basis functions satisfying the radially symmetric equations on R2 (cf. (2.6) of [52])

(∆ + z)F0 = δ0 , (∆ + z)Fj = jFj−1 , j ≥ 1 . (B.3)

In (B.3), ∆ is the flat Laplacian with non-positive eigenvalues, z ∈ C \ R+ is some parameter chosen so
that ∆ + z is invertible on the space of distributions, and δ0 = δ(x1)δ(x2) is the Dirac delta function
centered at the origin. From (B.3), we observe that F0 = (2π)−1K0(

√
z|x|) so that

F0 ∼ −
1

2π
log |x| − 1

4π
log z + log 2− γ +O(|x|2 log |x|) , |x| � 1 , (B.4)

while Fj ∼ |x|2j log |x| for j ≥ 1. Thus, only the j = 0 term in (B.2) contributes to γe. It remains then
to compute the linear term in the expansion of α0(x) in (2.36b) near the origin. To proceed, we recall
that under the transformation from the original coordinates θ to the Riemannian normal coordinates x
in (2.13), the leading order behavior of the metric tensor ĝ(x) is given by ĝjk(x) ∼ δjk + O(|x|2). We
thus have

∂x1α0(x) ∼ O(|x|) exp

(∫ 1

0

xjδjkb
k(tx)

2
dt

)
+

+ (1 +O(|x|2) exp

(∫ 1

0

xjδjkb
k(tx)

2
dt

)∫ 1

0

b1(tx) + txjδjkb
k(tx)

2
dt . (B.5)
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Evaluating ∂x1α0(x) at x = 0, we obtain

∂x1α0(x)|x=0 =
1

2
b1(0) . (B.6a)

Similarly,

∂x2α0(x)|x=0 =
1

2
b2(0) . (B.6b)

For x near the origin, α0(x) therefore has the expansion

α0(x) ∼ 1 +
1

2
b(0) · x . (B.7)

Recalling that G ∼ α0(x)F0(
√
z|x|), and using the local behavior of α0(x) in (B.7) and of F0(

√
z|x|) in

(B.4), we obtain (2.38) for γe.
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