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Abstract. For a bounded 2-D planar domain Ω, we investigate the impact of domain geometry on oscil-

latory translational instabilities of N -spot equilibrium solutions for a singularly perturbed Schnakenberg

reaction-diffusion system with O(ε2) � O(1) activator-inhibitor diffusivity ratio. An N -spot equilibrium

is characterized by an activator concentration that is exponentially small everywhere in Ω except in N

well-separated localized regions of O(ε) extent. We use the method of matched asymptotic analysis to

analyze Hopf bifurcation thresholds above which the equilibrium becomes unstable to translational per-

turbations, which result in O(ε2)-frequency oscillations in the locations of the spots. We find that stability

to these perturbations is governed by a nonlinear matrix-eigenvalue problem, the eigenvector of which is a

2N -vector that characterizes the possible modes (directions) of oscillation. The 2N × 2N matrix contains

terms associated with a certain Green’s function on Ω, which encodes geometric effects. For the special

case of a perturbed disk with radius in polar coordinates r = 1 + σf(θ) with 0 < ε� σ � 1, θ ∈ [0, 2π),

and f(θ) 2π-periodic, we show that only the mode-2 coefficients of the Fourier series of f impact the bifur-

cation threshold at leading order in σ. We further show that when f(θ) = cos 2θ, the dominant mode of

oscillation is in the direction parallel to the longer axis of the perturbed disk. Numerical investigations on

the full Schnakenberg PDE are performed for various domains Ω and N -spot equilibria to confirm asymp-

totic results and also to demonstrate how domain geometry impacts thresholds and dominant oscillation

modes.

Keywords: Hopf bifurcations, small eigenvalues, localized solutions, domain geometry4

1. Introduction5

The stability and dynamics of spatially localized spike and spot patterns in activator-inhibitor reaction-6

diffusion systems has been the subject of many studies. These patterns deviate significantly from the7

uniform state and arise in parameter regimes well beyond the Turing stability threshold, and cannot8

be well-described by amplitude equations obtained from weakly nonlinear theory [37, 5, 13]. Motivated9

largely by the 1998 review article [39], numerous studies have focused on the so-called semistrong in-10

teraction regime [18] in which the activator-inhibitor diffusivity ratio ε2 � 1 is asymptotically small.11

Early works developed matched asymptotic and geometric singular perturbation techniques to charac-12

terize the existence, dynamics, and stability of localized patterns in this regime [15, 16, 19, 18, 26, 57] of13

the Gray-Scott and Gierer-Meinhardt systems.14

Slow drift dynamics of quasi-equilibrium spot patterns have been computed both asymptotically and15

numerically for one-, two-, and three-dimensions (see, e.g., [19, 55, 44, 4, 8, 31, 50, 47, 3, 64, 46]). It16

is shown in such works how the drift dynamics are impacted by combinations of advection, interaction17

with domain boundaries and other spots, domain heterogeneities, and/or curvature. While these works18

have focused on the abovementioned semistrong regime, effects of surface curvature and domain growth19
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on pattern formation have also been studied in other regimes; see, e.g., [41, 34, 36, 2, 35]. This work,1

however, will focus on the semistrong regime.2

Instabilities of spot patterns can occur both in the spot profiles (amplitude instabilities) as well as3

in the spot locations (translational instabilities). Monotonic (in time) amplitude instabilities come in4

the form of competition or overcrowding instabilities leading to spot annihilation [14, 45, 10], or self-5

replication instabilities [14, 15, 38, 30, 31] leading to additional spots. For the former, it has recently6

been shown for the 1-D Gierer-Meinhardt and Schnakenberg systems that such competition instabilities7

are subcritical [28]. Monotonic translational instabilities of equilibrium spot configurations lead to a8

rearrangement of spot locations, and may trigger amplitude instabilities in the process. Recently, slow9

monotonic translations instabilities were analyzed in [29] for spots in ring equilibrium configurations of10

the two-dimensional Schnakenberg model. Analysis of these instabilities are often more intricate than11

that for amplitude instabilities due to the asymptotically small eigenvalues associated with translation12

instabilities [60, 26, 56].13

Results for oscillatory amplitude instabilities of one-dimensional spot patterns have been established for14

various reaction-diffusion systems; see, e.g., [17, 16, 57, 30, 9, 21, 52, 47]. This instability is typically15

associated with a pair of complex eigenvalues that remain O(1) as ε → 0. In [54], a weakly nonlinear16

theory is developed to characterize oscillations beyond the linear stability regime and determine whether17

the Hopf bifurcation is subcritical or supercritical. In two dimensions, [58, 60, 61, 62, 63] established the18

existence of stability to oscillatory amplitude instabilities, while [49] determined an anomalous scaling19

for the Hopf stability threshold. Recently, Hopf bifurcations for amplitude instabilities were determined20

for the three-dimensional Gierer-Meinhardt model [23].21

Hopf bifurcations leading to temporal oscillations in spot locations, particularly in dimensions greater22

than one, have not be analyzed as in-depth as oscillatory amplitude instabilities. In one dimension, [9, 59]23

obtained Hopf stability thresholds for oscillatory drift instabilities of spots in the Gray-Scott model, and24

established the O(ε2) scaling of the associated eigenvalue. Oscillatory instabilities in spot widths, referred25

to as breathing pulses, were analyzed for three-component systems in [20, 25, 24]. In [66], oscillatory26

motion of multiple spots were investigated for an extended three-component Schnakenberg model, where27

multiple modes were excited slightly beyond the Hopf bifurcation. In two-dimensions, [65] determines28

oscillatory translational instabilities of a one-spot equilibrium of the Schnakenberg reaction-diffusion29

system [43] on the unit disk. The symmetry of the disk, however, meant that the results shed very little30

light on effects of domain geometry. Furthermore, as the analysis was specific to a one-spot pattern on31

the unit disk, it did not account for effects that arise from spot interactions.32

In this paper, we perform the analysis on a general bounded 2-D planar domain Ω and analyze how its33

geometry impacts the properties of the instability. In particular, we demonstrate that asymmetries of the34

domain shape lead to preferred directions of oscillation at the onset of instability, which then saturates35

into orbits that are far from circular. This is in contrast to the behavior observed in [65] for the unit disk.36

There, it was shown that the Hopf bifurcation of an equilibrium spot at the center of a unit disk was not37

associated with a preferred direction of motion, and subsequent spot trajectories about the center were38

nearly circular. We also further generalize the analysis of [65] to the case of multi-spot equilibria, and39

deduce how spot orientation affects the mode of oscillations.40

For simplicity, we will consider the now well-studied Schnakenberg reaction-diffusion model (see Appendix41

A for how the original model was rescaled to obtain the form below) for activator v(x, t) and inhibitor42

u(x, t) concentrations43
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vt = ε2∆v − v + ε2B + uv2 , t > 0 , x =

(
x1

x2

)
∈ Ω , (1.1a)

1

τut = ∆u+A− ε−2uv2 , t > 0 , x ∈ Ω , (1.1b)
2

∂nv = 0 and ∂nu = 0 , x ∈ ∂Ω , (1.1c)

where ∂n denotes the normal derivative on ∂Ω. Recently, a generalized Schnakenberg system was used3

to model the initiation of root hair growth in a specific plant cell [1, 7, 6]. One particular feature of4

this model is a spatially dependent coefficient on the nonlinear reaction terms of (1.1) representing the5

distribution of a catalyzing plant hormone.6

We briefly comment on the parameters in (1.1). The parameter ε2 � 1 is the small diffusivity of the7

activator and leads to solutions for v that are spatially localized. The parameter A > 0 is the inhibitor8

feed rate, which we assume to be both spatially and temporally constant. We also assume that it is O(1)9

with respect to ε. The impact of A on the stability of single- and multi-spot patterns has been studied in10

detail in [31] and [32], the latter in the context of a spatially-dependent A(x). The constant parameter11

B > 0 is the activator feed rate, and is also assumed to be O(1). We note that the ε2B term in (1.1a) was12

dropped [31] due to the analysis only proceeding to O(ε). We retain this term in (1.1a) since our analysis13

in §2.2 proceeds to O(ε2). This parameter, however, does not appear in any of the stability results.14

Finally, the Hopf bifurcation parameter τ is a measure of the rate at which the inhibitor responds to15

perturbations in the concentrations of the activator and inhibitor. As τ is increased, an increasingly16

sluggish response of the inhibitor leads to oscillatory instabilities via Hopf bifurcations [27]. In this17

paper, we focus the regime τ ∼ O(ε−2/| log ε|). In particular, we formulate a matrix-eigenvalue problem18

to identify a critical τ̂∗ ∼ O(1/| log ε|) such that an equilibrium spot pattern is unstable to an oscillatory19

translational instability when τ exceeds ε−2τ̂∗.20

The outline of the paper is as follows. In §2.1, we asymptotically construct an N -spot equilibrium21

solution of the Schnakenberg PDE(1.1). In contrast to the O(1) construction presented in [31], we require22

correction terms up to O(ε2) in order to facilitate the subsequent stability analysis. In §2.2 we analyze23

the stability of the N -spot equilibrium to oscillatory translation instabilities. We derive a 2N × 2N24

complex matrix-eigenvalue problem of the form Pa = λa that characterizes the Hopf bifurcation of a25

translational perturbation of a one-spot equilibrium. The Hopf bifurcation threshold for τ is obtained by26

requiring that the 2N × 2N matrix P have a pure imaginary eigenvalue λ, which yields the frequency of27

oscillations. The eigenvector a will yield initial directions along which spot oscillations occur. Effects of28

domain geometry are encoded in the entries of P , which involve the quadratic terms of the local behavior29

of Helmholtz Green’s function Gµ(x;x0) satisfying (see [40] for a derivation of (1.2b))30

∆Gµ − µGµ = −δ(x− xj) , x,xj ∈ Ω , ∂nGµ = 0 , x ∈ ∂Ω , (1.2a)

Gµ ∼ −
1

2π
log |x− xj |+Rµ(xj ;xj) +∇xRµ(x;xj) |x=xj

· (x− xj)

− µ

8π
|x− xj |2 log |x− xj |+

1

2
(x− xj)

THµ,j (x− xj) , as x→ xj , (1.2b)

and

Gµ ∼ Gµ(xi;xj) + ∇xGµ(x;xj) |x=xi
· (x − xi) +

1

2
(x − xi)Hµ,ij (x − xi) , as x → xi , (1.2c)
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where Hµj and Hµij are the respective 2 × 2 Hessian matrices, Rµ(xj ;xj) the regular part of Gµ(x;xj)1

evaluated at the location of the singularity, and ∇xRµ(x;xj) |x=xj
its gradient. These quantities depend2

on the geometry of the domain (and also on µ) and thus cannot be obtained from a local analysis. With3

the exception of special geometries such as disks and rectangles, they must be computed numerically.4

We note that the subscript µ in Gµ, Rµ and Hµ denotes the dependance of the latter on the coefficient5

of the zeroth-order term in (1.2a). In §2.2, the subscript µ, which acts as a placeholder in (1.2), will be6

replaced by parameters that arise in the stability analysis.7

In §3, we reduce our 2N × 2N eigenvalue problem result to the case of N = 1. We compare the resulting8

eigenvalue problem to the one derived for the special case of one spot inside the unit disk in [65]. We9

use this comparison to highlight extra terms in the analysis that arise due to asymmetries of domain10

geometry. In §3.2, we analyze how perturbations of the unit disk break the symmetry and give rise to two11

distinct thresholds corresponding to two distinct modes of oscillation. We show that the lower of these12

thresholds, and therefore, the preferred mode of oscillation, is determined by the mode-2 coefficient of13

the Fourier series of the perturbation. In §4, we perform detailed numerical investigations to confirm our14

theoretical results for both the 1- and N -spot cases by solving the full Schnakenberg PDE (1.1). In these15

computations, we consider domains that are high in symmetry (e.g., half disk, unit disk, rectangles) as16

well as those that have little symmetry (e.g., rectangular domains containing circular holes).17

2. Equilibrium and stability analysis18

In this section, we investigate the impact of domain geometry on the preferred initial direction of oscil-19

lation of the oscillatory translational instability of N -spot equilibrium solutions to (1.1). We begin with20

a brief construction of the equilibrium solutions before performing the stability analysis.21

2.1. N-spot equilibrium. For completeness, we begin with a very brief outline of the construction of22

an N -spot equilibrium; more details can be found in, e.g., [31]. In the inner region near the j-th spot23

centered at x = xj , we have the inner variables24

x = xj + εyj , yj =

(
y1j

y2j

)
= ρjej , ej ≡

(
cos θj

sin θj

)
, (2.1a)

25

ue ∼ U0j(ρj) + ε2U2j(yj) , ve ∼ V0j(ρj) + ε2V2j(yj) , (2.1b)

where the O(ε) terms in (2.1b) are absent under the assumption that each spot is stationary in time.26

Note also that the leading order spot profile is radially symmetric; the asymmetry due to the geometry27

of the problem is captured at O(ε2). Substituting (2.1) into (1.1) and collecting leading order terms, we28

obtain the following core problem for the radially symmetric functions U0j and V0j ,29

∆ρjV0j − V0j + U0jV
2

0j = 0 , ∆ρjU0j − U0jV
2

0j = 0 , ρj > 0 (2.2a)
30

V ′0j(0) = U ′0j(0) = 0 , V0j → 0 and U0j ∼ Sj log ρj + χ(Sj) , as ρj →∞ , (2.2b)

for some constant Sj , the so-called strength of spot j [31], and the nonlinear function χ(Sj) to be31

computed numerically. In (2.2a), ∆ρj ≡ ∂ρjρj + ρ−1
j ∂ρj denotes the radially symmetric Laplacian in the32

polar coordinates (ρj , θj). Numerical solutions of (2.2) are depicted in Fig. 2 of [31] for various Sj ,33
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including the nonlinear function χ(Sj). We assume that Sj / 4.3 so that each spot is stable to the local1

(mode-2) self-replication instability (see §3 of [31]). The divergence theorem on (2.2) yields2

2πSj =

∫
R2

U0jV
2

0j dy . (2.3)

In the outer region, the ε−2uv2 term in (1.1b) behaves in the distributional sense as a sum of delta3

functions located at each xj with weight 2πSj as given in (2.3) As such, the leading order equilibrium4

solution ue(x) satisfies5

∆ue +A = 2π
N∑
j=1

Sjδ(x− xj) , x ∈ Ω ; ∂nue = 0 on x ∈ ∂Ω , (2.4)

with solution given by6

ue(x) ∼ −2π

N∑
j=1

SjG
(m)(x;xj) + ū , (2.5)

where by the zero-integral condition on G below, the constant ū is the average of u over Ω. Integrating7

(2.4) over Ω and applying the divergence theorem yields the solvability condition8

2π
N∑
j=1

Sj = A|Ω| , (2.6)

where |Ω| denotes the area of the domain Ω. In (2.5), G(m)(x;xj) is the modified Neumann Green’s9

function satisfying10

∆G(m)(x;xj) = −δ(x− xj) +
1

|Ω|
, x,xj ∈ Ω , ∂nG

(m) = 0 , x ∈ ∂Ω ;

∫
Ω
G(m)(x;xj) dx = 0 ,

(2.7a)

G(m) ∼ − 1

2π
log |x− xj |+R

(m)
jj +∇R(m)

jj · (x− xj) +
1

2
(x− xj)

TH
(m)
jj (x− xj) as x→ xj , (2.7b)

where R
(m)
jj is the regular part of G(m)(x;xj) evaluated on the diagonal, ∇R(m)

jj = ∇xR
(m)(x;xj) |x=xj

11

is its gradient, and H
(m)
jj its Hessian matrix. For xi 6= xj , we have that12

G(m)(x;xi) ∼ G(m)
ij +∇G(m)

ji · (x− xi) +
1

2
(x− xi)

TH
(m)
ji (x− xi) , as x→ xj , (2.7c)

where G
(m)
ji = G(m)(xj ;xi), while ∇G(m)

ji and H
(m)
ji are the gradient and Hessian terms of G(m)(x;xi) at13

xj , respectively, in the Taylor expansion. Principal Result 3.4 in [31] gives the equation of motion dxj/dt14
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of the j-th spot in terms of the gradient terms ∇R(m)
jj and ∇G(m)

ji with i 6= j. The condition dxj/dt = 01

for all j = 1, . . . , N yields the 2N equations for the equilibrium strengths Sj and locations xj2

Sj∇R(m)
jj +

N∑
i 6=j

Si∇G(m)
ji = 0 , j = 1, . . . , N . (2.8)

The equations (2.6) and (2.8) constitute 2N + 1 equations for Sj , xj , and ū. To determine the remaining3

N equations that fix the parameters of an N -spot equilibrium, we match the far-field behavior of the4

j-th inner region (2.2b) to the leading order terms of the local behavior of the outer solution (2.5) near5

xj , yielding the N nonlinear equations6

(
2πG(m)ν + IN

)
s + νχ = νūe , ν ≡ − 1

log ε
� 1 , (2.9a)

with7

G(m) ≡


R

(m)
11 G

(m)
12 · · · G

(m)
1N

G
(m)
21

. . .
. . .

...
...

. . .
. . . G

(m)
N−1,N

G
(m)
N1 . . . G

(m)
N,N−1 R

(m)
NN

 , s =


S1

...

SN

 , e =


1
...

1

 , χ =


χ(S1)

...

χ(SN )

 ,

(2.9b)

where Im is the m ×m identity matrix. Equation (2.9) along with (2.6) and (2.8) determine the spot8

strengths Sj , the spot locations xj , along with ū that define a leading order equilibrium N -spot configu-9

ration.10

The O(ε2) correction terms U2j(yj) and V2j(yj) satisfy the system for yj ∈ R2,11

∆yjV2j−V2j +B+2U0jV0jV2j +V 2
0jU2j = 0 , ∆yjU2j−2U0jV0jV2j−V 2

0jU2j = 0 , yj ∈ R2 . (2.10a)

The far-field condition for U2j come from the quadratic terms in the local behavior of ue near xj , while12

that of V2jcomes from the outer solution v ∼ ε2B in the outer region. That is, from ue in (2.5) and local13

behaviors of G(m)(x;xj) in (2.7), as x→ xj ,14

ue ∼ −2π

[
−Sj

2π
log |x− xj |+ SjR

(m)
jj + Sj∇R(m)

jj · (x− xj) +
1

2
Sj(x− xj)

TH
(m)
jj (x− xj)

+
∑
i 6=j

G
(m)
ji Si +

∑
i 6=j

Si∇G(m)
ji · (x− xj) +

1

2

∑
i 6=j

Si(x− xj)
TH

(m)
ji (x− xj)

+ ū .

All terms not involving (x − xj) are matched at O(1), yielding (2.9). Terms linear in (x − xj) sum to15

zero due to the equilibrium condition (2.8), which is why the inner expansion (2.1b) has no O(ε) term,16

while the quadratic terms are matched by the far-field of U2j . With the inner polar coordinates ρj and17

ej as defined in (2.1a), we have the far-field conditions18
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U2j ∼ −πρ2
je
T
j H

(m)
j ej , V2j → B , as ρj →∞ , (2.10b)

where the 2× 2 matrix Hj is defined as1

H(m)
j ≡

N∑
i=1

SiH
(m)
ji . (2.10c)

This completes the construction of the N -spot equilibrium solution to (1.1), with the inner solution given2

to O(ε2) by (2.1) along with (2.2), (2.10a), and (2.10b). In the outer region, the leading order equilibrium3

for u is given in (2.5), while ve ∼ 0.4

2.2. Stability analysis. With |ψ|, |φ| � O(1), we perturb the equilibrium solution5

u ∼ ue + eλtψ + c.c. , v ∼ ve + eλtφ+ c.c. , (2.11)

which yields the eigenvalue problem6

λφ = ε2∆φ− φ+ 2ueveφ+ v2
eψ , τλψ = ∆ψ − 1

ε2

[
2ueveφ+ v2

eψ
]
. (2.12)

In (2.11), c.c. denotes the complex conjugate of the term immediately preceding it.7

In the inner region, we let ψ ∼ Ψj(yj) and φ ∼ Φj(yj), where8

Ψj ∼ Ψ0j + εΨ1j + ε2Ψ2j , Φj ∼ Φ0j + εΦ1j + ε2Φ2j . (2.13)

Since drift velocities of spots in quasi-equilibrium patterns are O(ε2) (see e.g., [31]), we assume that9

λ ∼ O(ε2) and that τλ ∼ O(1) when τ is at or near the Hopf bifurcation threshold. Substituting (2.13)10

into (1.1) and collecting leading order terms, we have for Ψ0j and Φ0j11

∆yj

(
Φ0j

Ψ0j

)
+Mj

(
Φ0j

Ψ0j

)
= 0 . (2.14a)

where12

Mj ≡

(
−1 + 2U0jV0j V 2

0j

−2U0jV0j −V 2
0j

)
. (2.14b)

We observe that any linear combination of ∂y1jV0j and ∂y2jV0j satisfies the first equation in (2.14a),13

while any linear combination of ∂y1jU0j and ∂y2jU0j satisfies the second. That is, the perturbation is the14

translation mode given by15
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Φ0j = aTj ∇yjV0j = ∂ρjV0j(a
T
j ej) , Ψ0j = aTj ∇yjU0j = ∂ρjU0j(a

T
j ej) ; aj ≡

(
a1j

a2j

)
. (2.14c)

In (2.14c), the possibly complex vector aj determines the nature of the oscillations of the j-th spot at1

the onset of instability. If aj is real, the j-th spot oscillates along a line passing through the equilibrium2

location xj in the direction aj ; if aj is complex, the motion of the j-th spot is rotational about the point3

xj . From (2.2b) and (2.14c), the far-field behaviors of Φ0j and Ψ0j are4

Φ0j → 0 , Ψ0j ∼ (aTj ej)
Sj
ρj
, as ρj →∞ . (2.14d)

We contrast (2.14) with stability analysis of amplitude instabilities; i.e., the self-replication peanut in-5

stability (e.g., [31]), competition instability (e.g., [10]), and amplitude oscillation instabilities (e.g., [49]).6

These amplitude instabilities all occur on an O(1) time-scale so that λ ∼ O(1), giving rise to a λΦ0j7

in the right-hand side of the equation for Φ0j in (2.14a). Furthermore, the competition and amplitude8

oscillation instabilities are radially symmetric to leading order with Ψ0j ∼ log ρj in the far-field, which9

leads to a strong coupling through the inhibitor component in the outer region. On the other hand, the10

self-replication eigenfunction is a mode-2 instability with Ψ0j ∼ ρ−2
j in the far-field. The fast decay leads11

to a very weak coupling between the different spots. It is therefore a strictly local instability, to leading12

order. The translation instability is mode-1 with Ψ0j ∼ ρ−1
j . This decay leads to a weak coupling through13

an O(ε) outer solution for the inhibitor eigenfunction. In contrast to the local self-replication instability,14

we show below that the nature of this weak coupling between the spots must be determined in order to15

characterize the translation instability.16

The 1/ρj behavior of Ψ0j in the far-field gives rise to a singular behavior in the outer region near xj that17

must be matched by the leading order term of ψ, which is O(ε). The regular part of the behavior of ψ18

at xj must then be matched by a constant term in the far-field of Ψ1j . At O(ε) in the inner region, we19

have for Φ1j and Ψ1j ,20

∆yj

(
Φ1j

Ψ1j

)
+Mj

(
Φ1j

Ψ1j

)
= 0 . (2.15a)

Since Ψ1j must have a constant term in the far-field, we must have21

Φ1j → 0 , Ψ1j ∼ κj(ν) [log ρj +Bj(Sj)] , as ρj →∞ . (2.15b)

In (2.15b), κj(ν) is a scaling constant to be found by matching to the regular part of ψ1 at the spot22

locations. The solution to (2.15) is (see e.g., [50])23

Φ1j = κj∂SjV0j , Ψ1j = κj∂SjU0j , (2.16)

where ∂SjU0j ∼ log ρj +χ′(Sj), and χ(Sj) is the constant that must be computed from the core problem24

(2.2). The far-field behavior of Ψ1j is thus25
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Ψ1j ∼ κj
[
log |yj |+ χ′j

]
, as |yj | → ∞ , (2.17)

where χ′j ≡ χ′(Sj). Observe that both the dipole term from Ψ0j as well as the logarithmic term of Ψ1j1

must be contained in the singularity structure for ψ in the outer region.2

Thus, in the outer region, we let ψ ∼ εψ1, where ψ1 satisfies3

∆ψ1 = τλψ1 , x ∈ Ω , ∂nψ1 = 0 , x ∈ ∂Ω (2.18a)

with the singular behavior4

ψ1 ∼ Sj
aTj (x− xj)

|x− xj |2
+ κj log |x− xj |+ κj

[
1

ν
+ χ′j

]
, as x→ xj , j = 1, . . . , N . (2.18b)

In terms of the Helmholtz Green’s function of (1.2) and its gradient with respect to the second variable,5

we determine ψ1 to be6

ψ1 = 2π

N∑
i=1

[
Sia

T
i ∇xiGλτ (x;xi)− κiGλτ (x;xi)

]
. (2.19)

In (2.18a), the coefficient of the zeroth-order term is λτ , which takes the place of the subscript µ in the7

definition of the Helmholtz Green’s function in (1.2). Notice that ∇xiGλτ (x;xi) produces the dipole term8

of (2.18b) near xi while it also still satisfies the no-flux boundary condition of (2.18a) since the gradient9

is being taken with respect to the second variable. Its local behaviors near xi and xj 6= xi are10

∇xiGλτ (x;xi) ∼
1

2π

x− xi
|x− xi|2

+ Fλτ i + Fλτ i(x− xi)

+
λτ

4π
(x− xi) log |x− xi|+

[
λτ

8π
I2 −Hλτ i

]
(x− xi) , as x→ xi ; (2.20a)

11

∇xiGλτ (x;xi) ∼ Eλτ ji + Eλτ ji(x− xj) , as x→ xj 6= xi ; (2.20b)

where we have defined the quantities12

Fµi =

(
F

(1)
λτi

F
(2)
λτi

)
≡ ∇xRλτ (x;xi) |x=xi

, Fλτi ≡
(
∇xiF

(1)
λτi

∇xiF
(2)
λτi

)
,

Eµji ≡ ∇xiGλτ (xj ;xi) , Eλτji ≡
(
∇xi∂x1Gλτ (x;xi) |x=xj

∇xi∂x2Gλτ (x;xi) |x=xj

)
.

(2.20c)

The scaling constant κj of (2.15b) is then found by matching the far-field of Ψ1j in (2.17) to the constant13

terms of the local behavior of ψ1 near xj . Using (2.19), (2.20), and (1.2), we match the constant terms14

in (2.18b) and those contained in (2.19) near xj to obtain the matching condition15
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κj

[
1

ν
+ χ′j + 2πRλτ (xj ;xj)

]
+ 2π

∑
i 6=j

κiGλτji = 2πSja
T
j Fλτj + 2π

∑
i 6=j

Sia
T
i Eλτji , j = 1, . . . , N . (2.21)

Here, Gλτji ≡ Gλτ (xj ;xi). In matrix-vector form, (2.21) becomes1

κ = Kλτa (2.22a)

where we have defined the N × 1 vector κ, 2N × 1 vector a, the N ×N matrices Gλτ and χ′, the N × 2N2

matrices (∇2Gλτ ) and Kλτ , and the diagonal 2N × 2N matrix S3

κ ≡


κ1

...

κN

 , a ≡


a1

...

aN

 , Gλτ ≡


Rλτ (x1;x1) Gλτ (x1;x2) · · · Gλτ (x1;xN )

Gλτ (x2;x1) Rλτ (x2;x2) · · ·
...

... · · · . . .
...

Gλτ (xN ;x1) · · · · · · Rλτ (xN ;xN )



χ′ ≡


χ′1

. . .

χ′N

 , (∇2Gλτ ) ≡


FTλτ1 ETλτ12 · · · ETλτ1N

ETλτ21 FTλτ2 · · ·
...

... · · · . . .
...

ETλτN1
· · · · · · FTλτN

 , S ≡


S1

S1

. . .

SN

SN

 ,

Kλτ ≡ 2π

[
1

ν
IN + χ′ + 2πGλτ

]−1

(∇2Gλτ )S .

(2.22b)

In (2.22b), the vectors Eµij and Fµj are gradients of the Green’s function and its regular part, respectively,4

defined in (2.20c). Also, we note that as ν → 0, the matrix to be inverted in the computation of Kλτ in5

(2.22b) is invertible due to its being diagonally dominant.6

The linear system for κj in (2.22) along with (2.19) and (2.16) determine the leading order outer solution7

for ψ, up to the oscillation directions aj , and the O(ε) inner solutions for φ and ψ. The Hopf stability8

threshold for τ , the frequency of oscillations at onset λ, and the direction of oscillations aj will be9

determined via a solvability condition at O(ε2) for Φ2j and Ψ2j . To proceed, we must first obtain the10

far-field condition for Ψ2j from the linear and |x− xj | log |x− xj | terms in the local behavior of ψ1 near11

xj . Recalling that ψ1 is an O(ε) term, while x − xj = ερjej , we use (2.19) with (1.2) and (2.20) to12

compute that as ρj →∞,13

Ψ2j ∼
1

2
Sjλτ(aTj ej)ρj log ρj + 2πρj

{
Sja

T
j

[
Fλτj −Hλτj +

λτ

8π

(
1− 2

ν

)
I2

]
−

κjF
T
λτj
−
∑
i 6=j

[
κi∇xGλτ (x;xi) |Tx=xj

+Sia
T
i Eλτji

] ej , j = 1, . . . , N . (2.23)

Next, we substitute (2.13) into (2.12) while recalling the expansion for ue and ve in (2.1b), and with14

λ = ε2λ0 and τ = ε−2τ0, we collect O(ε2) terms to obtain15
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λ0Φ0j = ∆yjΦ2j − Φ2j + 2U0jV0jΦ2j + V 2
0jΨ2j + 2 (U0jV2j + U2jV0j) Φ0j + 2U0jV2jΨ0j ,

λ0τ0Ψ0j = ∆yjΨ2j − 2U0jV0jΦ2j − V 2
0jΨ2j − 2 (U0jV2j + U2jV0j) Φ0j − 2U0jV2jΨ0j .

(2.24)

To write (2.24) and (2.23) more compactly, we define the quantities1

Wj ≡

(
Φ2j

Ψ2j

)
, f1j ≡

(
Φ0j

Ψ0j

)
= aTj ej

(
∂ρjV0j

∂ρjU0j

)
, ω ≡ λ0τ0

f2j ≡

(
λ0Φ0j

ωΨ0j

)
= aTj ej

(
λ0∂ρjV0j

ω∂ρjU0j

)
, Nj ≡

(
−2(U0jV2j + U2jV0j) −2V0jV2j

2(U0jV2j + U2jV0j) 2V0jV2j

)
.

(2.25)

Note that λτ = λ0τ0 ≡ ω so that all quantities related to the Helmholtz Green’s function Gλτ will2

hereafter carry an ω subscript. Using (2.14c) for Φ0j and Ψ0j , we obtain3

∆yjWj +MjWj = Njf1j + f2j , yj ∈ R2 , (2.26a)

with the far-field condition4

Wj ∼

(
0[

1
2Sjω log ρja

T
j + 2πaTQj

]
ρjej

)
, as ρj →∞ , j = 1 . . . , N , (2.26b)

where we have defined the N × 2 matrix (∇1Gω)j and 2N × 2 matrices Mωj and Qωj , and 2 × 1 vector5

aQj ,6

(∇1Gω)j ≡



∇xGω(x;x1) |Tx=xj

∇xGω(x;x2) |Tx=xj

...

FTωj
...

∇xGω(x;xN ) |Tx=xj


, Mωj ≡



S1Eωj1

S2Eωj2

...

Sj
[
Fωj −Hωj + ω

8π

(
1− 2

ν

)
I2

]
...

SNEωjN


,

Qωj ≡Mωj −KTω (∇1Gω)j , aQj ≡

(
aQ1j

aQ2j

)
= QTωj

a .

(2.26c)

In (2.26a) and (2.26b) for Wj , the coupling of the j-th inner region is contained only in the aQj term7

defined in (2.26c). All other terms are local to the j-th inner region.8

From (2.14), the linear operator in (2.26a) admits a nontrivial nullspace of dimension at least two. The9

nonhomogeneous terms of (2.26a) and (2.26b) must therefore satisfy an orthogonality condition involving10

the solution to the homogeneous adjoint problem. Before applying this condition, we observe that Wj11

can be decomposed into two components proportional to cos θj and sin θj , respectively, as12
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Wj = Wcj cos θj + Wsj sin θj , (2.27a)

where Wcj and Wsj are 2× 1 vectors satisfying1

(
∂ρjρj +

1

ρj
∂ρj −

1

ρ2
j

)
Wcj +MjWcj = a1j

[
Nj

(
∂ρjV0j

∂ρjU0j

)
+

(
λ0∂ρjV0j

ω∂ρjU0j

)]
,(

∂ρjρj +
1

ρj
∂ρj −

1

ρ2
j

)
Wsj +MjWsj = a2j

[
Nj

(
∂ρjV0j

∂ρjU0j

)
+

(
λ0∂ρjV0j

ω∂ρjU0j

)]
,

(2.27b)

with the far-field conditions2

Wcj ∼

(
0

1
2Sjωa1jρj log ρj + 2πρjaQ1j

)
, as ρj →∞ .

Wsj ∼

(
0

1
2Sjωa2jρj log ρj + 2πρjaQ2j

)
, as ρj →∞ .

(2.27c)

The nonhomogeneous terms of (2.26) must be orthogonal to the nullspace of the homogeneous adjoint3

operator, given by4

∆yjPj +MT
j Pj = 0 , yj ∈ R2 . (2.28)

We seek two linearly independent mode-1 solutions to (2.28) of the form Pj = Pcj cos θj and Pj =5

Psj sin θj , where Pcj and Psj are given by6

Pcj ≡ P̃j(ρj) cos θj , Psj ≡ P̃j(ρj) sin θj , P̃j(ρj) ≡

(
P̃1j

P̃2j

)
(2.29)

and the radially symmetric P̃j satisfies7

(
∂ρjρj +

1

ρj
∂ρj −

1

ρ2
j

)
P̃j +MT

j P̃j = 0 , 0 < ρj <∞ (2.30a)

with boundary and far-field conditions8

P̃j(0) = 0 , P̃j ∼

(
0

1/ρj

)
, as ρj →∞ . (2.30b)

Note that the normalization condition in the far-field condition of (2.30b) uniquely specifies P̃j , while9

the condition at the origin ensures continuity of Pcj and Psj . To apply the orthogonality condition, we10
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multiply (2.26) on the left by PT
cj,sj and integrate over a disk BR of radius R� 1 centered at the origin1

to obtain2

∫∫
BR

PT
cj,sj

[
∆yjWj +MjWj

]
dyj =

∫∫
BR

PT
cj,sjNjf1j dyj +

∫∫
BR

PT
c,sf2j dyj . (2.31)

We now compute each of the integrals in (2.31) in the limit R � 1. For the term on the left-hand side,3

we use Green’s identity along with (2.28) to obtain4

∫∫
BR

PT
cj,sj

[
∆yjWj +MjWj

]
dyj =

∫ 2π

θj=0

[
PT
cj,sj∂ρjWj −WT

j ∂ρjPcj,sj

]
Rdθj . (2.32)

.5

For the right-hand side of (2.32), we use the far-field conditions of (2.27c) along with (2.29) and (2.30b)6

to obtain for the cosine term7

∫ 2π

θj=0

[
PT
cj∂ρjWj −WT

j ∂ρjPcj

]
Rdθj ∼ π [2c1j logR+ 2c2j + c1j ] , R� 1 , (2.33a)

while for sine term, we have8

∫ 2π

θj=0

[
PT
sj∂ρjWj −WT

j ∂ρjPsj

]
Rdθj ∼ π [2s1j logR+ 2s2j + s1j ] , R� 1 , (2.33b)

where we have defined9

c1j ≡
1

2
Sjωaj1 , c2j ≡ 2πaQj1 , s1j =

1

2
Sjωaj2 , s2j ≡ 2πaQj2 . (2.33c)

For the second term on the right-hand side of (2.31), we use (2.25) for f2j and perform an integration by10

parts to obtain11

∫∫
BR

PT
cjf2j dyj ∼ πa1jωSj logR+ πa1jλ0 [−τ0k2j + k1j ] ,∫∫

BR

PT
sjf2j dyj ∼ πa2jωSj logR+ πa2jλ0 [−τ0k2j + k1j ] ,

(2.34)

where k1j and k2j are defined by the integrals (see [65])12

k1j ≡
∫ ∞

0
V ′0jP̃1jρj dρj , k2j ≡

∫ ∞
0

[U0j − χj ] (P̃2jρj)
′ dρj . (2.35)

Note that k1j and k2j are both functions of Sj through their dependence on V0j and P̃1j , as well as U0j ,13

P̃2j , and χj , respectively. For completeness, we reproduce plots of k1j and k2j versus Sj in Fig 1.14
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(b) k2j

Figure 1. Plots of (a) k1j and (b) k2j as defined in (2.35). Note that a spot with strength

Sj & 4.31 is unstable to a self-replication instability.

To compute the first term on the right-hand side of (2.31), we seek to rewrite Njf1 in terms of the linear1

operator ∆yj +Mj so that, upon multiplication by PT
cj,sj and integrating over BR, we may apply the2

divergence theorem. To proceed, we use (2.25) to compute3

Njf1 = Nj(a1j cos θj∂ρj + a2j sin θj∂ρj )

(
V0j

U0j

)
= Njaj · ∇yj

(
V0j

U0j

)
. (2.36)

Expanding (2.36), we have4

Njf1 =

(
−U2jaj · ∇yjV

2
0j − 2V2jaj · ∇yj (U0jV0j)

U2jaj · ∇yjV
2

0j + 2V2jaj · ∇yj (U0jV0j)

)
. (2.37)

Next, we add and subtract terms to each component of (2.37) to obtain full derivatives of U2jV
2

0j and5

2U0jV0jV2j and find6

Njf1 =

(
−aj · ∇yj (U2jV

2
0j)− aj · ∇yj (2V2jU0jV0j) + V 2

0jaj · ∇yjU2j + 2U0jV0jaj · ∇yjV2j

aj · ∇yj (U2jV
2

0j) + aj · ∇yj (2V2jU0jV0j)− V 2
0jaj · ∇yjU2j − 2U0jV0jaj · ∇yjV2j

)
. (2.38)

Passing the operator aj · ∇yj through the system of U2j and V2j in (2.10a), we observe that7

aj · ∇yj (U2jV
2

0j) + aj · ∇yj (2V2jU0jV0j) = −∆yjaj · ∇yjV2j + aj · ∇yjV2j ,

and8

aj · ∇yj (U2jV
2

0j) + aj · ∇yj (2V2jU0jV0j) = ∆yjaj · ∇yjU2j .
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We thus obtain from (2.38) that1

Njf1 =
[
∆yj +Mj

]
aj · ∇yjnj ; nj ≡

(
V2j

U2j

)
, (2.39)

where Mj is the matrix of the linearized reaction terms defined in (2.14b). Multiplying (2.39) by PT
cj,sj2

satisfying (2.28) and applying the divergence theorem, we have3

∫∫
BR

PT
cj,sjNjf1j dyj =

∫ 2π

0

(
PT
cj,sj∂ρj (aj · ∇yjnj)− (aj · ∇yjnj)

T∂ρjPcj,sj

)
Rdθj , (2.40)

where each term of the integrand on the right-hand side are evaluated on the circle ρj = R. For nj4

defined in (2.39), we use the far-field condition for V2j and U2j in (2.10b) to compute5

aj · ∇yjnj ∼

(
0

−2πρja
T
j Hjej

)
; ρj � 1 ,

∂ρjaj · ∇yjnj ∼

(
0

−2πaTj Hjej

)
; ρj � 1 .

(2.41)

Substituting (2.41) and (2.29)-(2.30b) into (2.40), we obtain6

∫∫
BR

PT
cjNjf1j dyj ∼ −4π2

[
aj1H(m,11)

j + aj2H(m,21)
j

]
,∫∫

BR

PT
sjNjf1j dyj ∼ −4π2

[
aj1H(m,12)

j + aj2H(m,22)
j

]
,

(2.42)

where H(m,pq)
j denotes the (p, q)-th entry of the matrix H(m)

j defined in (2.10c).7

Now we substitute (2.33), (2.34) and (2.42) for their respective terms in the orthogonality condition8

(2.31) to obtain for R� 1 and j = 1, . . . , N ,9

2c1j logR+ 2c2j + c1j = aj1ωSj logR+ aj1λ0 [−τ0k2j + k1j ]− 4π
[
aj1H(m,11)

j + aj2H(m,21)
j

]
,

2s1j logR+ 2s2j + s1j = aj2ωSj logR+ aj2λ0 [−τ0k2j + k1j ]− 4π
[
aj1H(m,12)

j + aj2H(m,22)
j

]
.

(2.43)

Observe that, with c1j and s1j defined in terms of aj1 and aj2 in (2.33c), the logR terms in (2.43) cancel,10

yielding11

[
1

2
Sjω + ωk2j + 4πH(m,11)

j

]
aj1 + 4πH(m,21)

j aj2 + 4πaQj1 = k1jλ0aj1 ,

4πH(m,12)
j aj1 +

[
1

2
Sjω + ωk2j + 4πH(m,22)

j

]
aj2 + 4πaQj2 = k1jλ0aj2 .

(2.44)
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where aQj1 and aQj2 are the first and second components, respectively, of the vector aQj defined in1

(2.26c), which is the term giving rise to the coupling between the different inner regions. Substituting2

for aQj in (2.44), we arrive at the 2N × 2N matrix-eigenvalue problem for the oscillation modes a, Hopf3

bifurcation frequency λ0 and threshold τ0 ≡ ω/λ0:4

K−1
1

[
ω

(
1

2
S + K2

)
+ 4πH(m) + 4πQω

]
a = λ0a . (2.45a)

where S is the 2N × 2N matrix of spot strengths (2.22b), while the 2N × 2N matrices K1, K2, H, and5

Qω are defined as6

K1 ≡


k11

k11

. . .

k1N

k1N

 , K2 ≡


k21

k21

. . .

k2N

k2N

 ,

Qω =


QTω1

QTω2
...

QTωN

 , H ≡


H(m)

1

H(m)
2

. . .

H(m)
N

 .

(2.45b)

In (2.45b), k1j and k2j are the integrals defined in (2.35), Qωj are the 2N × 2 matrices defined in (2.26c),7

and Hj is the 2 × 2 matrix defined in (2.10c). Rewriting in terms of previously defined matrices, we8

obtain that the final matrix-eigenvalue problem of (2.45a) takes the form9

K−1
1 [B(ω)−M(ω)]a = λ0a (2.46a)

where the 2N × 2N matrices B(ω) and M(ω) are given by10

B(ω) ≡ ω
[(

1− 1

ν

)
S + K2

]
+ 4πH+ 4π

(
∇2Gω

)
S , (2.46b)

11

M(ω) ≡ 8π2 (∇1Gω)T
[

1

ν
IN + χ′ + 2πGω

]−1

(∇2Gω)S , (2.46c)

with the N × 2N and 2N × 2N matrices (∇1Gω) and
(
∇2Gω

)
, respectively, given by12

(∇1Gω) ≡ ((∇1Gω)1 (∇1Gω)2 · · · (∇1Gω)N ) ,

(∇2Gω) ≡


[Fω1 −Hω1 ]T ETω12

· · · ETω1N

ETω21
[Fω2 −Hω2 ]T · · ·

...
... · · · . . .

...

ETωN1
· · · · · · [FωN −HωN ]T

 .
(2.46d)
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In (2.46), S is the diagonal matrix of spot strengths defined in (2.22b), H is the diagonal block matrix1

with each block a linear combination of Hessian matrices of the Neumann Green’s function weighted by2

spot strengths (see (2.10c)),
(
∇2Gω

)
is a block matrix involving second order derivatives of the Helmholtz3

Green’s function and its regular part (see (2.20c)), (∇1Gω) and (∇2Gω) are N×2N matrices involving first4

derivatives of the first and second arguments of the Helmholtz Green’s function Gω(x;x0), respectively5

(see (2.46d) and (2.22b)), IN is the N ×N identity matrix, χ′ is the diagonal matrix whose j-th diagonal6

entry is χ′(S), while Gω is the Green’s interaction matrix The diagonal matrices K1 and K2 are defined in7

(2.45b); the terms along the diagonal are the nonzero constants defined in (2.35) that must be computed8

numerically. The (i, j)-th entry or block in each matrix when i 6= j accounts for the interaction between9

the i-th and j-th spot. This leads to the following Principal Result:10

Principal Result 2.1. Consider an N -spot equilibrium of system (1.1) that is stable to large eigenvalues11

and also to monotonic translational instabilities. Then, as τ is increased past τ̂k/ε
2, a Hopf bifurcation12

will result as a complex conjugate pair of eigenvalues crosses the imaginary axis at ±iε2λ̂I into the right-13

half plane. The k-th Hopf bifurcation threshold τ̂k and corresponding frequency λ̂Ik are determined in14

terms of roots of the two transcendental equations15

Re
{

det
(
B(iω̂k)−M(iω̂k)− iλ̂IkI2N

)}
= 0 , (2.47a)

16

Im
{

det
(
B(iω̂k)−M(iω̂k)− iλ̂IkI2N

)}
= 0 , (2.47b)

17

where ω̂k ≡ τ̂kλ̂Ik, and I2N is the 2N × 2N identity matrix. The 2N × 2N matrix B(iω̂k), containing18

terms involving second derivatives of G and Gω, is defined in (2.46b), while the 2N×2N matrix M(iω̂k),19

containing terms involving zero and first order derivatives of Gω, is defined in (2.46c). The k-th mode of20

oscillation corresponding to the Hopf bifurcation at τ = τ̂k/ε
2 is given by the 2N -vector âk, the nullspace21

of the singular matrix B(iω̂k)−M(iω̂k)− iλ̂IkI2N . That is, the direction of oscillation of the j-th spot is22

given by the 2-vector â
(j)
k , composed of the 2j − 1 and 2j entries of âk. The stability threshold τ = τ∗ of23

the N -spot equilibrium is given by τ∗ = τ̂∗/ε2, where τ̂∗ = mink τ̂k, with corresponding angular frequency24

ε2λ̂∗Ik and mode â∗. The direction of oscillation of the j-th spot at onset is the 2-vector â∗(j), composed25

of the 2j − 1 and 2j entries of â∗.26

We make one remark on the direction vector â∗(j) of Principal Result 2.1. If â∗(j) is real, then at onset,27

the j-th spot oscillates about the point xj ∈ Ω along the direction â∗(j). If â∗(j) = Re(â∗(j)) + iIm(â∗(j)),28

the trajectory of the k-th spot at onset is that of a rotated ellipse centered at xj with angle of rotation29

and minor and major axes determined by the 2 × 2 matrix (Re(â∗(j)) − Im(â∗(j))). We give numerical30

examples of both types of oscillation in §4.31

3. Single-spot analysis32

In this section, we consider the special case of the eigenvalue problem (2.46) when the pattern consists of33

only N = 1 spot. We compare our result to that given in [65] for the special case of the unit disk, showing34

that we recover its result from (2.46) when N = 1 and Ω is the unit disk. In doing so, we highlight the35

extra terms that arise in the eigenvalue problem due to asymmetries of the domain that were absent in36

the analysis of the unit disk. We also perform an analysis of a perturbed unit disk and show how the37

perturbation affects the bifurcation threshold, corresponding frequency, as well as the preferred direction38

of oscillation.39
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In the case of a single spot of strength S, the only terms that remain in (2.46) are the (1,1) entries and1

blocks of the matrices in the formula. Then the small eigenvalue problem for N = 1 is (2.46), where the2

2× 2 matrices B(ω) and M(ω) are given by3

B(ω) ≡ ω
[(

1− 1

ν

)
S + k21

]
I2 + 4πH

(m)
11 + 4π [Fω1 −Hω1 ]T ,

M(ω) ≡ 8π2S

[
1

ν
+ χ′(S) + 2πRω(x1;x1)

]−1 (
∇xRω(x;x1) |x=x1

) (
∇xRω(x;x1) |x=x1

)T
.

(3.1)

Recall that ∇xR
(m)(x;x1) |x=x1= 0 since x1 is an equilibrium location of the one-spot pattern. In4

highly symmetric geometries such as rectangles and the unit disk which, the zero of ∇xR
(m)(x;x1) |x=x15

coincides exactly with that of ∇xRω(x;x1) |x=x1
. That is, the gradient of the regular parts of the6

Neumann (2.7) and Helmholtz (1.2) Green’s functions vanish at the same value of x1. In these geometries,7

the matrix M(ω) vanishes while the Hessian matrices H
(m)
11 and Hω1 along with Fω1 can be made diagonal.8

The eigenvalue problem (2.46) then decouples to form9

k−1
11

{
ω

[(
1− 1

ν

)
S + k21

]
I2 + 4π

[
H

(m,11)
11 + F (11)

ω1
−H(1,1)

ω1

]
S

}
a1 = λ0a1 ,

k−1
11

{
ω

[(
1− 1

ν

)
S + k21

]
I2 + 4π

[
H

(m,22)
11 + F (22)

ω1
−H(2,2)

ω1

]
S

}
a2 = λ0a2 ,

(3.2)

where H
(m,jj)
11 and H

(jj)
ω1 are the (j, j) components of the Hessian matrices H

(m)
11 and Hω1 of the Neumann10

and Helmholtz Green’s functions, respectively. The dominant mode of oscillation would either along the11

(1, 0) or (0, 1) directions depending on which pair of Hessian terms in (3.2) yields the lower Hopf threshold12

τ̂ .13

In even more symmetric geometries such as the square and unit disk, the latter of which we analyze in14

detail below, H
(m)
11 and Hω1 are multiples of I2 so that (2.46) reduces to the scalar problem given by15

ω

[(
1− 1

ν

)
S + k21

]
+ 4π

[
H

(m,11)
11 + F (1,1)

ω1
−H(1,1)

ω1

]
S − k11λ0 = 0 , (3.3)

In such geometries, the vector a indicating the direction of spot oscillation at onset becomes arbitrary,16

and there is no preferred direction of oscillation.17

Observe from (2.21) withN = 1 that the coincidence in the zeros of∇xR(x;x1) |x=x1 and∇xRω(x;x1) |x=x1
18

implies that κ1 = 0. With κ1 = 0, the additional extra Gλτ term in the outer solution for the eigenfunc-19

tion ψ1 in (2.19) vanishes, while the O(ε) term is also absent in the inner expansion for the eigenfunctions20

Φ1 and Ψ1. As such, we may attribute the presence of these two terms to the asymmetry of the domain.21

Their effects are encoded in the matrix M(ω) in (3.1).22

In the next section, we consider (3.3) for the case of the unit disk and show that it is equivalent to the23

eigenvalue problem derived in [65].24
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3.1. The unit disk. We first require the Hessian terms of the Neumann and Helmholtz Green’s functions,1

H
(m,11)
11 and H

(1,1)
ω1 , respectively, along with F (1,1)

ω1 , the gradient with respect to the source location of the2

gradient of the regular part of the Helmholtz Green’s function.3

We begin with computing F (1,1)
ω1 . In polar coordinates x = (x, y) = ρ(cos θ, sin θ), [10] gives the series4

solution for the Helmholtz Green’s function Gω(x;x0) satisfying (1.2) with source at x0 = (x0, y0) =5

ρ0(cos θ0, sin θ0) as6

Gω(ρ, θ; ρ0, θ0) =
1

2π
K0

(√
ω|x− x0|

)
− 1

2π
A0I0(

√
ωρ)− 1

π

∞∑
n=1

cos(n(θ − θ0))AnIn(
√
ωρ) , (3.4)

where |x − x0| =
√
ρ2 + ρ2

0 − 2ρρ0 cos(θ − θ0) and An = K ′n(
√
ω)In(

√
ωρ0)/I ′n(

√
ω) for n = 0, 1, . . .. In7

(3.4), Im(z) and Km(z), m = 0, 1, . . ., denote the modified Bessel functions of the first and second kind of8

order m, respectively. To compute F (1,1)
ω1 in (3.3), we first obtain Rω(x;x0) from the definition in (1.2b)9

along with the small argument asymptotics of K0(z)10

Rω(ρ, θ; ρ0, θ0) =
1

2π

[
−γ − log

√
ω

2
+
ω

4

(
− log |x− x0|+ 1− γ − log

√
ω

2

)
|x− x0|2

]
− 1

2π
A0I0(

√
ωρ)− 1

π

∞∑
n=1

cos(n(θ − θ0))AnIn(
√
ωρ) . (3.5)

In (3.5), γ is Euler’s constant. We next use (3.5) to compute Fω1 , the gradient of the regular part with11

respect to x evaluated at x = x0. We have12

∇xRω(x;x0) =
ω

4π

(
− log |x− x0|+

1

2
− γ − log

√
ω

2

)
(x− x0)

−
√
ω

2π
A0I

′
0(
√
ωρ)eθ −

√
ω

π

∞∑
n=1

cos(n(θ − θ0))AnI
′
n(
√
ωρ)eθ , (3.6)

where eθ ≡ (cos θ, sin θ)T . Setting x = x0 in (3.6), we obtain13

Fω1 ≡ ∇xRω(x;x0) |x=x0= −
√
ω

π

∞∑
n=0

cnAnI
′
n(
√
ωρ0)eθ0 , (3.7)

where cn = 1/2 (cn = 1) when n = 0 (n > 0). Observe in (3.7) that setting x0 = 0 results in the gradient14

being 0, since x0 = 0 is the equilibrium location of the spot.15

Finally, to compute F (1,1)
ω1 in (3.3), we use (2.20c) take the gradient of the first component of (3.7) with16

respect to x0 using ∇x0 = eθ0∂ρ0 + ρ−1
0 e′θ0∂θ0 to obtain17
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∇x0F
(1)
ω1

= −eθ0 cos θ0
ω

π

∞∑
n=0

cn
K ′n(
√
ω)

I ′n(
√
ω)

[(
I ′n(
√
ωρ0)

)2
+ In(

√
ωρ)I ′′n(

√
ωρ0)

]
+

1

ρ0
e′θ0 sin θ0

√
ω

π

∞∑
n=0

cn
K ′n(
√
ω)

I ′n(
√
ω)

In(
√
ωρ0)I ′n(

√
ωρ0) , (3.8)

where e′θ0 = (− sin θ, cos θ). Taking the limit as ρ0 → 0+ in (3.8) yields1

(
F (1,1)
ω1

F (1,2)
ω1

)
= lim

ρ0→0+
∇x0F

(1)
ω1

= − ω

4π

[
K ′0(
√
ω)

I ′0(
√
ω)

+
K ′1(
√
ω)

I ′1(
√
ω)

](
1

0

)
. (3.9)

As expected, the second component of (3.9) is zero since the matrix Fω1 must be diagonal due to the2

symmetry of the disk. It remains now to compute the Hessian term of the Neumann Green’s function,3

H
(m,11)
11 and that of the Helmholtz Green’s function, H

(1,1)
ω1 .4

The Neumann Green’s function G(m)(ρ) satisfying (2.7) with source at the origin is given in polar coor-5

dinates by6

G(m)(ρ) = − 1

2π
log ρ+

ρ2

4π
− 3

8π
. (3.10)

From (3.10) and (2.7b), we obtain that H
(m,11)
11 = (2π)−1. The Helmholtz Green’s function Gω(ρ)7

satisfying (1.2) with source at the origin is given in polar coordinates by8

Gω(ρ) =
1

2π

[
K0(
√
ωρ)− K ′0(

√
ω)

I ′0(
√
ω)

I0(
√
ωρ)

]
. (3.11)

Using the small argument asymptotics of K0(z) and I0(z) in (3.11), we obtain from (1.2b) the Hessian9

term10

H(1,1)
ω1

=
1

π

[
−ω

4
log

√
ω

2
+

1− γ
4

ω

]
− ω

4π

K ′0(
√
ω)

I ′0(
√
ω)

. (3.12)

With H
(m,11)
11 = (2π)−1 and using (3.12) for H

(1,1)
ω1 and (3.9) for F (1,1)

ω1 , we obtain from (3.3)11

2 + ω

[
log

(
eγε
√
ω

2

)
− K ′1(

√
ω)

I ′1(
√
ω)

]
=
λ0k11 − ωk21

S
. (3.13)

Setting λ0 = iλI and replacing ω with iλIτ0 in (3.13), we recover the complex equation given in (4.51)12

of [65] for the Hopf stability threshold τ0 and corresponding bifurcation frequency λI .13
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3.2. The perturbed disk. In this section, we compute the leading order correction to the Neumann1

and Helmholtz Green’s functions when Ω is the perturbed disk with boundary parametrized by (x1, x2) =2

(1 + σf(θ))(cos θ, sin θ) with ε � σ � 1 and some function f(θ) periodic over the interval [0, 2π). We3

use this calculation to obtain analytic insight into how domain geometry impacts the preferred direction4

of oscillation at the onset of instability. Since f can be expressed as a Fourier series, and the leading5

order effects of the perturbation are linear, it suffices to perform the calculation for individual modes6

f(θ) = cosnθ with n = N. Analysis of perturbations of sinnθ can can be recovered by replacing7

θ → θ − π/(2n).8

We show in the following analysis that the n = 2 mode impacts the bifurcation threshold, oscillation9

frequency, as well as oscillation mode at O(σ). We then use this analysis to briefly show that the n 6= 210

effects enter only in higher orders σ. We thus focus our calculations on the n = 2 case for which the11

perturbed disk Ω is slightly elliptical in shape with the major axis aligned along the x1 direction. For12

n = 2, we show that the mode of oscillation along the x1-axis is the first to become unstable as τ is13

increased. That is, we show that the threshold corresponding to the (1, 0) mode of oscillation is smaller14

than that for the unit disk, and that the threshold of the (0, 1) mode is larger than that of the unit disk.15

The effect of the boundary perturbation on the localized variable v(x) is exponentially small. As such,16

we need only expand17

u ∼ u0(ρ) + σu1(ρ, θ) , (3.14)

and compute the boundary conditions for u1 in terms of u0. Proceeding, we find that an outward pointing18

normal vector on ∂Ω is19

n = (1 + σf(θ))eθ − σf ′(θ)e′θ . (3.15)

In polar coordinates, the homogeneous boundary condition ∇u · n = 0 becomes20

uρ −
σf ′

(1 + σf)2
uθ = 0 . (3.16)

Substituting (3.14) into (3.16) and expanding to first order in σ, we obtain the boundary conditions21

u0ρ(1) = 0 , u1ρ(1, θ) = −f(θ)u0ρρ(1) . (3.17)

We begin with the expansion of the Neumann Green’s function G(m) ∼ G
(m)
0 + σG

(m)
1 , where G

(m)
0 is22

the solution given in (3.10) for the unperturbed unit disk Ω0 with source at the origin. From (3.17), the23

boundary value problem for G1 is then24

∆G
(m)
1ρρ = 0 , G

(m)
1ρ (1, θ) = −f(θ)

1

π
;

∫
Ω0

G1 dΩ0 = 0 , (3.18)

with regularity at ρ = 0. When f(θ) = cos 2θ, the solution to (3.18) is25
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G
(m)
1 (ρ, θ) = − 1

2π
ρ2 cos 2θ , (3.19)

or G1(x1, x2) = (2π)−1(x2
2 − x2

1) in Cartesian coordinates. To leading order in σ, we therefore have that1

the Hessian matrix H
(m)
11 in (3.1) is given by2

H
(m)
11 ∼ 1

2π
I2 + σ

1

π

(
−1 0

0 1

)
, (3.20)

where the leading order term in (3.20) is computed from the Neumann Green’s function of the unperturbed3

disk given in (3.10).4

For the Helmholtz Green’s function Gω of (1.2a), we expand Gω = Gω0 +σGω1 , where Gω0 is the leading5

order solution when ρ > ρ0 given by [10]6

Gω0(ρ, θ; ρ0, θ0) =
1

2π

∞∑
n=−∞

e−in(θ−θ0)Fn(ρ)In(
√
ωρ0) , (3.21)

where7

Fn(ρ) ≡ Kn(
√
ωρ)−K ′n(

√
ω)In(

√
ωρ)/I ′n(

√
ω) . (3.22)

We note that (3.21) is equivalent to (3.4) when ρ > ρ0. While (3.4) has the singularity extracted8

analytically from the sum, (3.21) is more convenient to work with when x is not near x0. From (3.17),9

with f(θ) replaced by cos 2θ and u0ρρ(1) replaced by Gω0ρρ |ρ=1, the boundary value problem for Gω1 is10

then11

∆Gω1 − ωGω1 = 0 , Gω1ρ(1, θ) = − 1

2π
Re

[ ∞∑
n=−∞

e−i(n−2)θ+inθ0F ′′n (1)In(
√
ωρ0)

]
. (3.23)

In (3.23), we have used Gω0 in (3.21) to obtain the boundary condition at ρ = 1. The solution to (3.23)12

is then13

Gω1(ρ, θ; ρ0, θ0) = − 1

2π
√
ω

[ ∞∑
n=−∞

cos [(n− 2)θ − nθ0]F ′′n (1)In(
√
ωρ0)

In−2(
√
ωρ)

I ′n−2(
√
ω)

]
. (3.24)

We now compute the contributions of the domain perturbation to the quantities F (k,k)
ω1 and H

(k,k)
ω1 ,14

k = 1, 2, of (3.2). We first compute the correction to Fω, the gradient of the regular part evaluated at15

x0. Since Gω1 contains no singularities, we use ∇x = eθ∂ρ + ρ−1e′θ∂θ to obtain16

g ≡ ∇xGω1 |x=x0= eθ0 cos 2θ0A(ρ0) + e′θ0 sin 2θ0B(ρ0) , (3.25a)
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where1

A(ρ0) ≡ − 1

2π

∞∑
n=−∞

F ′′n (1)

I ′n−2(
√
ω)
In(
√
ωρ0)I ′n−2(

√
ωρ0) ,

B(ρ0) ≡ − 1

2π
√
ωρ0

∞∑
n=−∞

(n− 2)
F ′′n (1)

I ′n−2(
√
ω)
In(
√
ωρ0)In−2(

√
ωρ0) .

(3.25b)

The leading order correction to Fω is given by limρ→0+

(
∇x0g

(1) ∇x0g
(2)
)

, where g(1) and g(2) are2

the first and second components of the vector g defined in (3.25a). We next use the fact that for |z| � 1,3

we have4

In(z)I ′n−2(z) ∼

 z
4 n = 0, 1

O(z2) else
;

In(z)In−2(z) ∼


z2

8 n = 0, 2

z2

4 n = 1

O(z3) else

.

(3.26)

We thus obtain that5

lim
ρ→0+

(
∇x0g

(1) ∇x0g
(2)
)

= − 1

8π

√
ω

[
F ′′0 (1)

I ′−2(
√
ω)

+
F ′′1 (1)

I ′−1(
√
ω)

](
1 0

0 −1

)
. (3.27)

From (3.9) and (3.27), we obtain the two-term expansion in σ for the matrix Fω1 in (3.1)6

Fω1 ∼ −
ω

4π

[
K ′0(
√
ω)

I ′0(
√
ω)

+
K ′1(
√
ω)

I ′1(
√
ω)

]
I2 − σ

√
ω

8π

[
F ′′0 (1)

I−2(
√
ω)

+
F ′′1 (1)

I−1(
√
ω)

](
1 0

0 −1

)
, (3.28)

where the leading order term of (3.28) was computed in (3.9).7

Finally, for the correction to the Hessian term Hω1 of (3.1), we set (ρ, θ) = (ρ0, θ0) in (3.24) and let8

ρ→ 0+ to obtain9

Gω1(x0;x0) ∼ −
√
ω

8π

[
F ′′0 (1)

2I ′−2(
√
ω)

+
F ′′1 (1)

I ′−1(
√
ω)

+
F ′′2 (1)

2I ′0(
√
ω)

]
(x2

1 − x2
2) , (3.29)

yielding the two-term expansion for Hω110



OSCILLATORY TRANSLATIONAL INSTABILITIES IN GENERAL 2-D DOMAINS 24

Hω1 ∼
{

1

π

[
−ω

4
log

√
ω

2
+

1− γ
4

ω

]
− ω

4π

K ′0(
√
ω)

I ′0(
√
ω)

}
I2

− σ
√
ω

8π

[
F ′′0 (1)

I ′−2(
√
ω)

+ 2
F ′′1 (1)

I ′−1(
√
ω)

+
F ′′2 (1)

I ′0(
√
ω)

](
1 0

0 −1

)
, (3.30)

where the leading order term in (3.30) corresponds to that for the unperturbed unit disk computed in1

(3.12). In (3.28) and (3.30), the function Fn(ρ) is defined in (3.22).2

We now substitute (3.20) for H
(m)
11 , (3.28) for Fω1 , and (3.30) for Hω1 into (3.2). We perturb the3

eigenvalue λ0 = i(λI0 + σλI1) and the stability threshold τ0 = τ̂0 + στ̂1 so that ω = λ0τ0 ≡ ω0 + σω1,4

where ω0 = iλI0 τ̂0 and ω1 = i(λI1 τ̂0 + λI0 τ̂1). The calculation below will show that τ̂1 < 0 for the (1, 0)5

oscillation mode while τ̂1 > 0 for the (0, 1) oscillation mode, implying that the preferred direction of6

oscillation is along the major axis of the perturbed unit disk.7

From (3.2), we obtain the leading order eigenvalue problem (3.13) for ω0 and λI0 corresponding to the8

unperturbed problem, while at O(σ), we obtain the two uncoupled equations for ω1 and λI09

ω1

[
log

eγε

2
+

1

2
logω0 −

K ′1(
√
ω0)

I ′1(
√
ω0)

]
+ ω0

[
1

2

ω1

ω0
− ω1Q(

√
ω0)

]
− 4 +

√
ω0

2

[
F ′′1 (1)

I ′−1(
√
ω0)

+
F ′′2 (1)

I ′0(
√
ω0)

]
=
ik11λI1 − k21ω1

S
, (3.31a)

ω1

[
log

eγε

2
+

1

2
logω0 −

K ′1(
√
ω0)

I ′1(
√
ω0)

]
+ ω0

[
1

2

ω1

ω0
− ω1Q(

√
ω0)

]
+ 4−

√
ω0

2

[
F ′′1 (1)

I ′−1(
√
ω0)

+
F ′′2 (1)

I ′0(
√
ω0)

]
=
ik11λI1 − k21ω1

S
, (3.31b)

where the function Q(z) is defined by10

Q(z) =
1

2z

(z2 + 1) [K1(z)I0(z) +K0(z)I1(z)]

(zI0(z)− I1(z))2
. (3.31c)

The signs in (3.31a) correspond to that of the (1, 0) mode of oscillation, while the signs of (3.31b)11

correspond to that of the (0, 1) mode. Rearranging (3.31a) and (3.31b)12

ω1

[
log

eγε

2
+

1

2
logω0 −

K ′1(
√
ω0)

I ′1(
√
ω0)

+
1

2
− ω0Q(

√
ω0) +

k21

S

]
− ik11λI1

S

= 4−
√
ω0

2

[
F ′′1 (1)

I ′−1(
√
ω0)

+
F ′′2 (1)

I ′0(
√
ω0)

]
, (3.32a)
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ω1

[
log

eγε

2
+

1

2
logω0 −

K ′1(
√
ω0)

I ′1(
√
ω0)

+
1

2
− ω0Q(

√
ω0) +

k21

S

]
− ik11λI1

S

= −4 +

√
ω0

2

[
F ′′1 (1)

I ′−1(
√
ω0)

+
F ′′2 (1)

I ′0(
√
ω0)

]
. (3.32b)

Noting that ω1 = i(λI1 τ̂0 + λI0 τ̂1) is pure imaginary, we equate the real and imaginary parts of (3.32) to1

obtain2

− (λI1 τ̂0 + λI0 τ̂1)Im

{
1

2
logω0 −

K ′1(
√
ω0)

I ′1(
√
ω0)
− ω0Q(

√
ω0)

}
= ±4∓ 1

2
Re

{
√
ω0

[
F ′′1 (1)

I ′−1(
√
ω0)

+
F ′′2 (1)

I ′0(
√
ω0)

]}
, (3.33a)

(λI1 τ̂0 + λI0 τ̂1)Re

{
k11

Sτ̂0
+

1

2
− ω0Q(

√
ω0)

}
− k11λI1

S

= ∓1

2
Im

{
√
ω0

[
F ′′1 (1)

I ′−1(
√
ω0)

+
F ′′2 (1)

I ′0(
√
ω0)

]}
, (3.33b)

where, in (3.33b), we have used (4.52b) of [65] to obtain that the leading order threshold τ̂0 satisfies the3

relationship4

Re

{
log

eγε

2
+

1

2
logω0 −

K ′1(
√
ω0)

I ′1(
√
ω0)

+
k21

S

}
=
k11

Sτ̂0
. (3.34)

Observe that τ̂0 ∼ 1/| log ε| � 1. In (3.33), the top (bottom) sign corresponds to the (1, 0) ((0, 1))5

oscillation mode. Solving for the quantity λI1 τ̂0 + λI0 τ̂1 in (3.33a), we obtain6

(λI1 τ̂0 + λI0 τ̂1) ≡ ω̃1 =
∓4± 1

2Re
{√

ω0

[
F ′′1 (1)

I′−1(
√
ω0)

+
F ′′2 (1)
I′0(
√
ω0)

]}
Im
{

1
2 logω0 −

K′1(
√
ω0)

I′1(
√
ω0)
− ω0Q(

√
ω0)
} . (3.35)

We note that there are no parameters on the right-hand side of (3.35), as the numerical value for ω0 was7

given in (4.52c) of [65] as ω0 = 3.02603687i and shown to be independent of parameters of the original8

PDE system (1.1). Substituting in this value for ω0 we obtain ω̃1 ≈ ∓1.7046. Next, from (3.33b), we9

solve for λI1 to obtain10

λI1 =
ω̃1

τ̂0
+

S

k11

[
ω̃1Re

{
1

2
− ω0Q(

√
ω0)

}
± 1

2
Im

{
√
ω0

[
F ′′1 (1)

I ′−1(
√
ω0)

+
F ′′2 (1)

I ′0(
√
ω0)

]}]
. (3.36)

Notice that as ε→ 0, since τ̂0 ∼ 1/| log ε|, λI1 ∼ ω̃1| log ε|. That is, λI1 has the same sign as ω̃1 as ε→ 0,11

where ω̃1 was defined in (3.35).12

Finally, with τ̂1 = (ω̃1 − λI1 τ̂0)/λI0 , we use (3.36) for λI1 to obtain13
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τ̂1 = − Sτ̂0

k11λI0

[
ω̃1Re

{
1

2
− ω0Q(

√
ω0)

}
± 1

2
Im

{
√
ω0

[
F ′′1 (1)

I ′−1(
√
ω0)

+
F ′′2 (1)

I ′0(
√
ω0)

]}]
. (3.37)

Noting that the spot strength S, the leading order threshold τ̂0, and leading order frequency λI0 are all1

positive while k11 < 0 from Fig. 1, we use ω0 = 3.02603687i and the upper signs in (3.35) and (3.37) to2

find that τ̂1 ≈ −(10.323)Sτ̂0/(|k11|λI0) < 0 while τ̂1 ≈ (10.323)τ̂0/(|k11|λI0) > 0 for the lower sign. We3

thus conclude that, for the perturbed disk with radius r = 1 + σ cos 2θ with 0 < σ � 1, the preferred4

mode of oscillation is along the major axis, with corresponding threshold τ̂ ∼ τ̂0 + στ̂1 less than that for5

the unit disk. The threshold corresponding to oscillation along the minor axis is larger than that for the6

unit disk. Furthermore, since ω̃1 < 0 for the (1, 0) mode, the frequency of oscillation is less than that for7

the unit disk. Likewise, ω̃1 > 0 for the (0, 1) mode so that the oscillation frequency along that direction8

increases with the perturbation of the unit disk.9

A perturbation of the form f(θ) = a2 cos 2θ + b2 sin 2θ can be written as f(θ) = C2 cos(2θ − φ), where10

C2 =
√
a2

2 + b22 and cosφ = a2/C2, sinφ = b2/C2. This simply constitutes a counterclockwise rotation of11

the perturbation by φ/2. In this case, the direction of oscillation is along the line that makes an angle12

φ/2 with the x1 axis.13

We now briefly comment on the effect of perturbations of the form f(θ) = cosmθ for m 6= 2. The m = 114

perturbation constitutes a translation of the unit disk by σ in the x1 direction along with an O(σ2)15

deformation away from circular geometry. That is, the parametric equation for this perturbed disk is16

x1 = σ + (1 + σ2g(θ)) cos θ and x2 = (1 + σ2g(θ)) sin θ with g(θ) = (1/4)(1 − cos 2θ) + O(σ2). The17

geometry deformation to leading order is thus effectively a mode-2 perturbation with negative coefficient.18

From the above analysis, the m = 1 perturbation thus selects the (0, 1) oscillation mode as the dominant19

mode. We emphasize, however, that this is an O(σ2) effect in contrast to the O(σ) effect of the m = 220

mode. A similar argument asserts that the effect of f(θ) = sin θ is also O(σ2).21

When m ≥ 3, the leading order correction G1(ρ, θ) to the Neumann Green’s function in (3.19) would be22

replaced by an O(ρm) function, which has a zero Hessian at the origin. It therefore does not contribute23

to the eigenvalue problem (3.3). For the Helmholtz Green’s function, we have that Im(z) ∼ z|m| for24

|z| � 1 so that In(z)In−m(z) ∼ zα where α = |n| + |n − m| ≥ |m| while In(z)I ′n−m(z) ∼ zα where25

α = |n|+ |n−m− 1| ≥ |m− 1|. From (3.26), we observe that modes m ≥ 3 do not contribute towards26

Fω1 in (3.28) and Hω1 in (3.30).27

Since the leading order corrections to the Neumann and Helmholtz Green’s functions are linear in the28

perturbation f(θ), we arrive at the following Principal Result for the dominant mode of translational29

oscillations for a single spot inside a perturbed unit disk:30

Principal Result 3.1. Consider a one-spot equilibrium of system (1.1), where Ω is a perturbed unit31

disk with radius r(θ) given in polar coordinates by r(θ) = 1 + σf(θ) with 0 < ε � σ � 1, θ ∈ [0, 2π),32

where f(θ) is a 2π-periodic function. Let τud ≡ τ̂0/ε
2 be the Hopf bifurcation threshold for the slow33

oscillatory translational instability when σ ≡ 0 (i.e., for the unit disk), and let a2 ≡ π−1
∫ 2π

0 f(θ) cos 2θ dθ34

and b2 ≡ π−1
∫ 2π

0 f(θ) sin 2θ dθ. Then when at least one of a2 and b2 is nonzero, the Hopf bifurcation35

threshold will be less than τud, and the dominant mode of oscillation at onset will be along the line that36

makes an angle φ/2 with the x1-axis, where cosφ = a2/
√
a2

2 + b22, sinφ = b2/
√
a2

2 + b22. Furthermore, the37

corresponding bifurcation frequency will also decrease. When a2 = b2 = 0, the bifurcation threshold (to38

leading order in σ) will remain unchanged from τud.39
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While we have not performed the corresponding analysis for a near-square rectangle with edge lengths1

L and L + σ for ε � σ � 1, our analysis for the perturbed disk predicts that the preferred oscillation2

direction in a rectangle would be in the direction parallel to the longer edge. We show a numerical3

example of this scenario, along with several others illustrating our single- and multi-spot theory, in the4

next section.5

4. Numerical validation6

In this section, we numerically validate our theoretical result (2.46) by solving the full time-dependent7

PDE system (1.1) using the finite element solver FlexPDE 7 [22]. For single- and multi-spot equilibria8

of (1.1) on various domain geometries, we verify both the Hopf bifurcation threshold τ = ε−2τ̂∗ for the9

onset of oscillatory instabilities as well as the direction(s) of oscillations, where τ̂∗ is the minimum of all10

τ̂ satisfying the complex eigenvalue problem (2.46).11

Before we describe our results, we first outline our procedures. Initial N -spot equilibrium states for which12

we test stability are obtained by initializing an N -bump pattern in (1.1) with τ set well below any Hopf13

thresholds. We then evolve (1.1) until the time t is sufficiently large that changes in solution are no14

longer observed; observe that steady state solutions of (1.1) are unaffected by the value τ . Using this15

equilibrium solution as an initial condition, we trial various of values of τ to test stability; we say that16

the numerical (or “exact”) value of the Hopf bifurcation threshold is τ̂f if no oscillations are observed17

when τ0 < τ̂f − 0.005 and oscillations are observed when τ0 > τ̂f + 0.005.18

To compute τ̂ from the matrix-eigenvalue problem, (2.47), we require quantities associated with the19

Neumann and Helmholtz Green’s function of (2.7) and (1.2), respectively, for the domains Ω that we20

consider. For the unit disk and rectangle, analytic formulas for both are given in [10]. For the half disk,21

we simply employ the unit disk formula with the method of images to obtain the reflective boundary22

condition on the straight segment of the half-disk. For the more complex geometries, we employ the23

finite element solver from MATLAB’s PDE Toolbox. In the implementation, we solve a regular equation24

for G(m) −Gfree with nonhomogeneous Neumann conditions, where G is the desired Green’s function in25

Ω and Gfree is the corresponding free space Green’s function. Finally, the equilibrium locations xj and26

corresponding spot strengths Sj are obtained by simultaneously solving the 3N + 1 system of nonlinear27

equations (2.6), (2.8), and (2.9a).28

We make the following remarks on the numerical simulations that follow. Firstly, because there are as29

many as 2N distinct pairs of solutions (ω̂, λ̂I) to the nonlinear system (2.47), we were were not always30

able to find all thresholds when the number of spots N was sufficiently large. We make a note of this31

below where relevant. In all cases, however, the smallest threshold we found corresponded to the most32

unstable mode as observed numerically in the PDE simulations. Secondly, since the parameter B in (1.1)33

does not appear in the eigenvalue problem of Principal Result 2.1, we have set B = 0 in all numerical34

simulations. Values of the other parameters are given in each of the examples below.35

4.1. Hopf bifurcation of a single spot. In this subsection, we investigate the Hopf bifurcation of36

small eigenvalues of a single spot solution to (1.1) in three different domains Ω. The examples are:37
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(1) Ω is a perturbed unit disk with radius1

r = 1 + σf(θ) ; θ ∈ [0, 2π) , σ = 20ε ;

f(θ) =
1

4
[0.1 cos θ + a2 cos 2θ + cos 3θ + cos 4θ] .

(4.1)

In one numerical simulation, we take a2 = 0.1, while we take a2 = −0.1 in the other simulation.2

We confirm our prediction of §3.2 for the impact of the a2 coefficient on the dominant mode of3

oscillation.4

(2) Ω is a half-disk with radius 1 (Fig. 4). The predicted Hopf threshold is τ̂∗ = 0.0712 while the5

numerical result was found to be τ̂f = 0.072.6

(3) Ω is a rectangle of width 2 and length 1 (see Fig. 6). The predicted Hopf threshold is τ̂∗ = 0.0615,7

while the numerical threshold was found to be τ̂f = 0.062.8

(4) Ω is an asymmetric, non-simply connected domain consisting of the same rectangle as that in9

Fig. 6 with two differently sized holes in the shape of disks (see Fig. 8). All boundary conditions10

are reflective. The predicted Hopf threshold is τ̂ = 0.065 while the numerical threshold was found11

to be τ̂f = 0.0615.12

In each of the figures below showing snapshots of the solution for the localized activator component at13

various points in time, blue (yellow) regions denote small (large) values, while the red arrows indicate14

the direction of motion of the spot(s) at the given instant. We note that since the strength of the spot15

is a function of its location, spot-splitting may occur during the course of oscillations. In the multi-spot16

solutions, spot annihilation events may occur when spot distances decrease due to oscillation. We exclude17

illustrations of these phenomena and focus only on the oscillatory dynamics.18

Example 1. In this example, we verify the calculations of §3.2 on how the perturbation of the disk19

impacts the dominant mode of oscillation. For the perturbed disk of (4.1) with a2 = 0.1 > 0, Fig. 220

shows the oscillations of the spot at onset as well as in long-time. In particular, we observe that the (1, 0)21

oscillation mode (i.e., the horizontal mode) is the dominant mode, consistent with the result of §3.2.22

In Fig. 3, we set a2 = −0.1 < 0, leading to vertical oscillations of the spot. That is, we observe that23

when a2 < 0, the (0, 1) oscillation mode is dominant, consistent with the result of §3.2. We emphasize24

that the only difference between Figs. 2 and 3 is the sign of the a2 coefficient in (4.1). Furthermore, we25

note that |a2| is relatively small in comparison to the coefficients of the cos 3θ and cos 4θ terms, and yet26

it is the coefficient that dictates which mode of oscillation is preferred. This is due to the fact that the27

effect of the cos 2θ perturbation enters at leading order in σ, while those of higher modes enter at O(σ2).28

29

Example 2. In left portion of Fig. 4, we show the unstable oscillations of one spot in the half disk30

when τ exceeds the Hopf threshold. On the right, we plot the x1 and x2 coordinates of the spot-center31

as a function of time; observe that the initial oscillations at onset are only in the x1-direction. Indeed,32

the predicted Hopf thresholds are τ̂ = 0.0712 for the (1, 0) oscillatory mode and τ̂ = 0.1072 for (0, 1)33

mode. The lower threshold for the (1, 0) mode indicates that it is the dominant mode of oscillation,34

which is what is observed numerically. The saturation of the oscillation amplitudes indicates that the35

Hopf bifurcation is supercritical, with the initial horizontal oscillations leading to a periodic orbit with36

nonzero x1 and x2 components. Determining the path of this orbit and how it is impacted by the domain37

geometry is beyond the scope of this paper.38

In Fig. 5, for the half-disk, we demonstrate the convergence with respect to ε of the predicted values39

of the Hopf threshold τ̂ (Fig. 5a) and corresponding bifurcation frequency λI (Fig. 5b) to their exact40
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Figure 2. Example 1 – Hopf bifurcation of a single spot in a perturbed disk of the form

(4.1) with a2 = 0.1 > 0. In the top half, we indicate with arrows the direction of spot

motion at the particular time. In the bottom half, we plot the x1 and x2 coordinates of

the spot location as functions of time. For increasing time, the horizontal oscillation mode

emerges as dominant. The other parameters are S = 4, ε = 0.01, and τ0 = 0.084.

values obtained from numerical computations. The blue error bars indicate the range in which the exact1

threshold falls. We note that all quantities plotted in Fig. 5 have been scaled by ε−2; as such, the2

figures show that the error in the unscaled Hopf thresholds and frequencies scale as O(ε2| log ε|) when ε3

is sufficiently small.4

Example 3. In the left portion of Fig. 6, we show Hopf oscillations of a spot in a rectangle of height5

1 and width ` = 2. In our numerical simulations, we adjust the value of the feed-rate A in (1.1) in6

inverse proportion to ` so as to keep the spot strength S = (2π)−1A|Ω| constant. This is done in order to7

ensure that as the domain size |Ω| is increased, the spot strength S does not exceed the self-replication8

threshold of ∼ 4.3. The dominant mode of oscillations is in the direction of the longer dimension, similar9

to what was shown for the perturbed disk of §3.2. On the right, we plot the x1 and x2 coordinates of the10

spot center. The initial growth of amplitude oscillations saturates, suggesting that the Hopf bifurcation11

is supercritical. In contrast to the case of the half-disk, long-time oscillations occur along a straight12

horizontal line due to the symmetry of the rectangle.13

In Fig. 7, we plot the predicted (red, green) and numerical (blue bars) Hopf bifurcation thresholds versus14

the length ` of the rectangle of unit height. The blue error error bars indicate the range in which the exact15

threshold falls as determined from PDE simulations. The two predicted thresholds correspond to the16

(1, 0) (horizontal) and (0, 1) (vertical) oscillation modes. When ` = 1, the two thresholds are equal due17

to symmetry. As ` increases, the asymptotics results predict that the (1, 0) mode is the first to destabilize18

as τ0 is increased, in agreement with the oscillations parallel to the longer edge in the rectangle of Fig.19

6.20
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Figure 3. Example 1 – Hopf bifurcation of a single spot in a perturbed disk of the form

(4.1) with a2 = −0.1 < 0. In the top half, we indicate with arrows the direction of spot

motion at the particular time. In the bottom half, we plot the x1 and x2 coordinates of

the spot location as functions of time. For increasing time, the vertical oscillation mode

emerges as dominant. The other parameters are S = 4, ε = 0.01, and τ0 = 0.084.
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(b) long-time orbit path of spot

Figure 4. Example 2 – numerical simulations performed for a single spot on a half-disk

with τ0 = 0.0725, ε = 0.01 and S = 4. (a) The coordinates of the center of the spot, where

the blue (red) curve is the x1-coordinate (x2-coordinate). At onset, the oscillations occur

only in the x1 direction as predicted by (1, 0) being the dominant mode. For increasing

time, oscillations in the x2 coordinate appear, eventually settling to a periodic orbit with

nonzero x1 and x2 components. (b) The spot is shown in its equilibrium position with a

superimposed trace (in red) of the its long-time orbit path.
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Figure 5. Example 2 – comparison of Hopf thresholds and corresponding frequency for

ε = 0.04, 0.02, 0.01, 0.05, 0.025. The blue error error bars indicate the range in which

the exact threshold (obtained from PDE simulations) falls. The agreements in the Hopf

stability threshold (a) as well as the corresponding frequency (b) between the predicted

value and PDE simulations improve with decreasing ε.

Figure 6. Example 3 – numerical simulations performed for τ0 = 0.063, ε = 0.01 and

S = 4. On the left, we show oscillatory motion of the spot center as τ0 exceeds the Hopf

bifurcation threshold. Red arrows indicate the direction of motion. On the right, we plot

the coordinates of the center of the spot, where the blue (red) curve is the x1-coordinate

(x2-coordinate). The saturation of the oscillation amplitudes indicates that the Hopf

bifurcation is supercritical, with the initial horizontal oscillations leading to a stable orbit

with only a nonzero x1 component.

We observe that both the Hopf threshold and the corresponding frequency decrease with increasing `.1

Indeed, as ` → ∞, we expect a zero eigenvalue corresponding to translational invariance in the x1-2

direction. For this infinite strip, the only Hopf bifurcation is in the x2-direction.3

Example 4. In Fig. 8, we break the symmetry of the rectangle of Example 2 by removing two4

circular holes of different sizes. The feed-rate A is set so that the strength of the spot is S = 4. The5

break in symmetry causes the spot center to shift away from the (1, 0.5) location, and leads to long-time6

oscillations that occur along a curved path. The initial oscillations at onset, however, are still along a7
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Figure 7. Example 3 – thresholds for one spot in a rectangle of unit height and width `.

When ` = 1, the thresholds corresponding to the (1, 0) (horizontal) and (0, 1) (vertical)

oscillation modes are equal due to symmetry. When ` increases, the dominant mode of

oscillation is the one parallel to the longer edge of the rectangle.

nearly horizontal straight line (reflected by a real eigenvector of (2.46)), while the bifurcation threshold1

τ̂∗ is also very close to that of Example 3.

Figure 8. Example 4 – numerical simulations performed for τ0 = 0.063, ε = 0.01 and

S = 4. On the left, we show the oscillatory motion of the spot center as τ0 exceeds the Hopf

bifurcation threshold. The red arrows indicate the direction of motion at the particular

instant in time. On the right, we plot the coordinates of the spot center, where blue curve

is the x1-coordinate and red curve is the x2-coordinate. The holes in the domain break

the symmetry of the rectangle and long-time oscillations that occur along a curved path.

The oscillations at onset, however, are along a nearly horizontal straight line, which is

reflected by a real eigenvector of (2.46).

2

4.2. Hopf bifurcation of multiple spots. In this subsection, we investigate Hopf bifurcations of3

small eigenvalues of N -spot solutions to (1.1) along with the ensuing dynamics. While for a given N ,4

multiple equilibrium configurations of spot locations and strengths are possible, we focus on the following5

configurations:6
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(5) A ring of N equally-spaced spots concentric with the unit disk (see Fig. 10), and a line of N1

equally-spaced spots along the width of a rectangle of height 1 and width 5 (see Fig. 13). Com-2

parisons of stability thresholds are plotted in Fig. 9 against N . We observe excellent agreement3

between asymptotic and numerical values.4

(6) Two spots in an asymmetric domain consisting of the same rectangle as that in Example 3 with5

five holes in the shape of disks. All boundary conditions are reflective. The holes create a barriers6

between the two spots. The predicted Hopf threshold is τ̂∗ = 0.0891, while the threshold found7

from PDE simulations is τ̂f = 0.0887.8

Spots in symmetric N -spot equilibrium configurations all have equal strength S given by S = A
2Nπ|Ω| . In9

the asymmetric domains of Example 6, spot strengths are generally unequal and must be determined by10

a numerical solution of the nonlinear system (2.6), (2.8), and (2.9). In the figures containing snapshots11

of solutions, the red arrows indicate the initial direction of oscillation at onset of instability. Arrows of12

different sizes indicate the relative amplitudes of oscillation between the different spots.13

Example 5. In this example, we investigate dominant oscillation modes of symmetric N -spot equilibria.14

In particular, we show that our theory correctly predicts the switching of dominant modes as N is15

increased. In Fig. 9a, we plot two bifurcation thresholds for an N -spot equilibrium arranged in a ring16

concentric with the unit disk (see Fig. 10). The blue curve corresponds to the radial mode of oscillations17

characterized by in-phase oscillations in the radial direction. For N ≤ 5, the red diamonds denote the18

thresholds for the (near)-tangential mode in which spots oscillate (approximately) along the tangent of19

the equilibrium ring. As this threshold is lower than that of the radial mode, we expect that this mode20

emerges first as τ0 is increased. This is indeed observed in the first row of Fig. 10. The symmetry of even-21

numbered configurations allows this mode to be exactly tangential; for odd-numbered configurations, the22

spots undergo an elliptical orbit of high aspect ratio. An example of such an orbit is shown in Fig. 11a23

for the three-spot pattern. This elliptic orbit at onset is consistent with the fact the eigenvectors a∗24

of the eigenvalue problem (2.46) for the three- and five-spot configurations are complex with imaginary25

components small in comparison to the real components. Theoretical radii of these ring configurations26

were obtained from Eq. (16) of [29], and were used to initialize the simulations.27

For N > 5, the purple squares of Fig. 9a denote the next lowest threshold (above that of the in-phase28

radial threshold) that we were able to find in the nonlinear system (2.47). For such N , the radial mode29

is the lower threshold, in which case we expect that this mode emerges first as τ0 is increased. This is30

seen in the second row of Fig. 10. The black ×’s in Fig. 9a denote the value of τ0 at which the first31

Hopf bifurcation was encountered in our PDE simulations of (1.1). The agreement, including the switch32

of dominance from the non-radial to radial mode of oscillation at N = 6, is excellent.33

To provide intuition for this switch of mode-dominance from near-tangential oscillations when N ≤ 5 and34

in-phase radial oscillations, we briefly discuss the instability of a single spot on a circular sector of angle α35

oriented symmetrically about the vertical axis. That is, the region of the circular sector is parametrized36

in polar coordinates (r, θ) as 0 ≤ r ≤ 1 and angle π/2 − α/2 ≤ θ ≤ π/2 + α/2. By symmetry, the two37

modes of oscillation admitted by the eigenvalue problem (2.46) are the (1, 0) mode (the near-tangential38

mode) and the (0, 1) mode (the radial mode). From (2.46), we find that the near-tangential (radial) mode39

is dominant when α / 2π/5.48 (α ≥ 2π/5.48). That is, the dominant mode tends to be in the direction40

in which the boundary interaction is weaker. This is consistent with our findings for the dominant mode41

in the perturbed disk (Principal Result 3.1), and provides intuition for the switch in oscillation mode42

observed in Fig. 10 when the number of spots exceeds 5. We remark that comparing mode dominance on43

the circular sector is tantamount to comparing the relative dominance between the near-tangential mode44
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Figure 9. Example 5 – Hopf bifurcation thresholds for N -spots in a (a) unit disk and

(b) rectangle. In (a), “(near)-tangential” refers to the mode in which spots oscillate in

a direction tangent (N even) or nearly tangent (N odd) to the equilibrium ring, while

“next lowest found” corresponds to the next lowest threshold (above that of the in-phase

radial mode) that we were able to find in solving (2.46). The prediction that the in-

phase radial mode is dominant for N > 5 is corroborated by the numerical simulations in

Fig. 10. Similarly, in (b), the threshold plotted for the “next lowest found” is the lowest

threshold we were able to find above that of the in-phase vertical mode. The emergence of

the in-phase vertical mode as the dominant mode for N ≥ 6 is observed in the numerical

simulations of Fig. 13. In (a) and (b), the ×’s indicate the value of τ̂f , the Hopf bifurcation

value found from PDE simulations.

and the in-phase radial mode of an N -spot ring pattern in the unit disk. The circular sector comparison1

only captures two of the 2N modes of oscillation. That is, it only guarantees that the near-tangential2

mode is preceded by the in-phase radial model when N > 5; it is not sufficient to show that the in-phase3

radial mode is the dominant mode when N > 5, nor is it sufficient to show that the near-tangential mode4

is the dominant mode when N ≤ 5. Full results for the N -spot ring pattern on the unit disk can only be5

ascertained by solving the 2N × 2N eigenvalue problem of (2.46).6

We comment here on the difference in the nature of oscillations at onset between when the dominant7

eigenvector(s) of (2.46) is complex versus when it is real. To illustrate this, we show in Fig. 11 the8

early-time orbit paths of the three- and four-spot ring patterns. The dominant eigenvectors of the three-9

spot equilibrium corresponding to the same Hopf bifurcation threshold are both complex, leading to the10

elliptical orbits at onset shown in Fig. 11a. In contrast, due to the additional symmetry of the four-spot11

equilibrium, the dominant eigenvector of (2.46) is real, leading to orbit paths at onset that are exactly12

straight.13

In Fig. 12, we show the orbits corresponding to the two dominant complex eigenvectors of (2.46) for the14

three-spot ring pattern in the unit disk. Since both eigenvectors correspond to the same Hopf bifurcation15

threshold, the orbit shown for the three-spot ring pattern in Fig. 11a is a linear combination of these two16

modes. The eigenvectors have six entries, with each pair of entries corresponding to the orbit of each of17

the three spots about their respective equilibrium locations. The spots are numbered counterclockwise,18

with spot number 1 being the one whose equilibrium position lies on the x1 axis. The first two entries19

of both eigenvectors are both real, resulting in straight orbits for spot 1 in both Fig. 12a and 12b. The20
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Figure 10. Example 5 – spatial configurations of N -spots in a unit disk and their initial

oscillation directions at onset for ε = 0.01, S = 4. For N = 2, 4, the oscillations are

along a direction tangential to the ring on which the spots are located. The N = 3, 5

configurations lack the symmetry to undergo perfectly tangential oscillations. For these

configurations, the eigenvectors of (2.46) are complex, indicating that the spots follow

an elliptical orbit at onset. For N = 6, 7, 8, the emergence of radial oscillations as the

dominant mode for N > 5 is predicted by Fig. 9a.

(a) early orbit of 3-spot pattern (b) early orbit of 4-spot pattern

Figure 11. Example 5 – contrasting the early-time orbits of three- and four-spot patterns

after instability onset. Parameters the same as that of Fig. 10. (a) The paths of the three

spots are curved, consistent with the dominant eigenvectors of (2.46) being complex. (b)

Due to the additional symmetry of the four-spot pattern, the dominant eigenvector of

(2.46) is real, leading to orbit paths at onset that are exactly straight. The orbit paths in

(a) are a linear combination of two oscillation modes that correspond to the same Hopf

bifurcation threshold. The two modes are shown in Fig. 12.

linear combination of these two straight orbits results in the elliptic orbit for this spot in Fig. 11a. All1

other entries are complex, so the orbits of spots 2 and 3 are both elliptic. The high aspect ratio of these2
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elliptic orbits is due to the fact that the magnitude of the real parts of entries three through six of both1

eigenvectors exceed that of the corresponding imaginary parts by factors of ∼ 1.5-8.5.2

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

(a) an eigenmode of 3-spot ring pattern

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

(b) an eigenmodes of 3-spot ring pattern

Figure 12. Orbits corresponding to the two dominant complex eigenvectors of (2.46)

for the three-spot ring pattern in the unit disk. Both complex eigenvectors correspond

to the same Hopf bifurcation threshold, and are real in the first two entries. As a result,

the both orbits of the spot with equilibrium position on the x1 axis are in a straight line.

The elliptic orbit of this spot in Fig. 10 is a linear combination of the vertical path of

the mode in (a) and the horizontal path of the mode in (b). Entries three through six of

both eigenvectors are complex, resulting in elliptic orbits in both (a) and (b) of the two

remaining spots. The ellipses have high aspect ratio due to the magnitude of the real part

of each entry being ∼ 1.5-8.5 times larger than that of the corresponding imaginary part.

A switch in mode-dominance analogous to that shown in Fig. 10 for the unit disk is also observed3

for N -spot patterns with spots equally spaced along the center line parallel to the longer edge of the4

rectangle. In Fig. 9b, the blue curve denotes the thresholds for the in-phase vertical oscillation mode in5

which all spots oscillate vertically in-phase (last row of Fig. 13). For N ≤ 5, this threshold is preceded6

by a horizontal mode in which the spots oscillate horizontally and out-of-phase with their neighbors (red7

diamonds). For N > 5, we plot the next lowest threshold (above that of the in-phase vertical mode) that8

we were able to find in (2.46) (purple squares). The black ×’s denote the value of τ0 at which the first9

Hopf bifurcation was encountered in our PDE simulations of (1.1). We highlight the coincidence of the10

two thresholds at N = 5; indeed, when N = 5 in a rectangle of unit height and length 5, the symmetry11

dictates that the two thresholds equal the ` = 1 threshold of Fig. 7. As such, the oscillations observed12

in the fourth image of Fig. 13 is a linear combination of the (1, 0) and (0, 1) modes of a single spot in13

the unit square.14

This example illustrates what was concluded in §3.2 for a single spot in a perturbed disk - the dominant15

mode of oscillation appears to be along the direction(s) in which there is more separation between spots16

or between a spot and the boundary. We also observe in these two scenarios that, when possible, the17

even mode was the dominant mode of oscillation. That is, each dominant mode can be replicated by a18

single spot in a correctly chosen domain with pure Neumann boundary conditions; i.e., a circular sector19

of angle 2π/N for the N -spot ring in the unit disk, and a rectangle of unit height and length ` = 5/N .20

Example 6. In this example, we show the full generality of our stability result (2.46) in which the21

Hessian terms of the Helmholtz and Green’s functions were computed from a finite elements methods. Fig.22
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Figure 13. Example 5 – spatial configurations and their initial oscillation directions

at onset. There is a transition of the oscillation direction at N = 5. For N < 5, the

oscillations are along the horizontal direction, while for N > 5 the oscillations are following

the vertical direction. All profiles have one eigenfunction at the Hopf bifurcation except

the case of 5-spot, where two eigenvectors are found, indicating that the initial oscillation

have two directions. The parameter values are S = 4 and ε = 0.01.

14 shows two spots in a non-simply connected domain. While the threshold does not deviate significantly1

from that of one spot in a unit square, mode of oscillation as illustrated in the figure is rather different.2

The oscillation of the left spot is influenced by the orientation of the two nearest holes and has a vertical3

component as a result. The right spot is isolated in a smaller region and thus undergoes an oscillation of4

significantly smaller amplitude in comparison to the left spot (as indicated by the size of the arrows). A5

weak coupling still appears to be present, however, as the directions of oscillation still have remnants of6

the even mode of oscillation observed in the absence of the barriers.7
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Figure 14. Example 6 – numerical simulations performed for τ0 = 0.09, ε = 0.01. The

strengths for the left spot and right spot are approximately 4 and 3, respectively. On the

left, we show snapshots of the two-spot profile at different times, along with the direction

of motions indicated by the red arrows. The disparity in the sizes of the arrows convey

the significantly smaller amplitude of oscillation of the right spot in comparison to that

of the left. On the right, we plot the coordinates of the spot centers, where (x1, y1) refers

to the coordinates of the center of the left spot, while (x2, y2) refers to those of the center

of the right spot.

5. Discussion1

Through a formal asymptotic analysis, we have derived a 2N × 2N complex matrix eigenvalue problem2

yielding the Hopf bifurcation threshold along with frequency and mode of oscillation for the slow os-3

cillatory translation instabilities of N -spot equilibrium solutions to the Schnakenberg reaction-diffusion4

system with insulating boundary conditions. This result is valid for general, flat and bounded two-5

dimensional domains, and is a generalization of that derived for a single spot in a unit disk in [65].6

This general result requires a more intricate analysis that accounts for domain asymmetries as well as7

spot-spot interactions.8

For N = 1, we showed that the matrix eigenvalue problem for bifurcation threshold and frequency reduces9

to the complex scalar problem derived in [65] for the unit disk. We then extended this analysis to that for a10

perturbed unit disk with radius in polar coordinates r = 1+σf(θ), θ ∈ [0, 2π), ε� σ � 1, where f(θ) is a11

2π-periodic function. We found that, at leading order in σ, only the coefficients a2 ≡ π−1
∫ 2π

0 f(θ) cos 2θ dθ12

and b2 ≡ π−1
∫ 2π

0 f(θ) sin 2θ dθ change the eigenvalue problem at leading order in σ. If a2 = b2 = 0,13

the bifurcation threshold will remain unchanged at leading order. When they are not both zero, the14

bifurcation threshold (along with corresponding frequency) will decrease, and the preferred direction of15

oscillation will be along the line that makes an angle φ/2 with the x1-axis, where cosφ = a2/
√
a2

2 + b2216

and sinφ = b2/
√
a2

2 + b22.17

This result states, in essence, that the dominant oscillation mode of a single spot in a perturbed disk18

is along the direction in which the strengths of the restoring forces from the boundary are the weakest.19

An analogous conclusion can be drawn from observing the dynamics at instability onset of symmetric20

N -spot configurations in the unit disk and rectangle. Here, restoring forces originate from the boundary21

as well as from spot interaction forces. In Example 5, we observed two examples on the unit disk and22
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rectangle in which the dominant oscillation mode changed when N exceeded some critical number. For1

spots arranged in ring configuration on the unit disk, the dominant mode changed from near-tangential2

to radial when N > 5. For spots arranged horizontally along the center line parallel to the longer edge3

of a rectangle, the dominant mode changed from horizontal to in-phase vertical. This changed happened4

precisely when the inter-spot distance at equilibrium was exceeded by the height of the rectangle. In5

both cases, spots individually oscillated toward and away from their nearest neighbors when inter-spot6

distances were relatively large, but did so in-phase in the orthogonal direction as inter-spot distance7

was decreased, preserving their ring (in the case of the unit disk) or line (in the case of the rectangle)8

configuration.9

While the same intuition provided by the three above cases can be applied to other symmetric configura-10

tions to determine mode dominance, it is likely to be less useful for N -spot equilibria on non-symmetric11

domains, such as those considered in Example 6 of §4. In such domains, we must rely on the eigenvalue12

problem (2.47), which we showed in §4 accurately predicts all dynamics at onset of instability.13

While (2.47) is valid for arbitrary domain geometry, it would be interesting to investigate how various14

other heterogeneous effects impact the stability threshold as well as the spot dynamics at onset. For15

example, [64] employs a hybrid asymptotic-numerical method to reveal novel dynamics and bifurcations16

of spot solutions when in the presence of a strongly localized feed-rate or small holes in the domain17

through which chemicals can leak. Heterogeneity can also come in the form of surface curvature. In18

this case, the integration of microlocal techniques into our asymptotic framework would be necessary to19

accurately compute Hessian terms of relevant Green’s functions in the matrix eigenvalue problem. These20

techniques were first employed to compute linear terms of Green’s function expansions for the purposes of21

predicting spot dynamics on curved surfaces in [47] and [48]. Lastly, the small eigenvalues of spot clusters22

has not yet been analyzed. These clusters may form in the presence of a spatially dependent advection23

term in the PDE, or, as was analyzed in [33], a spatially varying potential in the Gierer-Meinhardt model.24

While we performed our analysis on the Schnakenberg model, a similar analysis would be possible for other25

activator-inhibitor reaction-diffusion models such as the Gray-Scott (GS) and Brusselator models. The26

latter shares with (1.1) the property that the equilibrium solution for the inhibitor is determined in terms27

of the Neumann Green’s function of (2.7) (see, e.g., [52] for a 1-D analysis). With the stability problem28

also involving the Helmholtz Green’s function satisfying (1.2), we expect the eigenvalue problem governing29

stability to oscillatory translational instabilities to take a form similar to (2.46). The Brusselator model30

contains an additional parameter in the core problem (cf. (1.2a) of [42]), though its qualitative effect on31

spot solutions has been shown to be minimal. As such, we expect the oscillatory translational instability32

of the Brusselator model to behave similarly to that of the Schnakenberg model.33

While analysis of the small oscillatory eigenvalues of the GS model would be similar in procedure to §2.2,34

producing an eigenvalue problem of the form (2.46), the GS model exhibits some qualitative differences35

from the Schnakenberg model. For example, the solution structure for one-spot equilibria of the GS model36

contains a fold point. Furthermore, equilibrium solutions of the GS model are determined in terms of37

the Helmholtz Green’s function Gµ of (1.2) instead of the Neumann Green’s function G of (2.7). Given38

these differences from the Schnakenberg model considered in this paper, it would be difficult to infer the39

nature of translational oscillations in the GS model.40

The hybrid method employed in this paper can be extended to compute small eigenvalues of 3-dimensional41

spot patterns. For 3-D domains, the slow dynamics of quasi-equilibrium spot patterns along the stability42
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Figure 15. Long-time orbit path of Example 8. The curved path is due to the holes in

the domain. The spot undergoes a self-replication instability before it is able to settle into

a periodic orbit.

and bifurcation structure of equilibrium configurations were analyzed for the Schnakenberg model in [50]1

and more recently for the Gierer-Meinhardt model in [23].2

It would also be interesting to study the weakly nonlinear behavior of the spot dynamics beyond the3

linear stability regime. Such a theory has been developed in [54] for oscillatory amplitude instabilities4

in one-dimension. In Fig. 4b, we showed the long-time orbit path of a single spot inside a half disk5

when τ was slightly above threshold. The curved path is qualitatively different from the horizontal path6

that we observed for the rectangle in Fig. 6, indicating that the long-time orbit is a function of domain7

geometry. Another illustration of this is seen in Fig. 15, which shows a long-time orbit path of Example8

8. In this instance, the spot undergoes a self-replication instability before it is able to settle into a9

periodic orbit. It would be an interesting analysis to characterize the periodic orbits that are admitted10

by a given domain and to investigate their stability. A perhaps easier problem might be to determine11

the saturation amplitude of the long-time oscillations of a single spot in a rectangle. In this case, the12

direction of oscillation in long time is still characterized by the dominant eigenmode at onset.13

Another possible weakly nonlinear study could be performed near a codimension-2 point where the Hopf14

threshold for the small eigenvalues is equal to that for the large eigenvalues which lead to amplitude15

oscillations. This would first involve finding the value of the feed-rate A at which the two instabilities16

coincide at the same Hopf bifurcation threshold, then performing a unfolding of this codimension-two17

point near this value of A.18

Lastly, it has been well-documented that equilibrium configurations of N -spot patterns in the Schnaken-19

berg model correspond to (locally) optimal target configurations in the narrow escape optimization prob-20

lem. See [12, 11, 50]. Furthermore, [65] and [51] along with [53] establish connections between oscillatory21

translational instabilities of single spot patterns with a certain optimization problem of a periodically22

oscillating target on a one-dimensional interval and two-dimensional unit disk. It would be interesting23

to observe if this correspondence persists for multi-spot patterns and in more general two-dimensional24

domains.25
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Appendix A. Scaling of the Schnakenberg model4

For completeness, we brief discuss the rescaling of the original Schnakenberg model [43] used to arrive5

at the form (1.1) considered in this paper. The majority of what follows is a reproduction of the brief6

discussion in §1 of [31]; we perform here an additional rescaling to scale out the diffusivity of the inhibitor,7

which results in the time constant parameter τ in front of the ut term in (1.1b).8

For constant feed-rates a > 0 and b > 0, the original Schnakenberg model of [43] is9

Vt = ε2∆V + b− V + UV2 , (A.1a)
10

Ut = Du∆U + a− UV2 . (A.1b)

From [31], we let Du = D/ε2 with D ∼ O(1), v = ε2V and u = ε−2U to obtain11

12

vt = ε2∆v + ε2b− v + uv2 , (A.2a)
13

ε2ut = D∆u+ a− ε−2uv2 . (A.2b)

14

In (A.2), we replace u and v with u/
√
D and v

√
D, respectively, to obtain15

16

vt = ε2∆v + ε2B − v + uv2 , (A.3a)
17

1

D
ε2ut = ∆u+A− ε−2uv2 , (A.3b)

18

where we have defined B ≡ b/
√
D and A ≡ a/

√
D. Finally, in (A.3b), we replace ε2/D with τ to recover19

the following rescaled Schnakenberg model of (1.1). The regime considered is τ ∼ O(ε−2| log ε|), which20

implies that Du ∼ O(ε2| log ε|) in (A.1).21
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