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ON THE MEAN FIRST ARRIVAL TIME OF BROWNIAN

PARTICLES ON RIEMANNIAN MANIFOLDS

M. NURSULTANOV, L. TZOU, AND J.C. TZOU

Abstract. We use geometric microlocal methods to compute an asymptotic ex-
pansion of mean first arrival time for Brownian particles on Riemannian manifolds.
This approach provides a robust way to treat this problem, which has thus far been
limited to very special geometries. This paper can be seen as the Riemannian 3-
manifold version of the planar result of [1] and thus enable us to see the full effect
of the local extrinsic boundary geometry on the mean arrival time of the Brownian
particles. Our approach also connects this question to some of the recent progress
on boundary rigidity and integral geometry [23, 20].

1. Introduction

Let (M, g, ∂M) be a compact connected orientable Riemannian manifold with non-
empty smooth boundary and without loss of generality we may assume that it is an
open subset of an orientable Riemannian manifold (M̃, g) without boundary oriented
by the Riemannian volume form dvolg. Let also (Xt,Px) be the Brownian motion
on M with initial condition at x, that is, the stochastic process generated by the
Laplace-Beltrami operator ∆g (this article uses the convention ∆g = −d∗d with
negative spectrum, where d is the exterior derivative). For any Γ ⊂ ∂M open we
denote by τΓ the first time the Brownian motion Xt hits Γ, that is

τΓ := inf{t ≥ 0 : Xt ∈ Γ}.

In the case when Γ = Γǫ,a is a small elliptic window of eccentricity
√
1− a2 and

size ǫ → 0+ (to be made precise later), the narrow escape/mean first arrival time
problem wishes to derive an asymptotic expansion as ǫ → 0 for the expected value
E[τΓǫ,a |X0 = x] of the first arrival time τΓǫ,a amongst all Brownian particles starting
at x. Another quantity of interest is the average expected value over M :

|M |−1

∫

M

E[τΓǫ,a |X0 = x]dvolg(x).

Here |M | denotes the Riemannian volume of M with respect to the metric g.
Many problems in cellular biology may be formulated as mean first arrival time

problems; a collection of analysis methods, results, applications, and references may
be found in [10]. For example, cells have been modelled as simply connected two-
dimensional domains with small absorbing windows on the boundary representing
ion channels or target binding sites; the quantity sought is then the mean time for
a diffusing ion or receptor to exit through an ion channel or reach a binding site
[28, 8, 24].
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There has been much progress for this problem in the setting of planar domains, and
we refer the readers to [8, 24, 31, 1] and references therein for a complete bibliography.
An important contribution was made in the planar case by [1] to introduce rigor into
the computation of [24]. The use of layered potential in [1] also cast this problem in
the mainstream language of elliptic PDE and facilitates some of the approach we use
in this article.

Few results exists for three dimensional domains in Rn or Riemannian manifolds;
see [3, 27, 30, 5] and references therein. The additional difficulties introduced by
higher dimension are highlighted in the introduction of [1] and the challenges in
geometry are outlined in [30]. In the case when M is a domain in R3 with Euclidean
metric and Γǫ,a is a single small disk absorbing window, [27, 30] gave an expansion for
the average of the expected first arrival time, averaged over M , up to an unspecified
O(1) term:

|M |−1

∫

M

E[τΓǫ,a |X0 = x]dvolg(x) ∼
|M |
4ǫ

[

1− ǫ

π
H log ǫ+O(ǫ)

]

.(1.1)

Here, H is the mean curvature of the boundary at the center of the absorbing window.
The case when Γǫ,a is a small elliptic window was also addressed in [27, 30].

When M is a three dimensional ball with multiple circular absorbing windows on
the boundary, an expansion capturing the explicit form of the O(1) correction in
equation (1.1) in terms of the Neumann Green’s function and its regular part was
done in [3]. The method of matched asymptotic used there required the explicit
computation of the Neumann Green’s function, which is only possible in special
geometries with high degrees of symmetry/homogeneity. In these results one does
not see the full effects of local geometry. This result was also rigorously proved in [2]
but with a better estimate for the error term.

In this paper we outline an approach which allows one to derive all the main terms
of E[τΓǫ,a |X0 = x] (up to a remainder vanishing as ǫ → 0) for Riemannian manifolds
of dimension three with a multiple number of small absorbing windows which are
boundary geodesic balls or ellipses. We will only demonstrate this approach for one
absorbing window so as to not obscure the main idea. In the case when the window
is a geodesic ball our approach also adapts naturally to Riemannian manifolds of any
dimension as the proof of Proposition 1.1 as well as the analysis for inverting a key
integral equation on the ball in Section 4 both carry through to higher dimensions.

We discuss briefly here on how to obtain a comprehensive singularity expansion
at the boundary for the Neumann Green’s function on a Riemannian manifold as
the Euclidean case was of interest in [30] and [3]. We will define in Section 3 the
Neumann Green’s function G(x, z) on (M, g, ∂M) which satisfies

∆gG(x, z) = −δx , ∂νzG(x, z) |z∈∂M=
−1

|∂M | ,
∫

∂M

G(x, z)dvol∂M(z) = 0,

where z ∈ ∂M 7→ νz is a outward pointing normal vector field and |∂M | is the area
of the boundary.

Singer-Schuss-Holcman in [30] highlighted the difficulty in obtaining a comprehen-
sive singularity expansion of G(x, z) |x,z∈∂M,x 6=z in a neighbourhood of the diagonal
{x = z} when M is a bounded domain in Rn, but it turns out that even when M is a
general Riemannian manifold this question can be treated by the standard pseudodif-
ferential operators approach. We only carry out this calculation in three dimensions
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as it pertains to our application. Readers who are interested in the higher dimen-
sional analogue can follow our treatment to carry out the (cumbersome) calculations
for themselves:

Proposition 1.1. For x, y ∈ ∂M , set H(x) to be the mean curvature of ∂M at x,
dh(x, y) the geodesic distance on the boundary given by metric h := ι∗∂Mg, dg(x, y) the
geodesic distance given by the metric g, and

IIx(V ) := IIx(V, V ), V ∈ Tx∂M

the scalar second fundamental quadratic form (see pages 235 and 381 of [16] for
definitions).
i) The map

f ∈ C∞(∂M) 7→
(
∫

∂M

G(·, y)f(y)dvolh(y)
)
∣

∣

∣

∣

∂M

is well defined and extends to a map from Hk(∂M) → Hk+1(∂M) for all k ∈ R

whose Schwartz kernel we will denote by G∂M(x, y) ∈ D′(∂M × ∂M). Here the map
u ∈ H1(M) 7→ u |∂M∈ H1/2(∂M) is the trace map.
ii) There exists an open neighbourhood of the diagonal

Diag := {(x, y) ∈ ∂M × ∂M | x = y}
such that in this neighbourhood, the singularity structure of G∂M(x, y) is given by:

G∂M(x, y) =
1

2π
dg(x, y)

−1 − 1

4π
H(x) log dh(y, x)(1.2)

+
1

16π

(

IIx

(

exp−1
x;h(y)

| exp−1
x;h(y)|h

)

− IIx

(

∗ exp−1
x;h(y)

| exp−1
x;h(y)|h

))

+R(x, y),

where R(·, ·) ∈ C0,µ(∂M×∂M), for all µ < 1, is called the regular part of the Green’s
function and ∗ is the Hodge-star operator (i.e. rotation by π/2 on the surface ∂M).

We recall the definition of the exponential map. Let (X, g0) be a geodesically
complete manifold. For any x ∈ X and V ∈ TxX there exists a unique geodesic
γg0(t) = γg0(t;V ), defined on [0, 1], such that γg0(0) = x, γ′g(0) = V . The exponential
map based at x is then a map taking TxX → X defined by

expx;g0 : V 7→ γg0(1;V ).

Observe that when M is a Euclidean ball the singular term involving the second
fundamental forms vanishes due to homogeneity and therefore does not show up.
This is consistent with the explicit formula derived in [3].

An explicit formula for the regular part is only possible in special geometries such
as the one considered in [3]. However, our approach in arriving at (1.2) also provides
a way to numerically compute R(x, y) via a Fredholm integral equation. See Remark
3.3.

We will use the formula in Proposition 1.1 to derive the mean first arrival time of a
Brownian particle on a Riemannian manifold with a single absorbing window which
is a small geodesic ellipse. As mentioned earlier, our method extends to multiple
windows but we present the single window case to simplify notations. We first state
the result when the window is a geodesic disk of the boundary ∂M around a fixed
point since the statement is cleaner:
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Theorem 1.2. Let (M, g, ∂M) be a smooth Riemannian manifold of dimension three
with boundary and let |M | be its volume.
i) Fix x∗ ∈ ∂M and let Γǫ be a boundary geodesic ball centered at x∗ of geodesic radius
ǫ > 0. For each x /∈ Γǫ,

E[τΓǫ |X0 = x] = F (x) + Cǫ − |M |G(x, x∗) + rǫ(x),

with ‖rǫ‖Ck(K) ≤ Ck,Kǫ for any integer k and compact set K ⊂ M which does not
contain x∗. The function F is the unique solution to the boundary value problem

∆gF = −1, ∂νF = −|M |/|∂M |,
∫

∂M

F = 0.

The constant Cǫ is, modulo an error of O(ǫ log ǫ), given by

Cǫ =
|M |
4ǫ

− 1

4π
H(x∗)|M | log ǫ+R(x∗, x∗)|M | − F (x∗)− |M |H(x∗)

4π

(

2 log 2− 3

2

)

,

where R(x∗, x∗) is the evaluation at (x, y) = (x∗, x∗) of the kernel R(x, y) in (1.2).
ii) One has that the integral of E[τΓǫ,a |X0 = x] over M satisfies

∫

M

E[τΓǫ,a |X0 = x]dvolg(x) =

∫

M

F (x)dvolg(x) + Cǫ|M | − F (x∗)|M |+O(ǫ).

Theorem 1.2 does not realize the full power of Proposition 1.1 as it does not see the
non-homogeneity of the local geometry at x∗ (only the mean curvature H(x∗) shows
up). This is due to the fact that we are looking at windows which are geodesic balls.
If we replace geodesic balls with geodesic ellipses, we see that the second fundamental
form term in (1.2) contributes to a term in E[τΓǫ,a |X0 = x] which is the difference of
principal curvatures.

To this end let E1(x
∗), E2(x

∗) ∈ Tx∗∂M be the unit eigenvectors of the shape
operator at x∗ corresponding respectively to the principal curvatures λ1(x

∗), λ2(x
∗).

For 1 ≥ a > 0 fixed, let

Γǫ,a := {expx∗;h(ǫt1E1(x
∗) + ǫt2E2(x

∗)) | t21 + a−2t22 ≤ 1}

be a small geodesic ellipse.

Theorem 1.3. Let (M, g, ∂M) be a smooth Riemannian manifold of dimension three
with boundary.
i) For each x ∈M\Γǫ,a,

E[τΓǫ,a |X0 = x] = F (x) + Cǫ,a − |M |G(x, x∗) + rǫ(x)

with ‖rǫ‖Ck(K) ≤ Ck,Kǫ for any integer k and compact set K ⊂ M which does not
contain x∗. The function F is the unique solution to the boundary value problem

∆gF = −1, ∂νF = −|M |/|∂M |,
∫

∂M

F = 0.
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The constant Cǫ,a is given by

Cǫ,a =
|M |Ka

4aǫπ2
− 1

4π
H(x∗)|M | log ǫ+ aR(x∗, x∗)|M | − F (x∗)

(1.3)

− |M |H(x∗)

16π3

∫

D

1

(1− |s′|2)1/2
∫

D

log ((t1 − s1)
2 + a2(t2 − s2)

2)
1/2

(1− |t′|2)1/2 dt′ds′

+
|M |(λ1 − λ2)

64π3

∫

D

1

(1− |s′|2)1/2
∫

D

(t1 − s1)
2 − a2(t2 − s2)

2

(t1 − s1)2 + a2(t2 − s2)2
1

(1− |t′|2)1/2dt
′ds′

+O(ǫ log ǫ),

where Ka =
π
2

∫ 2π

0

(

cos2 θ + sin2 θ
a2

)−1/2

dθ and D is the two dimensional unit disk cen-

tered at the origin.
ii) One has that the integral of E[τΓǫ,a |X0 = x] over M satisfies
∫

M

E[τΓǫ,a |X0 = x]dvolg(x) =

∫

M

F (x)dvolg + Cǫ,a|M | − F (x∗)|M | +O(ǫ).

Note that while the dependence on the eccentricity of the ellipse is hidden in the
integrals, the dependence on the difference of the principal curvatures (λ1 − λ2) is
easy to see in this formula. The integral which multiplies (λ1−λ2) turns out to vanish
when a = 1 which makes the above result consistent with Theorem 1.2.

The fact that our result is valid on general Riemannian three manifolds allows for
the incorporation of spatial heterogeneity such as anisotropic diffusion. In contrast to
[30], the fact that we are able to obtain explicitly an expression for the O(1) term in
(1.1) is due to the fact that in Proposition 1.1 we have the expansion of G∂M(x, z) all
the way to a remainder R(x, y), which is Hölder continuous at the diagonal. We also
appeal to some recent advances in integral geometry [29, 20, 23, 22, 12] to address
the comment in [1] on the difficulty of treating this problem in higher dimensions.

The strategy and organization of this paper will be as follows. In Section 2 we will
give a brief overview of pseudodifferential operators and their associated Schwartz
kernels. The machinery of pseudodifferential operators serve as a bridge between
the geometric and analytic objects appearing in Proposition 1.1 and we will compute
their coordinate expression. In Section 3 we will use the tools we developed in Section
2 to prove Propostion 1.1. A singularity expansion for the Green’s function such as
Proposition 1.1 is the gateway for obtaining the asymptotic expansions of Theorems
1.2 and 1.3. However, there is an additional hurdle of inverting an integral transform
as mentioned in [1]. Here we make use of some recent advancements in integral
geometry and geometric rigidity [23, 12, 20] to overcome these difficulties. This
approach is described in Section 4. Finally, in Section 5 we carry out the asymptotic
calculation using the tools we have developed. The appendices characterizes the
expected first arrival time E[τΓǫ,a |X0 = x] as the solution of an elliptic mixed boundary
value problem. This is classical in the Euclidean case (see [26]) but we could not find
a reference for the general case of a Riemannian manifold with boundary.

2. Overview of Pseudodifferential Operators

2.1. Basic Definitions. We give some basic definitions and properties of pseudodif-
ferential operators. For a comprehensive treatment we refer the reader to Chapt 7 of
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[34] or the book [32]. Readers who are already familiar with microlocal analysis can
skip this section.

As usual, C∞ denotes the space of smooth functions. We use notation C∞
c for

compactly suported smooth functions and D′ for its dual. By Ck, we denote the
space of k time continuously differentiable functions. The spce of functions from Ck,
whose kth derivatives are Hölder continuous with exponent µ ∈ (0, 1], is denoted by
Ck,µ

Let a(x, ξ) be a smooth function on T ∗Rn and for all l ∈ R we say that a ∈ Sl
1(T

∗Rn)
(or simply Sl

1) if for all multi-indices α, β there are constants Cα,β such that

|Dα
ξD

β
xa(x, ξ)| ≤ Cα,β〈ξ〉l−|α|(2.1)

where Dα
ξ = (−i)|α|∂αξ , Dβ

x = (−i)|β|∂βx , and 〈ξ〉 := (1+ |ξ|2)1/2. These are the Kohn-
Nirenberg symbols. This class of symbols contain the classical symbols, denoted by
Sl
cl(T

∗
R

n), which are defined by those a(x, ξ) ∈ Sl
1(T

∗
R

n) satisfying

a(x, ξ) ∼
∞
∑

m=0

al−m(x, ξ),(2.2)

where each al−m are homogeneous in the sense that al−m(x, τξ) = τ l−ma(x, ξ) for all
x ∈ Rn, τ > 1 and |ξ| > 1. The expression (2.2) means that for all N ,

a(x, ξ)−
N
∑

m=0

al−m(x, ξ) ∈ Sl−N−1
1 (T ∗

R
n).

If a(x, ξ) ∈ Sl
1 we can define an operator a(x,D) : C∞

c (Rn) → D′(Rn) by

a(x,D)u :=

∫

Rn

eiξ·xa(x, ξ)û(ξ)dξ,(2.3)

where û(ξ) := Fu := (2π)n
∫

Rn e
−ix·ξu(x)dx is the Fourier transform. Recall that

the absolutely convergent integral representation of the Fourier transform is well
defined as an automorphism of the Schwartz class functions S(Rn) but extends to
an automorphism of the tempered distributions S ′(Rn). (See [4] for a comprehensive
guide to distribution theory and definition of these spaces).

Operators taking C∞
c (Rn) → D′(Rn) which have the above representation are said

to be in Ψl
1(R

n) and are called pseudodifferential operators. For the symbol class
Sl
1(T

∗Rn), Lemma 1.1 in Chapter 7.1 of [34] extends a(x,D) to map S ′(Rn) → S ′(Rn).
The classical pseudodifferential operators Ψl

cl(R
n) are defined analogously by re-

quiring that a(x, ξ) belongs to Sl
cl. Note that knowing the operator a(x,D) ∈ Ψl

1(R
n)

we can recover a(x, ξ) ∈ Sl
1 by the formula

a(x, ξ) = e−ξ(x)a(x,D)eξ,(2.4)

where eξ(x) := eiξ·x. Note that if A(x, y) is the Schwartz kernel of the operator
a(x,D) then

a(0, ξ) = F−1
y (A(0, y))(ξ) =

∫

Rn

eiξ·yA(0, y)dy.(2.5)
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Let X be a compact manifold without boundary. An operator A : C∞(X) →
D′(X)1 is said to be in Ψl

1(X) if there exists coordinate covers {(Oj,Φj) | Φj : Oj →
Uj ⊂ R

n} and a partition of unity {χj} subordinate to {Oj} such that the map

u 7→
(

χkAχjΦ
∗
ju
)

◦ Φ−1
k(2.6)

from C∞(Uj) → E ′(Uk) belongs to Ψl
1(R

n).
If a ∈ C∞(T ∗X) we say that it belongs to the symbol class Sl

1(T
∗X) if

χj ◦ Φ−1
j a(Φ−1

j (·),Φ∗
j ·) ∈ Sl

1(T
∗
R

n)

for all j. The classical pseudodifferential operators Ψl
cl(X) and classical symbols

Sl
cl(T

∗X) are defined analogously. These definitions depend a-priori on the choice of
coordinate systems but turn out to be invariant (see Chapt 7 [34]).

There exists a linear isomorphism

σl : Ψ
l
cl(X)/Ψl−1

cl (X) → Sl
cl(T

∗X)/Sl−1
cl (T ∗X)(2.7)

called the principal symbol map. For each A ∈ Ψl
cl(X) it can be defined at each

x ∈ X by taking a coordinate neighborhood O containing x and a χ ∈ C∞
c (O) which

is identically 1 near x then considering the operator given in (2.6) for χj = χk = χ
and Φj = Φk = Φ. As the resulting operator in (2.6) is in Ψl

cl(R
n) with symbol

a ∈ Sl
cl(T

∗
R

n), we may set

σl(A)(x,Φ∗ξ) := al(Φ(x), ξ)

for all x ∈ X and ξ ∈ T ∗
Φj(x)

Rn. This definition depends a-priori on the choice of

coordinate systems but turns out to be invariant (see Chapt 5 of [32]). In practice
these computations are often done in normal coordinates centered at the point of
interest x ∈ X then computing the inverse Fourier transform as in (2.5).

One important property of σl which we will use is that it respects the product
structure of Ψl

cl and Sl
cl:

σl(A)σm(B) = σl+m(AB)(2.8)

for A ∈ Ψl
cl(X) and B ∈ Ψm

cl (X).

2.2. Coordinate Calculations. We make some calculations for some geometric ob-
jects which will naturally appear in the singularity expansion for G∂M . These iden-
tities will be useful in proving Proposition 1.1.

Let (M, g, ∂M) be a three dimensional Riemannian manifold with non-empty smooth
boundary which inherits the metric h := ι∗∂Mg. Denote by II the scalar second fun-
damental form on the surface ∂M and H(x) be the mean curvature at x ∈ ∂M . Let
S∂M denote the unit-sphere bundle over ∂M ,

S∂M = {v ∈ T∂M | ‖v‖h = 1}.
For any x ∈ ∂M , let E1(x), E2(x) ∈ Sx∂M be principal directions (i.e. unit eigenvec-
tors) of the induced shape operator with eigenvalues λ1(x) and λ2(x). We will drop
the dependence in x from our notation when there is no ambiguity.

We choose E1 and E2 such that E♭
1 ∧ E♭

2 ∧ ν♭ is a positive multiple of the volume
form dvolg (see p.26 of [16] for the “musical isomorphism” notation of ♭ and ♯). Here

1We shall avoid a discussion of distributional sections of density bundles by noting that in our
setting of X is always prescribed with a Riemannian volume form which provides a natural trivial-
ization of density bundles. As such all distributional sections of density bundles are identified with
sections of the trivial line bundle in this way.
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we use ν to denote the outward pointing normal vector field so that it is consistent
with most PDE literature. However, in defining II and the shape operator we will
follow geometry literature (e.g.[16]) and use the inward pointing normal so that the
sphere embedded in R3 would have positive mean curvature in our convention.

For two points x, y ∈ ∂M there are two distances to consider. The first is the
shortest path amongst those that stay on the boundary which we denote by dh(x, y)
and the other is the distance measured by paths allowing to enter M , which we denote
by dg(x, y). Clearly, dh(x, y) ≥ dg(x, y).

For a fixed x0 ∈ ∂M , we will denote by Bh(ρ; x0) ⊂ ∂M the geodesic disk of radius
ρ > 0 (with respect to the metric h) centered at x0 and Dρ to be the Euclidean disk
in R2 of radius ρ centered at the origin. In what follows ρ will always be smaller
than the injectivity radius of (∂M, h). Letting t = (t1, t2, t3) ∈ R

3, we will construct
a coordinate system x(t; x0) by the following procedure:
Write t ∈ R3 near the origin as t = (t′, t3) for t′ = (t1, t2) ∈ Dρ. Define first 2

x((t′, 0); x0) := expx0;h(t1E1 + t2E2),

where expx0;h(V ) denotes the time 1 map of h-geodesics with initial point x0 and
initial velocity V ∈ Tx0∂M . The coordinate t′ ∈ Dρ 7→ x((t′, 0); x0) is then an h-
geodesic coordinate system for a neighborhood of x0 on the boundary surface ∂M .
We can extend this to become a coordinate system for points in M near x0 so that
t 7→ x(t; x0) is a boundary normal coordinate system with t3 > 0 in M as the
boundary defining function. Readers wishing to know more about boundary normal
coordinates can refer to [17] for a brief recollection of the basic properties we use here
and Prop 5.26 of [16] for a detailed construction.

For convenience we will write x(t′; x0) in place of x((t′, 0); x0). The boundary
coordinate system t 7→ x(t; x0) has the advantage that the metric tensor g can be
expressed as

3
∑

j,k=1

gj,k(t)dtjdtk =
2
∑

α,β=1

hα,β(t
′, t3)dtαdtβ + dt23,(2.9)

where hα,β(t
′, 0) = hα,β(t

′) is the expression of the boundary metric h in the h-
geodesic coordinate system x(t′; x0). Note that (gj,k(t))

3
j,k=1 and (hα,β(t

′, t3))
2
α,β=1 are

symmetric positive definite 3 × 3 and 2 × 2 matrices varying smoothly with respect
to the variable t = (t′, t3) = (t1, t2, t3).

For ǫ > 0 sufficiently small we define the (rescaled) h-geodesic coordinate by the
following map

xǫ(·; x0) : t′ = (t1, t2) ∈ D 7→ x(ǫt′; x0) ∈ Bh(ǫ; x0),

where D is the unit disk in R2. We derive some coordinate expressions for some of
the geometric objects we will consider later.

Lemma 2.1. Let h(s′) =
∑2

α,β=1 hα,β(s
′)dsαdsβ be the pullback metric of h by s′ 7→

x(s′; x0) on Dρ. Denote by

r = |s′ − t′|h(s′) :=
(

2
∑

α,β=1

hα,β(s
′)(sα − tα)(sβ − tβ)

)1/2

2for example it is obvious below that E1 and E2 are elements of the tangent space over x0 as
they are inserted into the argument of expx0;h

(·).
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so that t′ = s′ + rω where ω ∈ Ss′Dρ. We have that

dh(x(s
′; x0), x(t

′; x0))
2 = r2

2
∑

j,k=1

Hj,k(s
′, r, ω)ωjωk

for matrix Hj,k(s
′, r, ω) jointly smooth in (s′, r, ω). It also satisfies Hj,k(s

′, 0, ω) =
hj,k(s

′) and
∑

j,k

∂rHj,k(s
′, 0, ω)ωkωj = O(s′).

Proof. Expressing t′ using (s′, r, ω) we have that (see e.g. [35] Lemma 4.8)

dh(x(s
′; x0), x(t

′; x0)) = r

(

∑

α,β

Hα,β(s
′, r, ω)ωαωβ

)1/2

with Hα,β symmetric, even under the map (r, ω) 7→ (−r,−ω), and Hα,β(s
′, 0, ω) =

hα,β(s
′). Setting s′ = 0 and using the fact that we are using normal coordinates we

obtain r2 = r2
(

∑

α,β Hα,β(0, r, ω)ωαωβ

)

. Now Taylor expanding Hα,β(0, r, ω) in r,

we see that

r2 = r2

(

1 +
∑

α,β

∂rHα,β(0, 0, ω)rωαωβ +O(r2)

)

.

The r2 terms on left-hand and right-hand sides cancel, leaving

0 = ∂rHα,β(0, 0, ω)r
3ωαωβ +O(r4).

Divide through by r3 and take the limit as r → 0 we see that
∑

α,β ∂rHα,β(0, 0, ω)ωαωβ =
0 for any ω ∈ S0D. �

Lemma 2.2. We use the same notation for ω and r as in Lemma 2.1. One has that

dh(x(s
′; x0), x(t

′; x0))
−1 = r−1 +O(s′) +O(r),

where O(r) (respectively O(s′)) denotes smooth functions of (s′, r, ω) ∈ Dρ×R×Ss′Dρ

which vanish to first order as r → 0 (respectively s′ → 0).

Proof. From Lemma 2.1 we have that

dh(x(s
′; x0), x(t

′; x0))
−1 = r−1

(

∑

α,β

hα,β(s
′)ωαωβ + r∂rHα,β(s

′, 0, ω)ωαωβ +O(r2)

)−1/2

.

Using the fact that ω ∈ Ss′D with respect to the metric given by hα,β we have that

dh(x(s
′; x0), x(t

′; x0))
−1 = r−1

(

∑

α,β

1 + r∂rHα,β(s
′, 0, ω)ωαωβ +O(r2)

)−1/2

.

For r and s′ sufficiently small we may use Taylor’s expansion to obtain the desired
property. The fact that

∑

α,β ∂rHα,β(s
′, 0, ω)ωαωβ = O(s′) is stated in Lemma 2.1 �

Corollary 2.3. For ǫ > 0 sufficiently small we have that

dh(x
ǫ(s′; x0), x

ǫ(t′; x0))
−1 = ǫ−1r−1 + ǫr−1A(ǫ, s′, r, ω)

for some smooth function A in the variables (ǫ, s′, r, ω) ∈ [0, ǫ0]× D× R× S1. Here
we use r = |s′ − t′| and t′ = s+ rω.
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Lemma 2.4. Let x(·; x0) be the coordinate system at the beginning of this section
centered at x0. For s′, t′ ∈ R2 sufficiently small, we have that

dg(x(s
′; x0), x(t

′; x0))
2 = r2

(

1 + rG̃(s′, ω) +O(r2)
)

,

where r = |s′ − t′|h(s′) and t′ = s′ + rω. Here G̃(s′, ω) is a smooth function of
(s′, ω) which vanishes at s′ = 0. The O(r2) term is a smooth function in (s′, r, ω) ∈
Dρ × R× Ss′Dρ which vanishes to second order as r → 0.

Proof. We begin with the identity that for any s and t,

dg(x(s; x0), x(t; x0))
2 =

3
∑

j,k=1

Gj,k(s, t)(sj − tj)(sk − tk),

with Gj,k(s, s) = gj,k(s) given by (2.9). Now set s = (s′, 0) and t = (t′, 0) we have

dg(x(s
′; x0), x(t

′; x0))
2 = r2

(

1 +

2
∑

j,k=1

∂rG
0
j,k(s

′, 0, ω)rωjωk +O(r2)

)

where G
0
j,k(s

′, r, ω) := Gj,k(s
′, s′ + rω), is even in (r, ω) 7→ −(r, ω) and O(r2) is a

smooth function of (s′, r, ω) which is even and vanishes to second order as r → 0.
Observe that ω 7→ ∂rG

0
j,k(s

′, 0, ω) is odd in ω.

We now need to argue that
∑

α,β ∂rG
0
j,k(0, 0, ω)ωαωβ = 0. Setting s′ = 0 in the

above identity and using the fact that we are using boundary normal coordinates we
have

r2 = dh(x(0; x0), x(t
′; x0))

2 ≥ dg(x(0; x0), x(t
′; x0))

2 = r2

(

1 +

2
∑

j,k=1

∂rG
0
j,k(0, 0, ω)rωjωk +O(r2)

)

.

Subtracting off the r2 terms and dividing by r3 we see that as r → 0,
2
∑

j,k=1

∂rG
0
j,k(0, 0, ω)ωjωk ≤ 0

for all ω ∈ S1. We now use the fact that ∂rGj,k(0, 0, ω) is odd to see that

2
∑

j,k=1

∂rG
0
j,k(0, 0, ω)ωjωk = 0.

�

Just as how Lemma 2.2 and Corollary 2.3 followed from Lemma 2.1, we have the
following:

Corollary 2.5. Using the expression r = |s′ − t′|h(s′) and t′ = s′ + rω, we have that

dg(x(s
′; x0), x(t

′; x0))
−1 = r−1 +O(s′) +O(r),

where O(r) (respectively O(s′)) denotes smooth function of (s′, r, ω) ∈ Dρ×R×Ss′Dρ

which vanishes to first order as r → 0 (respectively s′ → 0).

Corollary 2.6. For ǫ > 0 sufficiently small we have that

dg(x
ǫ(s′; x0), x

ǫ(t′; x0))
−1 = ǫ−1r−1 + ǫr−1A(ǫ, s′, r, ω)

for some smooth function A in the variables (ǫ, s′, r, ω) ∈ [0, ǫ0]× D× R× S1. Here
we use r = |s′ − t′| and t′ = s+ rω.
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Lemma 2.7. In the coordinate given by y = x(s′; x0),

∂νydg(x0, y) =
λ1(x0)s

2
1 + λ2(x0)s

2
2

2|s′| +O(|s′|2)

where O(|s′|2) denotes a smooth function of the variables (|s′|, s′

|s′|
) which vanishes to

order 2 at the origin.

Proof. By Gauss Lemma, for y near x0, gradydg(x0, y) = γ̇(dg(x0, y)) where γ(·) is
the unit speed geodesic in (M, g) from x0 to y. Therefore we have that

∂νydg(x0, y) = −
〈

νy,
exp−1

y;g(x0)

|exp−1
y;g(x0)|g

〉

g

.(2.10)

In the coordinates given by s 7→ x(s; x0) the Christoffel symbols are

Γ3
3,3 = Γ3

α,3 = Γ3
3,α = 0, Γ3

α,β = −1

2
∂3hα,β.(2.11)

Choose (ŝ′, 0) ∈ R3 so that x(ŝ′, 0; x0) = y. By Lemma 2.4, dg(y, x0) is a smooth

function of (|ŝ′|, ŝ′

|ŝ′|
) when we write y = x(ŝ′; x0) in these coordinates. Let V (y) :=

exp−1
y;g(x0)

|exp−1
y;g(x0)|g

=
∑3

j=1 Vj(ŝ
′)∂j be the unique unit vector over y so that the (M, g) unit

velocity geodesic in these coordinates starting at y with initial direction V (y) reaches
x0 in time dg(y, x0). In the coordinates given by s′ 7→ x(s′; x0), we want to argue

that Vj(ŝ
′) are smooth functions of (|ŝ′|, ŝ′

|ŝ′|
). To do so, observe that in g-geodesic

coordinates centered around x0 this is of course the case. The result for any other
coordinate system can then be obtained via a change of variable.

Note that the outward pointing normal is given by −∂3 since s3 > 0 in M . Using
(2.10) and the expression for the metric (2.9) we have that in the chosen boundary
normal coordinate system

∂νydg(x0, y) = V3.(2.12)

After time τ , the geodesic with initial position (ŝ′, 0) and initial unit velocity V
can be written in the s = (s′, s3) coordinate as

s(τ) = (ŝ′, 0) + τV + r(τ ;V )

for some remainder r = (r1, r2, r3) which has initial condition r(0) = ṙ(0) = 0. Taylor
expanding r(·;V ) we have that

s(τ) = (ŝ′, 0) + τV +
τ 2

2
r̈(0;V ) + τ 3r′(τ ;V )(2.13)

for some r′(τ ;V ) depending smoothly on τ and V .
Due to (2.12), we are particularly interested in the evolution of the r3 component

which solves the ODE

r̈3(τ ;V ) = −
3
∑

j,k=1

Γ3
j,k(s(τ))(Vj + ṙj)(Vk + ṙk)(2.14)

=
1

2

2
∑

α,β=1

∂3hα,β(s(τ))(Vα + ṙα)(Vβ + ṙβ).

The last equality comes from (2.11).
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Now set τ = dg(y, x0) so that s(τ) = 0, we have from (2.13) that for α = 1, 2,

Vα = − ŝα
dg(y, x0)

+ dg(y, x0)fα

for functions fα which is smooth in V and dg(y, x0) and thus smooth functions of the
(ŝ′, ŝ′/|ŝ′|) variable. Inserting this into (2.14) yields

dg(x, y)
2

2
r̈3(0;V ) =

1

4

∑

α,β

∂3hα,β(0)ŝαŝβ + dg(y, x)
3f

for some function f which is smooth in the variable (|ŝ′|, ŝ′/|ŝ′|). Inserting this ex-
pression into (2.13) for τ = dg(x0, y) we have that

V3(ŝ
′) = −dg(x, y)

2
r̈3(0;V ) + dg(x0, y)

2r′3(dg(x0, y), V (s
′))

= −1

4

∑

α,β

∂3hα,β(0)

dg(x0, y)
ŝαŝβ + dg(y, x0)

2(f + r′)

Using Lemma 2.4 we have that dg(x0, y)
−1 = |ŝ′|−1 + F ( ŝ′

|ŝ′|
, s′) for some smooth

function F (·, ·). We may thus write

V3(ŝ
′) = −1

4

∑

α,β

∂3hα,β(0)

|ŝ′| ŝαŝβ +O(|ŝ′|2),

where O(|ŝ′|2) is a smooth function of ( ŝ′

|ŝ′|
, ŝ′) which vanishes to order 2 near the

origin. Now use the fact that −1
2
∂3hα,β(0) is the coordinate expression for the scalar

second fundamental form with respect to the normal given by ∂3
3 at the point x0

(see Proposition 8.17 of [16]) and our coordinate system x(s′; x0) is chosen so that
the shape operator is diagonalized at x0. Therefore,

V3(ŝ
′) =

1

2

∑

α,β

λ1ŝ
2
1 + λ2ŝ

2
2

|ŝ′| +O(|ŝ′|2).

In view of (2.12) we have proven the required identity. �

Let x0 ∈ ∂M and define RII(·, ·), RII∗(·, ·) ∈ L∞(Bh(ρ; x0)Bh(ρ; x0)) by

RII(x, y) := IIx

(

exp−1
x;hy

|exp−1
x;hy|h

,
exp−1

x;hy

|exp−1
x,hy|h

)

,(2.15)

RII∗(x, y) := IIx

(

∗
exp−1

x;hy

|exp−1
x;hy|h

, ∗
exp−1

x;hy

|exp−1
x,hy|h

)

.

Here ∗ is the Hodge star operator associated to the metric h.

Lemma 2.8. Let x(·; x0) : Dρ → ∂M be a normal coordinate system for (∂M, h)
centred around x0 ∈ ∂M and let h denote the pullback metric tensor on on Dρ under
this coordinate. Then for all s′, t′ ∈ Dρ sufficiently close to the origin,

exp−1
t′;h(s

′)

| exp−1
t′;h(s

′)|h(t′)
=

2
∑

j=1

ωj∂j +O(t′) +O(r),

3recall that we are using the convention where II and shape operator are defined with respect to
the inward pointing normal
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where ω := s′−t′

r
∈ S1 with r := |s′ − t′| being the Euclidean distance between s′ and

t′. The O(t′) (resp O(r)) term denotes a smooth map of (t′, ω, r) ∈ Dρ × S2 × [0, ρ]
which vanishes to order 1 as t′ → 0 (resp r → 0).

Proof. This comes from the fact that for some matrix Hj,k(s
′, t′) smooth in (s′, t′)

dh(s
′, t′)2 =

2
∑

j=1

Hj,k(s
′, t′)(sj − tj)(sk − tk),

where Hj,k(t
′, t′) = hj,k(t

′) = δj,k +O(|t′|2). Therefore

dh(s′,t′)(s
′, t′) = |s′ − t′|+ |s′ − t′|F

(

t′,
s′ − t′

|s′ − t′| , |s
′ − t′|

)

for some smooth function F ∈ C∞(Dρ × S1 × [0, r0]) which is O(t′) +O(r).

A coordinate calculation yields that
exp−1

t′,h
(s′)

| exp−1
t′,h

(s′)|h(t′)
= gradt′dh(s

′, t′) so

exp−1
t′,h(s

′)

| exp−1
t′,h(s

′)|h(t′)
=

2
∑

j,k=1

hj,k(t
′)∂tjdhθ(s′,t′)(s

′, t′)∂k =
∑

j

ωj∂j +O(t′) +O(r).

�

Corollary 2.9. Let x0 ∈ ∂M and λ1(x0) and λ2(x0) be the eigenvalues of the shape
operator at x0. Then,
i) in the t′ 7→ x(t′; x0) coordinate system prescribed at the beginning of this section,

RII(x(t
′; x0), x(s

′; x0))−
(

λ1(x0)
(s1 − t1)

2

|s′ − t′|2 + λ2(x0)
(s2 − t2)

2

|s′ − t′|2
)

= O(r) +O(t′)

RII∗(x(t
′; x0), x(s

′; x0))−
(

λ2(x0)
(s1 − t1)

2

|s′ − t′|2 + λ1(x0)
(s2 − t2)

2

|s′ − t′|2
)

= O(r) +O(t′)

The O(t′) (resp O(r)) term denotes a smooth function of (t′, ω, r) ∈ Dρ×S2× [0, ρ]
which vanishes to order 1 as t′ → 0 (resp r → 0).

ii)In the t′ 7→ xǫ(t′; x0) coordinate systems prescribed at the beginning of this sec-
tion,

RII(x
ǫ(t′; x0), x

ǫ(s′; x0))−
(

λ1(x0)
(s1 − t1)

2

|s′ − t′|2 + λ2(x0)
(s2 − t2)

2

|s′ − t′|2
)

= ǫRǫ(t
′, ω, r),

RII∗(x
ǫ(t′; x0), x

ǫ(s′; x0))−
(

λ2(x0)
(s1 − t1)

2

|s′ − t′|2 + λ1(x0)
(s2 − t2)

2

|s′ − t′|2
)

= ǫRǫ(t
′, ω, r),

where Rǫ(t
′, ω, r) is smooth with derivatives of all orders uniformly bounded in ǫ.

Proof. Since xǫ(t′; x0) = x(ǫt′; x0) we have that ii) is a consequence of i). For i), we
will only prove this for RII since the statement for RII∗ can be obtained via a rotation.

Recall that the normal coordinate system t′ 7→ x(t′; x0) is chosen so that at x0
the coordinate vectors {∂t1 , ∂t2} pushes forward under x(·; x0 to become of eigenvec-
tors of the shape operator. Because of this we have that the pull-back of IIx(·, ·)
under this coordinate system is given by IIx(t′;x0) =

∑2
j,k=1 IIj,kdtjdtk where IIj,k =

λj(x0)δj,k + O(t′). Here O(t′) denotes a smooth function of t′ which vanishes at the

origin. Using the expression derived in Lemma 2.8 for the vector
exp−1

x;hy

|exp−1
x;hy|h

in the
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coordinate given by x = x(t′; x0) and y = x(s′; x0), we have the desired expression
for RII(x(t

′; x0), x(s
′; x0)). �

2.3. Operator Estimates. In this section we derive Sobolev estimates for some
integral kernels we will encounter when obtaining the asymptotic expansions of The-
orems 1.2 and 1.3. As these depend on a parameter ǫ > 0 and do not immediately
fit into the framework of semiclassical calculus, we need to keep track of the bounds
by hand.

It is useful to take the Fourier transform with respect to only some variables. Let
u(s′, t′) be a family of tempered distributions in t′ ∈ R2 depending smoothly on the
parameter s′ ∈ R2. That is, it is the distribution defined by φ 7→

∫

R2 u(s
′, t′)φ(t′)dt′

for all φ ∈ S(R2). We denote by Ft′(u(s
′, t′))(ξ′) to be the Fourier transform with

respect to the t′ variable only.

Lemma 2.10. Let A(s′, ω) be a smooth function on (s′, ω) ∈ R2×S1. For j ≥ 0 and
ξ′ 6= 0 we have that for any multi-index α,

Dα
s′Ft′

(

A

(

s′,
t′

|t′|

)

|t′|j−1

)

(ξ′) = Ft′

(

Dα
s′A

(

s′,
t′

|t′|

)

|t′|j−1

)

(ξ′) .

Furthermore, Ft′

(

A
(

s′, t′

|t′|

)

|t′|j−1
)

(ξ′) is jointly smooth in (s′, ξ′) ∈ R2 × R2\{0}.

Proof. Let χ ∈ C∞
c (R2) be identically 1 near the origin. We can write for any positive

integer k and ξ′ 6= 0,

Ft′

(

A

(

s′,
t′

|t′|

)

|t′|j−1

)

(ξ′) = Ft′

(

A

(

s′,
t′

|t′|

)

|t′|j−1χ(t′)

)

(ξ′)

+ |ξ′|−2kFt′

(

∆k
t′

(

A

(

s′,
t′

|t′|

)

|t′|j−1(1− χ(t′))

))

(ξ′) .

The first integral is absolutely convergent by the χ(t′) cut-off. The second Fourier
transform is also absolutely convergent owing to the fact that the integrand is smooth
and ∆k

t′ makes the integrand decay quickly as t′ → ∞ provided k is chosen large
enough. �

Lemma 2.11. Let Aǫ(s
′, r, ω) be a family of C∞

c (R2 × R × S1) whose support is
uniformly bounded in ǫ ∈ [0, ǫ0] and whose derivatives are also uniformly bounded in
ǫ. Then for all l ≥ 0,

Aǫf :=

∫

R2

Aǫ(s
′, r, ω)rlf(s′ + rω)drdω

is a map bounded uniformly in ǫ from Hm(R2) → Hm+1+l(R2).

Proof. We prove the estimates only for Schwartz functions f ∈ S(R2). We first
expand

Aǫ =

N
∑

j=1

∂jrAǫ(s
′, 0, ω)rj + rN+1Rǫ(s

′, r, ω).(2.16)

All terms are smooth in its variables with derivatives uniformly bounded in ǫ. Esti-
mating the remainder term in (2.16) is easy:

ARf :=

∫

S1

∫ ∞

0

rN+1+lRǫ(s
′, r, ω)f(s′+rω) =

∫

R2

|s′−t′|N+lRǫ

(

s′, |s′ − t′|, s
′ − t′

|s′ − t′|

)

f(t′)dt′.
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For any positive integer m we write f = 〈D〉2m〈D〉−2mf . Choose N >> m so that
there is sufficient smoothness in the integral kernel to integrate by parts the formula

ARf =

∫

R2

|s′ − t′|N+lRǫ

(

s′, |s′ − t′|, s
′ − t′

|s′ − t′|

)

〈Dt′〉2m〈Dt′〉−2mf(t′)dt′.

We see from this that for a fixed positive integer m we may choose N large enough
so that AR : H−2m(R2) → H2m(R2) is uniformly bounded in ǫ.

For the integral involving the main term of (2.16), we write

Ajf :=

∫

S1

∫ ∞

0

∂jrAǫ(s
′, 0, ω)rj+lf(s′ + rω).

Let χ ∈ C∞
c (R2) be 1 near the origin and write

Ajf = Ajχ(D)f +Aj(1− χ(D))f.(2.17)

To see the mapping property of the first term of (2.17) we write it out in Cartesian
coordinates

Ajχ(D)f =

∫

R2

∂jrAǫ

(

s′, 0,
t′

|t′|

)

|t′|j−1+l(χ̌ ∗ f)(s′ − t′)dt′.

Since ∂jrAǫ

(

s′, 0, t′

|t′|

)

is smooth in s′ with derivatives bounded uniformly in ǫ and

χ(D) is smoothing, we have that Ajχ(D) : H−m(R2) → Hm(R2) for any positive
integer m with bound uniform in ǫ.

The second term of (2.17) is a pseudodifferential operator with full symbol

aj(s
′, ξ′; ǫ) := (1− χ(ξ′))Ft′

(

∂jrAǫ

(

s′, 0,
t′

|t′|

)

|t′|j−1+l

)

and away from ξ = 0 we can deduce from Lemma 2.10 that

Ft′

(

∂jrAǫ

(

s′, 0,
t′

|t′|

)

|t′|j−1+l

)

= |ξ′|−j−l−1ãj(s
′, ξ′/|ξ′|; ǫ)

for some ãj(s
′, ω; ǫ) ∈ C∞

c (R2 × S1) with derivatives uniformly bounded in ǫ. The
operator 〈D〉m+l+1Aj(1− χ(D))〈D〉−m then has full symbol in S0 with symbol semi-
norms bounded uniformly in ǫ. We can now apply Calderón-Vailancourt Theorem to
deduce that Aj(1−χ(D)) is bounded uniformly in ǫ fromHm(R2) → Hm+l+1(R2). �

2.4. Symbol Computations. Compute symbol by taking the Fourier transform and
multiply by 2π. We compute the principal symbols of some of the main operators
which we will encounter. The following list of inverse Fourier transforms will be useful
for later computations and we will leave its proof to the reader:

Lemma 2.12. In R2 with ξ = (ξ1, ξ2) and x = (x1, x2) one has that for |ξ| ≥ 1,
i) F−1(log |x|)(ξ) = −2π|ξ|−2, F−1(|x|−1)(ξ) = 2π|ξ|−1

ii) F−1(xj |x|−1)(ξ) = 2πiξj|ξ|−3

iii) F−1(x2j |x|−3)(ξ) = 2πξ2k|ξ|−3, k 6= j

iv) F−1(x2j |x|−2)(ξ) = 2π(ξ2k − ξ2j )|ξ|−4, k 6= j.

Remark 2.13. Note that we ignore the behaviour of F−1(·) near ξ = 0 as they are
irrelevant to the principal symbol computations we are interested in.

Lemma 2.14. Let A be a pseudodifferential operator on ∂M whose singularity along
the diagonal is given by dg(x, y)

−1. Then σ(A)(x, ξ) ≡ 2π|ξ|−1
h(x).
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Proof. We compute the symbol at x0 ∈ ∂M using the normal coordinate t′ 7→ x(t′; x0).
By Corollary 2.5 d(x(t′; x0), x0)

−1 = |t′|−1 + O(|t′|). By Lemma 2.12, the inverse
Fourier transform of the leading order singularity is 2π|ξ|−1 for ξ large and therefore
σ(A)(x, ξ) ≡ 2π|ξ|−1

h(x). �

Lemma 2.15. Let A be a pseudodifferential operator on ∂M whose singularity near

the diagonal is given by ∂νydg(x, y)
−1 |x,y∈∂M×∂M . Then σ(A)(x0, ξ) ≡ −π IIx0(∗ξ

♯)

|ξ|3
h(x0)

where ξ 7→ ξ♯ denotes the musical isomorphism from T ∗∂M to T∂M induced by the
boundary metric h and ∗ is the Hodge star operator in this metric. Here we use IIx(V )
to denote the quadratic form IIx(V, V ) for V ∈ Tx∂M .

Proof. Using Lemma 2.7 we see that in normal coordinates given by x(s′; x0) the

leading order singularity of ∂νydg(x0, y = x(s′; x0)) is given by −λ1s21+λ2s22
2|s′|3

. By Lemma

2.12 we have that

F−1

(

−λ1s
2
1 + λ2s

2
2

2|s′|3
)

= −πλ1ξ
2
2 + λ2ξ

2
1

|ξ|3 .

This is precisely the normal coordinate expression for −π IIx0 (∗ξ
♯)

|ξ|3
h(x0)

. �

Proposition 2.16. Let H(x) denote the mean curvature of ∂M at x, IIx the second
fundamental form of ∂M at x ∈ ∂M , and IIx(V ) := IIx(V, V ) for V ∈ Tx∂M . Define

K(x, y) := H(x)π log dh(y, x)−
π

4

(

IIx

(

exp−1
x (y)

| exp−1
x (y)|h

)

− IIx

( ∗ exp−1
x (y)

| exp−1
x (y)|h

))

,(2.18)

where ∗ is the Hodge star operator for the metric h. Let A : C∞(∂M) → D′(∂M) be
the operator defined by

A : u 7→
∫

∂M

K(x, y)u(y)dvolh.

Then A ∈ Ψ−2
cl (∂M) with principal symbol a(x, ξ) ∈ C∞(T ∗∂M\{0}) given by

a(x, ξ) ≡ −2π2

|ξ|4h
IIx(∗ξ♯),

where ξ 7→ ξ♯ ∈ T∂M denotes the raising of index with respect to the metric h on
∂M .

Proof. To see that A is a classical ΨDO, we use Lemma 2.1 and Corollary 2.9 to see
that the coordinate expression for the integral kernel K(x, y) satisfies the polyhomo-
geneous conditions of Prop 2.8 in Chapter 7 of [34]. Therefore A ∈ Ψ−2

cl (∂M).
The principal symbol computation is done using normal coordinates. Fix x0 ∈ ∂M

and denote by
t′ 7→ x(t′; x0) := expx0;h(t

′)

the normal coordinate system around x0. By a rotation we can choose the coordi-
nates so that ∂tjx(0; x0) ∈ Tx0∂M is an eigenvector of the shape operator at x0 with
eigenvalue λj.

According to Lemma 2.1 and Corollary 2.9, in these coordinates the terms of
K(x0, y) can be expressed as

K(x0, x(t
′; x0)) =

λ1 + λ2
2

π log |t′| − π

4

(

λ1t
2
1 + λ2t

2
2

|t′|2 − λ1t
2
2 + λ2t

2
1

|t′|2
)

(2.19)
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for t′ close to the origin. Computing the principal symbol a(x0, ξ) amounts to taking
the inverse Fourier transform of the above expression, and observe the behaviour as
|ξ| → ∞. Use the formula in Lemma 2.12 , we obtain

a(x0, ξ) ≡ −2π2

|ξ|4 (λ1ξ
2
2 + λ2ξ

2
1) = −2π2

|ξ|4h
IIx(∗ξ♯).

The last equality holds due to the fact that we are using normal coordinates. �

3. Proof of Proposition 1.1

In this section we use layer potential methods to pick out the singularity structure
of the Neumann Green’s function at the boundary. Assume without loss of generality
that M is an open subset of a compact Riemannian manifold (M̃, g) without bound-
ary. Choose M ′ ⊂ M̃ a manifold with boundary which compactly contains M . For
all F ∈ C∞

0 (M ′), standard elliptic theory shows that there exists a unique solution
UF ∈ C∞(M ′) to

∆gUF = F, UF |∂M ′= 0.

The map F 7→ UF is a continuous linear operator from C∞
0 (M ′) → D′(M ′) and is

therefore given by a Schwartz kernel E(x, y) ∈ D′(M ′×M ′) which we call the Green’s
function. Note that for any u ∈ C∞

0 (M ′), if we fix x ∈M ′ then by definition

u(x) =

∫

M ′

∆gu(y)E(x, y)dvolg(y) = 〈u(·),∆gE(x, ·)〉.

We formally write

∆gE(x, ·) = δx(·) on M ′(3.1)

Note that if M is a bounded domain in R
3 then M̃ can be chosen to be the flat torus

and E(x, y) can be chosen to be −1
4π|x−y|

for the appropriate constant c ∈ R.

Using standard elliptic parametrix construction in normal coordinates we express
E(x, y) in the following way.

Lemma 3.1. For all x, y ∈M ′

E(x, y) = − 1

4π
dg(x, y)

−1 +Ψ−4
cl (M̃).(3.2)

Here Ψ−4
cl (M̃) denotes the Schwartz kernel of an operator in Ψ−4

cl (M̃).

Proof. Let P ∈ Ψ−2
cl (M̃) be a parametrix for the ∆g on the closed compact manifold

M̃ without boundary meaning that

∆gP = I +Ψ−∞(M̃).

By ellipticity, for any χ0 ∈ C∞
c (M ′) we have

χ0(x)χ0(y)(E(x, y)− P (x, y)) ∈ Ψ−∞(M̃).

Therefore it suffices to show that

P − P−2 ∈ Ψ−4
cl (M̃)(3.3)

where P−2 ∈ Ψ−2(M̃) is defined by

(P−2u)(x) :=

∫

M̃

−χ(x, y)
4π

dg(x, y)
−1u(y)dvolg(y)
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for some smooth function χ(·, ·) ∈ C∞(M̃×M̃) satisfying χ(x, y) = χ(y, x), χ(x, y) =
1 if dg(x, y) < InjM̃/4 and

supp(χ(·, ·)) ⊂⊂ {(x, y) | dg(x, y) < InjM̃/2}.
Here InjM̃ is the injectivity radius of the closed compact Riemannian manifold (M̃, g).

By elliptic regularity (3.3) is equivalent to showing that

∆gP−2 − I ∈ Ψ−2
cl (M̃).(3.4)

Taking the adjoint and use the self-adjointness of both ∆g and P−2, this is the same
as

P−2∆g − I ∈ Ψ−2
cl (M̃).(3.5)

Using the principal symbol map defined in (2.7) it amounts to showing that

σ−1(P−2∆g − I) = 0(3.6)

as an element of the quotient space S−1
cl /S

−2
cl . In fact, since the symbol is classical,

we now choose σ−1(P−2∆g−I) to be the representative in the equivalence class which
is positively homogeneous of degree −1.

For each y0 ∈ M̃ and covector η0 ∈ S∗
y0
M̃ in the unit cosphere bundle we will show

that

|σ−1(P−2∆g − I)(y0, τη0)| ≤ Cy0,η0τ
−2(3.7)

as τ → ∞. Homogeneity would then ensure that σ−1(P−2∆g − I)(y, η) = 0 for all

(y, η) ∈ T ∗M̃ which would then ensure (3.6).

To this end let V1, V2, V3 ∈ Sy0M̃ be three orthonormal vectors and choose normal

coordinate given by Φ(t) := expy0(
∑3

j=1 tjVj) for |t|R3 < InjM̃/2. Let χR3 ∈ C∞
c (R3)

take the value 1 in an open set containing the origin but supp(χR3) ⊂⊂ {t ∈ R3 |
|t|R3 < InjM̃/2}. Similarly let χM̃ ∈ C∞(R3) take the value 1 in an open set containing
y0 but supp(χM̃) ⊂⊂ {x | dg(x, y0) < InjM̃/2}.

Define the pullback operators A,B : C∞(R3) → C∞(R3) by

A : u 7→ Φ∗ (χM̃P−2Φ
∗ (χR3u)) , B : u 7→ Φ∗ (χM̃∆gΦ

∗ (χR3u))

where Φ∗ and Φ∗ are pullback by Φ and Φ−1 respectively.
Thanks to the invariance of the principal symbol map under symplectomorphism,

we have

σ−1(P−2∆g − I)(y0,Φ
∗ξ) = σ−1(AB − I)(0, ξ)(3.8)

for all ξ ∈ T ∗
0R

3. We see then that (3.6) amounts to showing that AB − I satisfies

σ−1(AB − I)(0, ξ) = 0.(3.9)

Let a(t, ξ) and b(t, ξ) be the full symbol of A and B respectively. The full symbol of
A can be computed by the formula

a(t, ξ) = e−ξ(t) (Aeξ) (t)

where eξ(t) := e−it·ξ. Since we are using the normal coordinate around y0, dg(y0,Φ(t)) =
|t|R3 and

Φ∗dVolg =
√

|g|dt = dt+H2(t)dt

where H2(t) is a smooth function vanishing to order 2 at t = 0. So

(Aeξ)(0) =

∫

R3

−4π

|t| e
−it·ξdt+

∫

R3

c

|t|e
−it·ξH̃2(t)dt
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for some smooth and compactly supported function H̃2(t) vanishing to order 2 at
t = 0. Computing the first term directly and treat the second term by expanding
H2(t) using Taylor expansion we see that

a(0, ξ) = (Aeξ)(0) = |ξ|−2 + S−4
cl (T

∗
R

3).(3.10)

Since B is the Laplace operator in the coordinate given by Φ we have that

b(t, ξ) =

3
∑

j,k=1

gj,k(t)ξjξk +
1
√

|g|

3
∑

j,k=1

∂tj (
√

|g|gj,k)(t)ξk(3.11)

Composition calculus gives that if c(x, ξ) is the full symbol of the operator AB then

c(0, ξ) = a(0, ξ)b(0, ξ) +−i
3
∑

j=1

∂ξja(0, ξ)∂tjb(t, ξ) |t=0 +S
−2
cl .(3.12)

Substituting into (3.12) the expression we have in (3.10), (3.11), and the fact that in
normal coordinates gj,k(t) = δj,k + O(|t|2) for t in a neighbourhood of the origin we
have that the second term in (3.12) drops out. So the full symbol of AB − I at the
point (0, ξ) ∈ T ∗R3 is

c(0, ξ)− 1 ∈ S−2
cl .

In light of (3.8), for each fixed ξ ∈ T ∗
y0
M̃ ,

|σ−1(P−2∆g − I)(y0, τΦ
∗ξ)| < Cξτ

−2

as τ → ∞. Therefore (3.7) is verified.
�

For all f ∈ C∞(∂M) we define as in [34] the operators S,N ∈ Ψ−1
cl (∂M) by the

following

Sf(x) :=

∫

∂M

E(x, y)f(y)volh, Nf(x) := 2

∫

∂M

∂νyE(x, y)f(y)volh(3.13)

for x ∈ ∂M . Note that Nf(x) is different from (see [34] Chapt 7 Sect 11)

lim
x→∂M,x∈M

2

∫

∂M

∂νyE(x, y)f(y)dy = f(x) +Nf(x).

Modulo lower order pseudodifferential operator, S and N are given by the integral
kernels dg(x, y)

−1 and ∂νydg(x, y)
−1 respectively. Indeed, using (3.2) and equation

(11.14) on page 38 of [34], we see that for (x, y) ∈ ∂M × ∂M in a neighbourhood of
the diagonal,

S = − 1

4π
dg(x, y)

−1 +Ψ−3
cl (∂M), N = − 1

2π
∂νydg(x, y)

−1 +Ψ−2
cl (∂M).(3.14)

Using (3.1) we can construct the so called Neumann Green’s function on M via
the following procedure. For each fixed x ∈Mo we can solve the following Neumann
boundary value problem to obtain the correction term C(x, y) as a function of y ∈M

∆gC(x, y) = 0, , ∂νyC(x, y) = ∂νyE(x, y)−
1

|∂M | ,
∫

∂M

C(x, y)dvolh =

∫

∂M

E(x, y)dvolh.
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Setting G(x, y) = −E(x, y)+C(x, y) we get, for each fixed x ∈M the unique solution
(as a distribution in z) G(x, z) to

∆gG(x, z) = −δx(z) , ∂νzG(x, z) |z∈∂M=
−1

|∂M | ,
∫

∂M

G(x, z)dvolh = 0.(3.15)

Fix for the time being y 6= z in the interior of M and observe that x 7→ G(z, x) is
smooth in a neighbourhood of the singularity of the map x 7→ G(x, y) and vice versa.
Therefore we can integrate by parts the the expressionG(z, y) = −

∫

M
G(z, x)∆xG(y, x)dx

to obtain

G(z, y)−G(y, z) =

∫

∂M

G(y, x)∂νxG(z, x)−G(z, x)∂νxG(y, x)volh(x).

The boundary and orthogonality conditions in (3.15) ensures that the right side
vanishes so we have

G(z, y) = G(y, z).(3.16)

Let Λ : Hk(∂M) → Hk−1(∂M) denote the Dirichlet-to-Neumann map (see [17]
for definition) whose range is precisely a codimension one subspace of Hk−1 which
annihilates the constant function. By the orthogonality condition in (3.15), the be-
haviour of G(x, y) is uniquely characterized by its action on the range of Λ. To this
end, for f ∈ C∞(∂M), denote its harmonic extension by uf . Integrating by parts the
expression 0 =

∫

M
∆guf(x)G(x, y)dx for z in the interior of M we have

u(y) =

∫

∂M

∂νuf(x)G(x, y)dvolh(x) +
1

|∂M |

∫

∂M

fdvolh(3.17)

=

∫

∂M

(Λf)(x)G(x, y)dvolh(x) +
1

|∂M |

∫

∂M

fdvolh

Observe that any f̃ ∈ C∞(∂M) has a unique decomposition f̃ = c + Λf for some
constant function c and f ∈ C∞(∂M) satisfying

∫

∂M
f = 0. Therefore, using the

orthogonality condition of (3.15) and taking the trace of (3.17) we see that the map

f̃ 7→
(
∫

∂M

f̃(x)G(x, y)dvolh(x)

)
∣

∣

∣

∣

y∈∂M

is well defined and takes C∞(∂M) → C∞(∂M). We denote this operator by G∂M

and its Schwartz kernel by G∂M(x, y). Going back to (3.17) we see that

f = G∂MΛf + Pf,

where

Pf := |∂M |−1

∫

∂M

f(3.18)

is smoothing. In operator form this is

I = G∂MΛ+ P.(3.19)

Since Λ ∈ Ψ1
cl(∂M) is elliptic (see [17]) we can conclude that G∂M ∈ Ψ−1

cl (∂M) which
maps Hk(∂M) → Hk+1(∂M) for all k ∈ R. This completes the proof of Proposition
1.1 part i).
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Remark 3.2. A quick way to prove part ii) of Proposition 1.1 would be to observe
that (3.19) implies G∂M is a parametrix for Λ. The symbol expansion for Λ has
already been computed in [17] so constructing its parametrix follows from standard
pseudodifferential calculus. However, we will choose instead to take the layer potential
approach since it iwill be more conducive for future numerical implementations. See
Remark 3.3 below.

Applying on the right the single-layered potential S defined in(3.13) and using
identity (11.58) of [34] we have

G∂M = −2S +G∂MN
∗ + 2PS.(3.20)

Iterating this equation and using intertwining property (11.59) of [34] we get

G∂M = −2S − 2NS +Ψ−3
cl (∂M).(3.21)

By (2.8) the principal symbol of the operator NS is simply the product of the prin-
cipal symbols of S with the principal symbol of N . The leading singularities of the
operators S and N are given in (3.14) and the principal symbols of these kernels are
computed in Lemmas 2.14 and 2.15. Therefore, using Proposition 2.16, we see that
modulo Ψ−3

cl (∂M), the integral kernel of NS is given by

1

8π
H(x) log dh(y, x)−

1

32π

(

IIx

(

exp−1
x (y)

| exp−1
x (y)|h

)

− IIx

( ∗ exp−1
x (y)

| exp−1
x (y)|h

))

when x, y ∈ ∂M are close to each other.
Inserting this into (3.21) we get that when x, y ∈ ∂M are close to each other,

G∂M(x, y) =
1

2π
dg(x, y)

−1 − 1

4π
H(x) log dh(y, x)(3.22)

+
1

16π

(

IIx

(

exp−1
x (y)

| exp−1
x (y)|h

)

− IIx

( ∗ exp−1
x (y)

| exp−1
x (y)|h

))

+R(x, y),

where R(x, y) is the Schwartz kernel of an operator in Ψ−3
cl (∂M) which we call the

regular part of G(x, y). Observe that since the principal symbol of R is in S−3
cl (T

∗∂M)
and ∂M is dimension 2, Sobolev embedding yields that

R(·, ·) ∈ C0,α(∂M × ∂M)(3.23)

for all α < 1. The proof of Proposition 1.1 is now complete.

Remark 3.3. Note that (1.2) peels off the "singular part" of the distributionG∂M(x, y)
and gives us the representation

G∂M(x, y) = Gsing(x, y) +R(x, y)

with the singularity structure of Gsing explicitly given by (1.2). Inserting this repre-
sentation of G∂M into (3.20) gives the following integral equation for the regular part
R(x, y):

R(I −N∗) = −Gsing − 2S +GsingN
∗ + 2PS

where the operators P , S, and N are given by (3.18) and (3.13).
Since N∗ ∈ Ψ−1

cl (∂M), it is a compact operator which makes I − N∗ Fredholm
with index zero. Therefore, numerically computing for R(x, y) amounts to solving a
Fredholm boundary integral equation subject to the orthogonality condition

∫

∂M

G∂M(x, z)dvolh(z) = 0.
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4. Inverting the Normal Operator

Let Ω ⊂ Rn be a bounded convex domain with smooth boundary. We will analyze
the mapping properties of the operator

L : f 7→
∫

Ω

f(s)

|s− t|n−1
ds1 . . . dsn(4.1)

and its inverse. Methods do exist [18],[7] for the explicit expression of the inverse of
L when Ω = D (which is sufficient for our setting). When Ω is a two dimensional
ellipse [27] computed explicitly the inverse of L acting on the constant function.

The purpose of Section 4.1 is to provide a geometric perspective to the operator L
one of the advantages of which is that it provides an explicit formula for L−1(1) when
Ω is a ball of any dimension. Our perspective is based on some of the recent progress
on integral geometry (in particular [23], [20], [12]). Since the explicit formulas and
estimates will be valid in all dimensions, this will provide the key ingredient in proving
Theorem 1.3 in all dimensions. When Ω is not necessarily B, this geometric point of
view may also potentially provide ways to relate some of the quantities of interest to
the geometry of Ω.

Section 4.2 will provide some explicit formulas for the composition of L−1 with
other operators in the case when Ω = D, the two dimensional disk. Section 4.3 will
do the same for when Ω is the two dimensional ellipse although the formulas will not
be as explicit.

4.1. Mapping Properties of L. Denote by

∂+SΩ := {(x, v) ∈ ∂Ω × Sn−1 | v · ν(x) ≤ 0}
to be the set of inward pointing unit vectors on ∂Ω. Note that this is a closed
submanifold of the sphere bundle SΩ and thus inherits its smooth structure. Define

the X-Ray transform I : C∞(Ω) → C∞(∂+SΩ) by If(x, v) :=
∫ τ(x,v)

0
f(x + tv)dt

where τ(x, v) is the time it takes for a ray of unit velocity v starting at x ∈ Ω to
reach the boundary ∂Ω. Note that because Ω is assumed to be convex, τ(x, v) is a
smooth function on ∂+SM . Furthermore, I is injective by [23].

By [29] Theorem 4.2.1 this operator extends to an operator I : L2(Ω) → L2
µ(∂+SΩ)

where µ is the measure given by µ = |ν(x) · v|dvol∂ΩdvolSn−1 . This L2 space mapping
property allows us to define the adjoint operator I∗ given by (see [23])

I∗ω(x) =

∫

Sn−1

ω(x+ τ(x, v)v)dvolSn−1(v)(4.2)

when acting on smooth functions ω. This allows us to define a self-adjoint normal
operator I∗I : L2(Ω) → L2(Ω). It turns out that by [23] the Schwartz kernel of I∗I
is precisely 2|s − t|−n+1 and therefore I∗I = 2L. Let dΩ(·) be any smooth positive
function on Ω which is equal to dist(·, ∂Ω) near the boundary. By Theorem 2.2 and
Theorem 4.4 of [20] respectively, we have that

I∗I : d
−1/2
Ω C∞(Ω) → C∞(Ω)(4.3)

is a bijection and

2L = I∗I : {u ∈ H−1/2(Rn) | supp(u) ⊂ Ω} ≃ H1/2(Ω)∗ → H1/2(Ω)(4.4)

is a self-adjoint homeomorphism. Thus there exists a unique function u0 ∈ d
−1/2
Ω C∞(Ω)

such that Lu0 = 1 which is equivalent to I∗Iu0 = 2. To compute u0, observe that if
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we find u0 such that

Iu0(x, v) =
2

Vol(Sn−1)
(4.5)

for all (x, v) ∈ ∂+SΩ then by (4.2) we would have I∗Iu0 = 2. The solution of (4.5)
is easy to compute explicitly when Ω = B. Indeed, direct computation shows that
choosing

u0(x) =
2

πVol(Sn−1)
√

1− |x|2
(4.6)

one satisfies (4.5). In particular if n = 2 (which is the case we are interested in) we
have that

L−1(1) = u0(x) =
1

π2
√

1− |x|2
, in dimension 2(4.7)

Remark 4.1. This process of computing solution to I∗Iu0 = const by solving for
Iu0 = const unfortunately only works for Ω = B. In fact, thanks to the rigidity
result of [12], we know that Iu0 = 1 is solvable iff Ω = B. However, for more general
domains the geometric view presented here could potentially allow one to apply the
reconstruction formula for inverting I [22] to solve I∗Iu0 = 1 explicitly. To do so one
must first invert I∗ (which has a large kernel but is surjective) into the range of I
and it is not clear how to do this when Ω 6= B.

4.2. Integrals Involving L inverse of 1. We also define Rlog and R∞ to be oper-

ators with kernels log |s′ − t′| and (s1−t1)2−(s2−t2)2

|s′−t′|2
respectively.

Lemma 4.2. The operators R∞ and Rlog are bounded maps fromH1/2(D)∗ to H3/2(D).

Proof. Observe that the integral kernels of both Rlog and R∞ extends naturally to

kernels representing operators in Ψ∞(R2) which we denote by R̃log and R̃∞ respec-
tively. We denote by E : H1/2(D)∗ → {u ∈ H−1/2(R2) | supp(u) ⊂ Ω} to be the
isomorphism obtained by the trivial extension. Let χ ∈ C∞

0 (R2) be identically 1 on
D. Then we have that

(Rlogu) |D=
(

χR̃logχEu
)

|D(4.8)

and the same holds for R∞.
By Proposition 7.2.8 of [34] we have that both χR̃logχ and χR̃∞χ are pseudodif-

ferential operators of order −2. Therefore by (4.8) both Rlog and R∞ are bounded
operators from H1/2(D)∗ to H3/2(D).

�

The following lemma was proved in [7, Theorem 4.2].

Lemma 4.3. For u ∈ H
1
2 (D), it follows

〈

L−1u, 1
〉

=
1

π2

∫

D

u(t′)

(1− |t′|2) 1
2

dt1dt2.(4.9)

Proof. By (4.4) L : H
1
2 (D)∗ → H

1
2 (D) is a self-adjoint homeomorphism. The result

of this Lemma is a direct consequence. �
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Lemma 4.4. Let

f(s′) = RlogL
−11 =

∫

D

log |t′ − s′|[L−11](t′)dt1dt2,

then

f(s′) =
2

π
log |s′|+ 2

π

(

1

2
log
∣

∣

∣
(1− |s′|2) 1

2 + 1
∣

∣

∣
− 1

2
log
∣

∣

∣
(1− |s′|2) 1

2 − 1
∣

∣

∣

)

− 2

π
(1− |s′|2) 1

2 .

Proof. Note that 1
2π

log |t′ − s′| is the fundamental solution for the Laplace operator
in R2, therefore,

∆f = 2π[L−11] =
2

π

1

(1− |t′|2) 1
2

Since [L−11](t′) is radially symmetric, f(t′) = f̃(r) where r = |t′|. Writing the Laplace
operator in polar coordinates, we get

(rf̃r)r =
2

π

r

(1− r2)
1

2

.

Integration gives

f̃r(r) =
2

π

(

C1

r
− (1− r2)

1

2

r

)

and

f̃(r) =
2

π

(

C1 log r −
1

2
log
∣

∣

∣
(1− r2)

1
2 − 1

∣

∣

∣
+

1

2
log
∣

∣

∣
(1− r2)

1
2 + 1

∣

∣

∣
− (1− r2)

1
2 + C2

)

.

(4.10)

Let us find C1 and C2. Note that f̃(r) does not have singularity at r = 0, namely,

f̃(0) = f(0) =
1

π2

∫

D

log |t′|
(1− |t′|2) 1

2

=
2

π

∫ 1

0

r log r

(1− r2)
1
2

dr =
2

π
(log 2− 1).

Therefore, the identities

C1 log r −
1

2
log
∣

∣

∣
(1− r2)

1
2 − 1

∣

∣

∣
=

1

2
log

∣

∣

∣

∣

∣

r2C1

(1− r2)
1
2 − 1

∣

∣

∣

∣

∣

=
1

2
log

∣

∣

∣

∣

r2C1

−1
2
r2 +O(r4)

∣

∣

∣

∣

,

as r → 0, implies that C1 = 1. Hence, putting r = 0 into (4.10), gives

2

π
(log 2− 1) =

2

π

(

1

2
log 2 +

1

2
log 2− 1 + C2

)

,

so that C2 = 0. �

Due to Lemmas 4.4 and 4.3, the following identity is a direct computation:

Lemma 4.5. The following identity holds

〈

L−1RlogL
−11, 1

〉

=
8

π2
log 2− 6

π2
.

Lemma 4.6. The following idetity holds
〈

L−1R∞L
−11, 1

〉

= 0.



MEAN FIRST ARRIVAL TIME OF BROWNIAN PARTICLES 25

Proof. By Lemmas (4.7) and 4.3, we know that

〈

L−1R∞L
−11, 1

〉

=
1

π2

∫

D

∫

D

(s1 − t1)
2 − (s2 − t2)

2

|s′ − t′|2
1

(1− |s′|2) 1
2

ds′
1

(1− |t′|2) 1
2

dt′.

Consider the following two changes of variables for the right-hand side

(s1, s2, t1, t2) = (r cosφ, r sinφ, ρ cos θ, ρ sin θ),

(s1, s2, t1, t2) = (r sin φ, r cos φ, ρ sin θ, ρ cos θ).

The results differ by multiplying by −1, which means that the right-hand side is
0. �

4.3. Explicit Formulas in 2 Dimensional Ellipse. We now compute the inverse

of the map f 7→
∫

Ea

f(s′)
|s′−t′|

ds′ where the domain of integration is the two dimensional

ellipse Ea := {s21+
s22
a2

= 1} instead of a ball. A change of variable leads us to consider
the operator

(4.11) Laf = a

∫

D

f(s′)

((t1 − s1)2 + a2(t2 − s2)2)
1/2
ds′

acting on functions of the disk D. By [27] we have that

(4.12) La

(

Ka
−1(1− |t′|2)−1/2

)

= 1,

on D where

Ka =
π

2

∫ 2π

0

1
(

cos2 θ + sin2 θ
a2

)1/2
dθ.

By (4.4) this is the unique solution in H1/2(D)∗ to Lau = 1.
Next we denote

Rlog,af(t
′) := a

∫

D

log
(

(t1 − s1)
2 + a2(t2 − s2)

2
)1/2

f(s′)ds′,

R∞,af(t
′) := a

∫

D

(t1 − s1)
2 − a2(t2 − s2)

2

(t1 − s1)2 + a2(t2 − s2)2
f(s′)ds′.

For general a, the quantities 〈L−1
a (1),Rlog,aL

−1
a (a)〉 and 〈L−1

a (1),R∞,aL
−1
a (a)〉 cannot

be computed as explicitly as in the case when a = 1 in Section 4.2.

5. Asymptotic Expansion of the Singularly Perturbed Problems

5.1. Asymptotic Expansion of Mixed Boundary Value Problems. We are
now ready to compute the asymptotic expansion for the mixed boundary value prob-
lem uǫ ∈ H1(M),

∆guǫ = −1, uǫ |Γǫ,a= 0, ∂νuǫ |∂M\Γǫ,a= 0(5.1)

which gives the compatibility condition
∫

∂M

∂νuǫdvolh = −|M |.(5.2)

All integrals on open subsets of ∂M are with respect to the volume form given by
the metric h.
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Using Green’s formula as in [9], also in [1], we can deduce that for points x ∈Mo,
uǫ(x) satisfies the integral equation

uǫ(x) = F (x) + Cǫ,a +

∫

∂M

G(x, y)∂νuǫ(y)dvolh(y),(5.3)

where Cǫ,a = |∂M |−1
∫

∂M
uǫ and F (x) =

∫

M
G(x, y) solves the boundary value prob-

lem

∆F = −1, ∂νF = −|M |/|∂M |,
∫

∂M

Fdvolh = 0.(5.4)

By Proposition 1.1 we can take the trace of (5.3) to the boundary and restrict to the
open subset Γo

ǫ,a ⊂ ∂M . Using (5.1) we see that

0 = F (x) + Cǫ,a +

∫

Γǫ,a

G∂M(x, y)∂νuǫ(y)dvolh(y)

for x ∈ Γo
ǫ,a. We now replace G∂M(x, y) for x, y ∈ Γo

ǫ,a with the expression in (1.2) to
obtain

−F (x)− Cǫ,a =
1

2π

∫

Γǫ,a

dg(x, y)
−1∂νuǫ(y)dvolh(y)−

H(x)

4π

∫

Γǫ,a

log dh(x, y)∂νuǫ(y)dvolh(y)

+
1

16π

∫

Γǫ,a

(

IIx

(

exp−1
x (y)

| exp−1
x (y)|h

)

− IIx

( ∗ exp−1
x (y)

| exp−1
x (y)|h

))

∂νuǫ(y)dvolh(y)(5.5)

+

∫

Γǫ,a

R(x, y)∂νuǫ(y)dvolh(y).

We will write this integral equation in the coordinate system given by

D ∋ (s1, s2) 7→ xǫ(s1, as2; x
∗) ∈ Γǫ,a,(5.6)

where xǫ(·; x∗) : Ea → Γǫ,a is the coordinate defined in Section 2.2. To simplify
notation we will drop the x∗ in the notation and denote xǫ(·; x∗) by simply xǫ(·).

Note that in these coordinates the volume form for ∂M is given by

dvolh = aǫ2(1 + ǫ2Qǫ(s
′))ds1 ∧ ds2, s′ ∈ D(5.7)

for some smooth function Qǫ(s
′) whose derivatives of all orders are bounded uniformly

in ǫ. We denote

ψǫ(s
′) := ∂νuǫ(x

ǫ(s1, as2)).(5.8)

The compatibility condition (5.2) written using the expression for the volume form
(5.7) is then

∫

D

ψǫ(s
′)(1 + ǫ2Qǫ(s

′))ds1ds2 = −|M |
aǫ2

.(5.9)

Let us unwrap the right hand side of (5.5) term by term in the coordinate given
by xǫ(·). Write out the integral of the first term using the expression of the volume
form (5.7) and the expression for dg(x, y)

−1 in Corollary 2.6 and taking into account
that the coordinate system is scaled by a factor a as in (5.6) gives
(5.10)
∫

Γǫ,a

dg(x, y)
−1∂νuǫ(y)dvolh(y) = aǫ

∫

D

1

((t1 − s1)2 + a2(t2 − s2)2)
1/2
ψǫ(s

′)ds+ǫ3Aǫψǫ,
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for some operator Aǫ whose Schwartz kernel is given by the second term of the
expansion in Corollary 2.6. Here due to Lemma 2.11 we have that

Aǫ : H
1/2(D; ds′)∗ → H1/2(D; ds′)

with operator norm bounded uniformly in ǫ. From here on we will denote by Aǫ any
operator which takes H1/2(D; ds′)∗ → H1/2(D; ds′) whose operator norm is bounded
uniformly in ǫ.

Doing the same thing for the second term of (5.5) while using Lemma 2.2, Lemma
2.11, and (5.9) gives

H(x)

∫

Γǫ,a

log dh(x, y)∂νuǫ(y)dvolh(y) = −H(x∗)|M | log ǫ+ ǫ2H(x∗)Rlog,aψǫ + ǫ3Aǫψǫ

+OH1/2(D)(ǫ log ǫ)(5.11)

where Rlog,a is defined at the very beginning of Section 4.2. Here OH1/2(D)(ǫ log ǫ)

denotes a function with H1/2(D; ds′) norm vanishing to order ǫ log ǫ. Note the volume
for we use here is now the Euclidean one rather than dvolh given by (5.7).

Finally, for the third term of (5.5) we get by using the coordinate expression derived
in Corollary 2.9 and the estimate of Lemma 2.11:
∫

Γǫ,a

(

IIx

(

exp−1
x (y)

| exp−1
x (y)|h

)

− IIx

( ∗ exp−1
x (y)

| exp−1
x (y)|h

))

∂νuǫ(y) = ǫ2(λ1 − λ2)R∞,aψǫ

+ǫ3Aǫψǫ,(5.12)

where R∞,a is defined in Section 4. Inserting into (5.5) the identities (5.10), (5.11),
and (5.12) we have

−F (x∗)− Cǫ,a −H(x∗)|M |(4π)−1 log ǫ

ǫ
=

1

2π
Laψǫ − ǫ

H(x∗)

4π
Rlog,aψǫ + ǫ

λ1 − λ2
16π

R∞,aψǫ

+aǫ

∫

D

R(xǫ(t′), xǫ(s′))ψǫ(s
′) + ǫ2Aǫψǫ(5.13)

+OH1/2(D)(log ǫ).

We would like to approximate the integral kernel R(xǫ(t′), xǫ(s′)) by the constant
R(x∗, x∗) and this is the content of

Lemma 5.1. Let Tǫ : C
∞
c (D) → D′(D) be the operator defined by the integral kernel

R(xǫ(t′; x∗), xǫ(s′; x∗))−R(x∗, x∗).

Then

‖Tǫ‖(H1/2(D))∗→H1/2(D) ≤ Cǫ log ǫ.

Proof. Set T (t′, s′) := R(x(t′; x∗), x(s′; x∗))−R(x∗, x∗) for t′ and s′ small and extend
it to be a smooth compactly supported kernel otherwise. The kernel for Tǫ is then
T (ǫt′, ǫs′). Note that

T (0, 0) = 0.(5.14)

Observe that if χ ∈ C∞
c (R2) which is identically 1 on D then the operator Tǫ acting

on distributions supported in D is given by the Schwartz kernel

χ(s′)χ(t′)T (ǫt′, ǫs′)

for t′, s′ ∈ D and ǫ > 0 small.
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Observe that T (t′, s′) is the integral kernel for an operator in Ψ−3
cl (R

2). Applying
Prop 2.8 in Chap 7 of [34] we can deduce that for all k we may choose N sufficiently
large such that

T (t′, s′) =
N
∑

l=0

(ql(t
′, t′ − s′) + pl(t

′, t′ − s′) log |t′ − s′|) +Rk(t
′, s′),

where for each integer l and multi-index γ, Dγ
t′ql(t

′, ·) is a bounded continuous func-
tion of t′ with value in the space of smooth (away from the origin) homogeneous
distributions of degree l+1, pl(t

′, ·) are homogenous polynomials of degree l+1 with
coefficients which are smooth functions of t′, and for all multi-indices γ, Dγ

t′Rk(t
′, ·)

bounded continuous function of t′ with value in Ck(R2).
Using (5.14) along with the homogenenity degree of ql and pl we see that Rk(0, 0) =

0. Therefore, for s′, t′ ∈ D the integral kernel of Tǫ is

Tǫ(t
′, s′) =

N
∑

l=0

(

ǫl+1ql(ǫt
′, t′ − s′) + ǫl+1pl(ǫt

′, t′ − s′) log ǫ+ ǫl+1pl(ǫt
′, t′ − s′) log |t′ − s′|

)

+ Rk(ǫt
′, ǫs′).(5.15)

The kernel Rk(s
′, t′) is sufficiently smooth. Therefore, by doing a Taylor expansion

and using Rk(0, 0) = 0 we see that the integral kernel χ(s′)χ(t′)Rk(ǫt
′, ǫs′) takes

H1/2(D)∗ → H1/2(D) with norm ǫ. The worst term in the polyhomogeneous expansion
part of (5.15) happens when l = 0 and this term is given by

ǫq0(ǫt
′, z′) + p0(ǫt

′, z′) log |z′|+ ǫ log ǫp0(ǫt
′, z′),

where z′ = t′ − s′. Recall that both q0 and p0 are homogeneous of degree 1 in z′ so
writing z′ = rω then applying Lemma 2.11 we have uniform estimates in ǫ for the
kernels χ(s′)χ(t′)q0(ǫt

′, t′ − s′) and χ(s′)χ(t′)p0(ǫt
′, t′ − s′). For the term involving

log |s′ − t′|, we use the fact that p0(t
′, z′) is a linear function in z′ whose coefficients

are smooth functions of t′. Therefore, if u ∈ C∞
c (R2),

∫

R2

χ(t′)p0(ǫt
′, t′ − s′) log |t′ − s′|u(s′)ds′ = χ(t′)

∫

R2

∑

j

cj(ǫt
′)(tj − sj) log |s′ − t′|u(s′)ds′

= χ(t′)
∑

j

cj(ǫt
′)

∫

R2

aj(ξ
′)û(ξ′)eit

′·ξ′dξ′,

where aj(·) ∈ S ′(R2) for j = 1, 2 are derivatives of the distribution PF|ξ|−2 with
respect to ∂ξj . We refer the reader to (8.31) in Chapt 3 of [33] for the definition of
the the distribution PF|ξ|−2. From this we see that the integral kernel

χ(t′)χ(s′)p0(ǫt
′, t′ − s′) log |t′ − s′|

also maps H1/2(D)∗ → H1/2(D) with uniform bound in ǫ. �

Due to Lemma 5.1 we can write (5.13) as

2π

ǫ

(

aR(x∗, x∗)|M | − F (x∗)− Cǫ,a −
H(x∗)|M | log ǫ

4π

)

=
(

La − ǫH(x∗)
2

Rlog,a +
ǫ(λ1−λ2)

8
R∞,a

)

ψǫ

+ǫTǫψǫ ++ǫ2Aǫψǫ +OH1/2(D)(log ǫ).(5.16)
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We hit both sides with L−1
a and use (4.12) and (4.4) to get the identity

2π

ǫ

(

aR(x∗, x∗)|M | − F (x∗)− Cǫ,a −
H(x∗)|M | log ǫ

4π

)

1

Ka(1− |t′|2)1/2 =(5.17)

(

I − ǫH(x∗)

2
L−1
a Rlog,a +

ǫ(λ1 − λ2)

8
L−1
a R∞,a + T ′

ǫ

)

ψǫ +OH1/2(D)∗(log ǫ).

for some T ′
ǫ : H

1/2(D)∗ → H1/2(D)∗ with operator norm O(ǫ2 log ǫ). Use the mapping
properties from Lemma 4.2 we see that the right side can be inverted by Neumann
series to deduce

ψǫ = − 2πCǫ,a

ǫKa(1− |t′|2)1/2 + Cǫ,aOH1/2(D)∗(1) +OH1/2(D)∗(ǫ
−1 log ǫ).(5.18)

Insert (5.18) into (5.9) we get that

Cǫ,a =
|M |Ka

4aǫπ2
+ C ′

ǫ,a(5.19)

with C ′
ǫ,a = O(log ǫ). Insert (5.19) into (5.18)

ψǫ =
−|M |

2aπǫ2(1− |t′|2)1/2 + ψ′
ǫ = −|M |Ka

2aπǫ2
L−1
a (1) + ψ′

ǫ(5.20)

with ‖ψ′
ǫ‖H1/2(D;ds′)∗ ≤ Cǫ−1 log ǫ. Insert (5.19) and (5.20) into (5.17) we get

2π

ǫ

(

aR(x∗, x∗)|M | − F (x∗)− C ′
ǫ,a −

H(x∗)|M | log ǫ
4π

)

1

Ka(1− |t′|2)1/2 =(5.21)

ψ′
ǫ +

|M |Ka

2πǫ

(

H(x∗)

2
L−1
a Rlog,a −

(λ1 − λ2)

8
L−1
a R∞,a

)

L−1
a (1) +OH1/2(D)∗(log ǫ).

Inserting the expression (5.20) into (5.9) we get that
∫

D

ψ′
ǫ(s

′)ds1ds2 = O(1).(5.22)

Multiply (5.21) by ǫ then integrate over D . Then (5.22) implies

C ′
ǫ,a = − 1

4π
H(x∗)|M | log ǫ+ aR(x∗, x∗)|M | − F (x∗)(5.23)

−|M |H(x∗)K2
a

16π3

∫

D

L−1
a Rlog,aL

−1
a 1(s′)ds′

+
|M |(λ1 − λ2)K

2
a

64π3

∫

D

L−1
a R∞,aL

−1
a 1(s′)ds′ +O(ǫ log ǫ).

Since L−1
a is self-adjoint, we can express the last two integrals more explicitly:

∫

D

L−1
a Rlog,aL

−1
a 1(s′)ds′ = K−2

a 〈(1− |s′|2)−1/2, Rlog,a(1− |s′|2)−1/2〉,

∫

D

L−1
a R∞,aL

−1
a 1(s′)ds′ = K−2

a 〈(1− |s′|2)−1/2, R∞,a(1− |s′|2)−1/2〉.

We summarize this calculation into the following:
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Proposition 5.2. We have that

ψǫ =
−|M |

2aπǫ2(1− |t′|2)1/2 + ψ′
ǫ

with ψ′
ǫ = OH1/2(D)∗(ǫ

−1 log ǫ). Furthermore

Cǫ,a =
|M |Ka

4aǫπ2
− 1

4π
H(x∗)|M | log ǫ+ aR(x∗, x∗)|M | − F (x∗)(5.24)

− |M |H(x∗)

16π3
〈(1− |s′|2)−1/2, Rlog,a(1− |s′|2)−1/2〉

+
|M |(λ1 − λ2)

64π3
〈(1− |s′|2)−1/2, R∞,a(1− |s′|2)−1/2〉

+O(ǫ log ǫ),

where F is the unique solution to (5.4) and R(x∗, x∗) is the evaluation at (x, y) =
(x∗, x∗) of the kernel R(x, y) in (1.2).

Observe that in the case of the disc (i.e. a = 1) we have that

〈(1− |s′|2)−1/2, Rlog,a(1− |s′|2)−1/2〉 = π2 (8 log 2− 6)

by Lemma 4.5 and

〈(1− |s′|2)−1/2, R∞,a(1− |s′|2)−1/2〉 = 0

by Lemma 4.6. Thus the formula (5.24) simplifies to

Cǫ := Cǫ,1 =
|M |Ka

4aǫπ2
− 1

4π
H(x∗)|M | log ǫ+ aR(x∗, x∗)|M | − F (x∗)(5.25)

− |M |H(x∗)

16π
(8 log 2− 6) +O(ǫ log ǫ),

when a = 1.

5.2. Proof of Theorems 1.2 and 1.3. We now prove Theorem 1.3. Theorem 1.2
follows from the explicit expression for Cǫ in (5.25).

By the result of Appendix A we have that uǫ = E[τΓǫ,a |X0 = x] solves the mixed
boundary value problem (5.1) so using Proposition 5.2, (5.3), and (5.7), the expansion
for E[τΓǫ,a |X0 = x] is given by

uǫ(x) = E[τΓǫ,a |X0 = x] = F (x) + Cǫ,a − |M |G(x, x∗) + rǫ(x)

for each x ∈ M\Γǫ,a. Here F is the unique solution to (5.4) and the remainder rǫ is
given by

rǫ(x) =

∫

∂M

(G(x, y)−G(x, x∗))∂νuǫ(y)dvolh(y).(5.26)

Let K ⊂ M be a compact subset of M which has positive distance from x∗ and
consider x ∈ K. Writing out this integral in the xǫ(·; x∗) coordinate system and use
(5.8), (5.7), and the expression of ψǫ derived in Proposition 5.2 we get

rǫ(x) = ǫ

∫

D

−|M |
2π(1− |s′|2)1/2L(x, ǫs

′)(1 + ǫ2Qǫ(s
′))ds′(5.27)

+ aǫ3
∫

D

ψ′
ǫ(s

′)L(x, ǫs′)(1 + ǫ2Qǫ(s
′))ds′
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for some function L(x, s′) jointly smooth in (x, s′) ∈ K × D. The second integral
formally denotes the duality between H1/2(D)∗ and H1/2(D). The estimate for ψ′

ǫ

derived in Proposition 5.2 now gives for any integer k and any compact set K not
containing x∗, ‖rǫ‖Ck(K) ≤ Ck,Kǫ.

Our pseudodifferential characterization of G∂M also allows us to compute the as-
ymptotic of the average

∫

M
uǫ. Indeed, integrating (5.3) over M we get

(5.28)
∫

M

uǫdvolg =

∫

M

F (x)dvolg + Cǫ,a|M |+
∫

M

∫

Γǫ,a

G(x, y)∂νuǫ(y)dvolh(y)dvolg(x).

We compute the last integral by noting that

v(x) :=

∫

Γǫ,a

G(x, y)∂νuǫ(y)dvolh(y)

is the unique solution to the Dirichlet boundary value problem:

∆gv = 0, v(x) |∂M=

∫

Γǫ,a

G∂M(x, y)uǫ(y)dvolh(y) ∈ H1/2(∂M).(5.29)

We concluded the boundary value is in H1/2 because G∂M ∈ Ψ−1
cl (∂M) by (1.2).

Let a sequence of smooth functions fj → ∂νuǫ in H−1/2(∂M) and let vj solve

∆gvj = 0, vj(x) |∂M=

∫

∂M

G∂M(x, y)fj(y)dvolh(y).

Standard elliptic theory shows that vj → v in H1(M). Therefore
∫

M

∫

Γǫ,a

G(x, y)∂νuǫ(y) = lim
j

∫

M

∫

∂M

G(x, y)fj(y)

= lim
j

∫

∂M

fj(y)

∫

M

G(x, y)

= lim
j

∫

∂M

fj(y)F (y)

= 〈∂νuǫ, F 〉 = −F (x∗)|M |+O(ǫ),

where F is the solution to the boundary value problem (5.4) and 〈·, ·〉 denotes the
pairing between H−1/2(∂M) and H1/2(∂M). The last equality comes from (5.2),
smoothness of F , and supp(∂νuǫ) ⊂ Γǫ,a. Inserting this into (5.28) we have

∫

M

uǫdvolg =

∫

M

F (x)dvolg + Cǫ,a|M | − F (x∗)|M |+O(ǫ).

The constant Cǫ,a is given by Proposition 5.2.

6. Appendix A -Elliptic Equation for the first passage time

In this appendix we show that u(x) := E[τΓ|X0 = x] satisfies the boundary value
problem (5.1). This is standard material but we could not find a suitable reference
which precisely addresses our setting. As such we are including this appendix for the
convenience of the reader.

Let (M, g, ∂M) be an orientable compact connected Riemannian manifold with
non-empty smooth boundary oriented by dvolg. Let also (Xt,Px) be the Brownian



32 MEDET NURSULTANOV, LEO TZOU, AND JUSTIN TZOU

motion on M starting at x, that is, the stochastic process generated by the Laplace-
Beltrami operator ∆g. Let Γ be a geodesic ball on ∂M with radius ε > 0. We denote
by τΓ the first time the Brownian motion Xt hits Γ, that is

τΓ := inf{t ≥ 0 : Xt ∈ Γ}.
We set

PΓ(t, x) := P[τΓ ≤ t|X0 = x].

Let us note that PΓ(t, x) is the probability that the Brownian motion hits Γ before
or at time t, and therefore, satisfies

(6.1) PΓ(0, x) = 0, x ∈M \ Γ,

(6.2) PΓ(t, x) = 1, (t, x) ∈ [0,∞)× Γ.

Note that, for any compact subset Γ ⊂M , it follows4

Cap(Γ,M) := inf
u∈C∞(M ), u|Γ=1

∫

M

‖∇u‖2dvolg = 0.

Then, [13, Theorem 1.5] implies that (M, g, ∂M) is parabolic, that is, the probability
that the Brownian motion ever hits any compact set F with non-empty interior is
1. Since Γ ⊂ ∂M is connected with non-empty interior on ∂M , we can extend M

to a compact connected Riemannian manifold M̃ such that M̃ \M is compact with

non-empty interior and M̃ \M ∩M = Γ. Note that, the Brownian motion, starting

at any point M \ Γ, hits M̃ \M if and only if it hits Γ. Therefore, the parabolicity
condition of (M, g) gives

(6.3) lim
t→∞

PΓ(t, x) = 1, x ∈M.

Further, let us define the mean first arrival time u, as

(6.4) u(x) := E[τΓ|X0 = x] :=

∫ ∞

0

tdPΓ(t, x),

where the integral is a Riemann-Stieltjes integral. To investigate u, let us recall some
properties of PΓ. By Remmark 2.1 in [6], it follows that

1− PΓ(t, x) =
(

et∆mix1
)

(x),

where et∆mix is the semigroup with infinitesimal generator ∆mix, and ∆mix is the
Laplace operator ∆g corresponding to the Dirichlet boundary condition on Γ and
Neumann boundary condition on ∂M \ Γ, which is defined as follows

D(∆mix) := {u ∈ H1(M) : ∆gu ∈ L2 u|Γ = 0, ∂νu|Γc = 0}(6.5)

∆mixu = ∆gu u ∈ D(∆mix).(6.6)

In (6.5) we define ∂νu ∈ H−1/2(∂M) using the same method for defining the Dirichlet
to Neumann map. That is, for u ∈ H1(M) such that ∆gu ∈ L2(M), the distribution
∂νu |∂M ∈ H−1/2(∂M) acts on f ∈ H1/2(∂M) via

〈∂νu |∂M , f〉 :=
∫

M

∆ugvf dvolg +

∫

M

g(du, dvf) dvolg,

4Note that in [6] and [12], the authors consider the manifold together with its boundary, and
C∞

c
(M), C∞

0 (M) denote the set of smooth (up to the boundary) functions with compact support.
In case of compact manifold, these sets coincide with C∞(M).
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where vf ∈ H1(M) is the harmonic extension of f . We say that ∂νu |ω = 0, for
non-empty open set ω ⊂ ∂M , if 〈∂νu |∂M , f |∂M〉 = 0 for all f ∈ H1/2(∂M) such that
f |∂M\ω = 0.

Note that if u sufficiently regular, for instance u ∈ H2(M), then 〈∂νu |∂M , f〉 is
equal to the boundary integral of ∂νu |∂M and f .

In fact, ∆mix can be equivalently defined by quadratic form; see Proposition 7.1 in
Appendix B. Moreover, ∆mix is the non-positive self-adjoint operator with the discrete
spectrum, consisting of negative eigenvalues accumulating at −∞; see Proposition 7.1
in Appendix. Hence, ∆mix satisfies the quadratic estimate

∫ ∞

0

‖t∆mix(1 + t2∆2
mix)

−1u‖2L2

dt

t
≤ C‖u‖2,

for some C > 0 and all u ∈ L2(M); see for instance [19, p. 221]. Therefore, ∆mix

admits the functional calculus defined in [21].

Remark 6.1. The functional calculus in [21] is defined for a concrete operator,
which is denoted by T in the notation used in that article. However, ∆mix satisfy all
necessary conditions to admit this functional calculus.

Therefore, the semigroup et∆mix , which is contracting by Hille-Yosida theorem [14,
Theorem 8.2.3], can be defined as follows

et∆mixu =
1

2πi

∫

γa,α

etζ(ζ −∆mix)
−1udζ, u ∈ L2(M),

where a ∈ (τ, 0), α ∈ (0, π
2
), and γa,α is the anti-clockwise oriented curve:

γa,α := {ζ ∈ C : Reζ ≤ a, |Imζ | = |Reζ − a| tanα}.
Let ε > 0 such that a+ ε < 0. Then ∆mix + ε is also a negative self-adjoint operator,
and hence generates contracting semigroup, et(∆mix+ε), as above.

By definition, we obtain, for u ∈ L2(M),

et∆mixu =
1

2πi

∫

γa,α

etζ(ζ −∆mix)
−1udζ(6.7)

=
e−tε

2πi

∫

γa,α

et(ζ+ε)(ζ + ε− (∆mix + ε))−1udζ

=
e−tε

2πi

∫

γa+ε,α

etξ(ξ − (∆mix + ε))−1udξ = e−tεet(∆mix+ε)u,

where γa+ε,α = γa,α + ε ⊂ {Reξ < 0}. Let f1 the constant function on M equals 1.
By Theorem 8.2.2 in [14], we know, for λ > 0,

(λ− (∆mix + ε))−1f1 =

∫ ∞

0

e−λtet(∆mix+ε)f1dt.

Let us choose λ = ε, then, by using (6.7), we obtain

−∆−1
mixf1 =

∫ ∞

0

e−εtet(∆mix+ε)f1dt =

∫ ∞

0

et∆mixf1dt

and hence,

(6.8)

∫ ∞

0

1− PΓ(t, x)dt = −(∆−1
mixf1)(x) <∞.
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Therefore, the dominated convergence theorem implies

lim
b→∞

∫ b

0

(PΓ(b, x)−PΓ(t, x)) dt =

∫ ∞

0

1− PΓ(t, x)dt <∞.

Hence, by using (6.4) and integration by parts, we obtain

u(x) = lim
b→∞

(

PΓ(b, x)b−
∫ b

0

PΓ(t, x)dt

)

= lim
b→∞

∫ b

0

(PΓ(b, x)− PΓ(t, x)) dt <∞

=

∫ ∞

0

1− PΓ(t, x)dt.

Therefore, by (6.8), we obtain

∆mixu = −f1 = −1.

In particular, u ∈ D(∆mix), and hence,

u |Γ= 0, ∂νu |∂M\Γ= 0.

We see that (5.1) is satisfied.

7. Appendix B - Quadratic Form

Let (M, g, ∂M) be a compact connected Riemannian manifold with non-empty
smooth boundary. Let Γ be a closed subset of ∂M such that ∂M \Γc is a non-empty
open set. Consider the quadratic form

a[u, v] :=

∫

M

g(du, dv)dvolg, u, v ∈ D(a) := {u ∈ H1(M) : u|Γ = 0}.(7.1)

Note that D(a) is closed subspace of H1(M) containing H1
0 (M) and a[·, ·] is a non-

negative, closed, densely defined form. Therefore, by Friedrichs Theorem 2.23 in
[15], it generates a non-negative self-adjoint operator −∆a in L2(M) whose domain
is contained in D(a) such that (−∆au, u)L2(M) = a[u, u] for u ∈ D(−∆a).

Let us show that the resolvents of −∆a are compact. Assume that s belongs to
the resolvent set of −∆a. Since −∆a(−∆a− s)−1 : L2(M) → L2(M) is bounded, it is
suffices to show that D(−∆a), endowed with the graph norm, compactly embedded
into L2(M). Since, for u ∈ D(−∆a),

‖du‖2L2(M) = (du, du)L2(M) = a[u, u] = (−∆au, u)L2(M) ≤
1

4
(‖−∆au‖L2(M)+‖u‖L2(M))

2,

we see that any bounded sequence in D(−∆a), endowed with the graph norm, is
bounded in H1(M), and hence, it contains a Cauchy subsequence in L2(M) by
Rellich-Kondrachov theorem. This implies that the resolvents of −∆a are compact,
and hence, the spectrum of −∆a is discrete, consisting of non-negative eigenvalues
accumulating at +∞. Assume that λ = 0 is an eigenvalue, and let u0 ∈ D(a) be a
corresponding eigenfunction.

Then the Poincaré-Wirtinger inequality gives, for some C > 0,
∥

∥

∥

∥

u− 1

|M |

∫

M

udvolg

∥

∥

∥

∥

L2

≤ C‖du‖L2 = C(−∆au, u)L2 = 0,

so that u0 is a constant in L2(M). Since u0 ∈ H1(M), we conclude that u0 = const
in L2(∂M), and hence, u0 = 0 by choice of Γ. Therefrore λ = 0 is not an eigenvalue,
and consequently, the spectrum of −∆a is positive. For sake of completeness, we
prove the following well known result.
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Proposition 7.1. Let −∆a be the operator defined above and −∆mix be the operator
defined in Section 6, then −∆a = −∆mix. In particular, −∆mix is a self-adjoint
operator with the positive discrete spectrum accumulating at infinity.

Proof. Assume that u, v ∈ H1(M) and ∆gu, ∆gu ∈ L2(M). Let V be the harmonic
extension of v |∂M , then ω := V − v ∈ H1

0 (M) and ∆gω ∈ L2(M). By H2-regularity,
ω ∈ H2(M). The generalized Green’s identity gives

−
∫

M

u∆gω dvolg +

∫

M

∆guω dvolg = 〈∂νu |∂M , ω |∂M〉 − 〈u |∂M , ∂νω |∂M〉,

where the first term of the right hand side vanishes since ω ∈ H1
0 (M). Therefore we

get

0 = −
∫

M

u∆gω dvolg + 〈u |∂M , ∂νω |∂M〉+
∫

M

∆guω dvolg

=

∫

M

g(du, dω) dvolg +

∫

M

∆guω dvolg.

Hence, we obtain

〈∂νu |∂M , v |∂M〉 =
∫

M

∆guv dvolg +

∫

M

g(du, dv) dvolg

for u, v ∈ H1(M) and ∆gu, ∆gu ∈ L2(M).
Assume that u ∈ D(∆mix) ⊂ D(a) and v ∈ D(∆a), then, by above formula,

a[u, v] =

∫

M

g(du, dv) dvolg = −
∫

M

∆guv dvolg + 〈∂νu |∂M , v |∂M〉

Note that the last term vanishes since u ∈ D(∆mix) and v ∈ D(a), so that

a[u, v] = −
∫

M

∆guv dvolg = −
∫

M

∆mixuv dvolg.

Since this holds for all v ∈ D(∆a), it follows from Theorem 2.1., in [15], that u ∈
D(∆a) and ∆au = ∆mixu.

Conversely, assume that u ∈ D(∆a), then −∆gu = −∆au ∈ L2(M). Then, it
follows

〈∂νu |∂M , f〉 =
∫

M

∆ugVf dvolg +

∫

M

g(du, dVf) dvolg = a[u, Vf ]− a[u, Vf ] = 0.

for any f ∈ H1/2(∂M) such taht f |Γ = 0. This means that ∂ν u|Γc = 0, so that
u ∈ D(∆mix) and ∆au = ∆mixu.

�
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