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Counterexample to the Lévy flight foraging hypothesis in the narrow capture framework
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The Lévy flight foraging hypothesis asserts that biological organisms have evolved to employ (truncated)
Lévy flight searches due to such strategies being more efficient than those based on Brownian motion. However,
we provide here a concrete two-dimensional counterexample in which Brownian search is more efficient. In
fact, we show that the efficiency of Lévy searches worsens the farther the Lévy flight tail index deviates from
the Brownian limit. Our counterexample is based on the framework of the classic narrow capture problem in
which a random search is performed for a small target within a confined search domain. Our results are obtained
via three avenues: Monte Carlo simulations of the discrete search processes, finite-difference solutions, and
a matched asymptotic analysis of the elliptic (pseudo)differential equations of the corresponding continuum
limits. Asymptotic analysis of the Lévy search yields an expression for the average search time accurate to O(1),
providing insights into how the latter is impacted by various features of the target and search domain.
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I. INTRODUCTION

It is a widely held belief that random search algo-
rithms using Lévy flights can find a target faster than using
Brownian motion [1–4], with [4] finding evidence for the
intrinsic (i.e., arising from endogenous neurophysiological
processes [4–10]) generation of Lévy-like movement patterns
in certain organisms. In [11], a neural coding scheme is used
to explore a possible explanation for such search trajectories.

This so called “Lévy flight foraging hypothesis” forms the
basis of many biological models (e.g., [12,13]) as well as
numerical search algorithms [2,14–17]. It has also led the
seeking of optimal Lévy tail indices (e.g., [2,18]) for maxi-
mizing the amount of sparsely spaced targets being captured
relative to the distance traversed [2], resulting in the 2020–21
dialogue that took place in Phys. Rev. Lett. [18–20].

In contrast to these existing studies, we present an al-
ternative means of quantifying efficiency via measuring the
expected search time of a small, stationary target in a finite
domain and provide an example in two dimensions for which
the Brownian search strategy is more efficient than strategies
based a Lévy flight of any tail index α. In fact, we demonstrate
that in our setting, a certain power-law dependence of the
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expected search time on α that worsens the farther α deviates
from its Brownian limit.

The framework we employ for this comparison is consis-
tent with that of first passage time problems for Brownian
search (e.g., [21–24]) in a geometry motivated by the nar-
row capture problem used to model biological and ecological
processes (e.g., [25–32]). We emphasize here that, as is typ-
ical of narrow capture (and narrow escape) problems, we
assume the search target is small and stationary. From a
modeling perspective, the latter assumption of stationary tar-
gets means that, for example, in the modeling of animal
foraging, we must assume that the search objective either
does not move or moves very slowly in comparison with
the searcher. The former scenario may arise when animals
forage for patches of food (such as grass) or water sources.
The latter scenario may be pertinent if the foraging predator
diffuses on a much faster timescale than does the prey (see,
e.g., [31]) so that the target may be approximated as stationary.
Brownian search times of mobile targets are considered in,
e.g., [33–37].

We develop three different approaches to arrive at our re-
sult. First, we devise and implement a Monte Carlo simulation
to calculate the expected search time of searches based on
Lévy flight. Second, we implement a numerical method for
solving (pseudo)differential equations, which yields detailed
information about the expected search time as a function of
initial position. We use this numerical solution to gain insight
into the potential mechanism behind why Brownian searches
appear to take less time than Lévy flights. Third, in Sec. V B,
we develop a matched asymptotic analysis to derive leading-
order analytic predictions for the expected search times. We
remark that the comprehensive set of results from these three
different approaches provide more quantitative and qualitative
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FIG. 1. Illustration of Lévy flight (blue) and Brownian walk
(green) searches for a target of disk of radius ε = 0.25 (red circle in-
dicates its boundary) centered at the point (0.5, 0.5) on the flat torus
T 2. The pink markers indicate the starting locations of each search.
Each search continues until it first reaches the target. Closeups of
both paths are shown in insets. The Lévy search path (tail index
α = 0.5) exhibits series of small jumps separated by occasional long
jumps while the Brownian path lacks the latter. Note that ε is set
relatively large for illustrative purposes; we consider a smaller range
of ε in this article.

insight than the analytic asymptotic estimate for the search
time discussed recently in [38].

A schematic of the narrow capture framework for the ge-
ometry we consider is shown in Fig. 1. The search domain is
the unit torus T 2 of unit side length with periodic boundary
conditions and bottom left vertex at the origin. Two instances
are shown of paths traced out by a Brownian (green) and Lévy
(blue) search for a stationary target of disk of radius ε centered
at x0 = (1/2, 1/2) (red). The pink dots mark the locations x
from where the respective searches begin. The search ends
when the search first lands either on the boundary or inside
the target disk.

The qualitative differences in the two paths are due to
the probability distributions of their respective jump lengths.
For the Brownian search, jump lengths are normally dis-
tributed with zero mean and variance of �t sufficiently small,
leading to the linear-in-time mean squared displacement
〈|�x|2〉 ∝ �t . In the Lévy search with tail index 0 < α < 1,
jump lengths |y| are given by |y| = (�t )1/(2α)|k|, where k
is distributed according to a power-law distribution with tail
∼|k|−(2+2α) (see, e.g., [22,39–42] and references therein).
This leads to an unbounded mean squared displacement, and
the superlinear scaling 〈|�x|2δ〉1/δ ∝ (�t )1/α for δ < α.

In the next section, we present our main findings and give
possible reasons for the inferiority of Lévy search strategies
within the narrow escape framework.

II. MAIN RESULTS AND INTERPRETATION

For a random search on T 2, let us denote uε(x) [vε(x)]
the average search time (i.e., mean first passage time, or
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FIG. 2. For Lévy flight tail index α = 0.25, α = 0.5, α = 0.75,
and Brownian motion, with target of radius ε centered at (1/2, 1/2),
we plot the GMFPT vs ε. The results indicate that Brownian search
is faster on average than the three Lévy searches considered, and
that average search times increase further the tail index α is from
its Brownian limit of 1. The quantities plotted in blue x’s and black
o’s are obtained from Monte Carlo simulations and numerical so-
lutions of the corresponding elliptic (pseudo)differential equations,
respectively. The solid-red lines indicate the leading-order power-law
scaling of (1), while the dashed red curve plots the functional form
−(2π )−1 log(ε) + c for some constant c.

MFPT) of a Lévy [Brownian] search starting from location
x, and Bε(x0) the circular target of radius ε centered at x0.
Then the global mean first passage time (GMFPT) [24] is
the expected search time averaged uniformly over all starting
points x ∈ T 2 \ Bε(x0). That is, the GMFTP, ūε, of the Lévy
search is given by ūε = ∫

T 2\Bε (x0 )uε(x) dx, and similarly for
the GMFPT, v̄ε, of the Brownian search.

We show in Fig. 2 our primary result demonstrating that
Brownian search is on average faster than Lévy search. More-
over, the Lévy flight search time increases the more its tail
index α deviates from its Brownian limit of 1. In the figure,
we plot the Lévy search GMFPT ūε for three different tail
indices and for a range of target sizes ε on a log-log scale.
The blue x’s are obtained from Monte Carlo simulations (see
Fig. 1), which we discuss below. The black o’s are obtained
from finite-difference solutions of the elliptic pseudodiffer-
ential equation for uε(x) given by (8a) corresponding to the
continuum limit of the Monte Carlo process. Both confirm
the leading-order analytic result (shown in red) derived via
a matched asymptotic analysis of Sec. V B, stating that in the
limit ε → 0+ with 0 < α < 1,

ūε ∼ Aαε2α−2 − Rα (x0; x0) + O(1);

Aα := �(1 − α)(1 − α)

4α�(α) sin ((1 − α)π )
. (1)

In (1), Rα (x0; x0) is the regular part of a certain Green’s func-
tion satisfying (35) evaluated at the location of the singularity,
and is given by (36).

We make several remarks on the result (1). Firstly, Aα in (1)
is a function of the geometry of the target (in our instance, a
disk of radius ε) and the size of the search domain (in our in-
stance, unity). Both of these dependencies are made explicitly
clear in our derivation of (1) in Sec. V B. Secondly, the fact
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(a) uε(p)

(b) horizontal cross-section of uε, vε

FIG. 3. For α = 1/2 with target of radius ε = 0.03 centered at
(1/2, 1/2), we show in (a) the numerical solution for uε of (8a). The
red line indicates the contour plotted in red and (b), where, in blue,
we also plot the corresponding contour of the numerical solution vε

of (9a). Note that uε (vε) is plotted on the left (right) vertical axis.
The spatial average of uε is approximately 8.57 while that of vε is
approximately 0.357, indicating that an average search conducted via
the Lévy process with α = 1/2 for a small target will be significantly
longer in comparison.

that target geometry effects enter at the leading order of ū is
in direct contrast to the Brownian motion result, where target
geometry effects enter at O(1), which is the second order.
Lastly, the leading-order term in (1) contains no information
on global geometric properties of the search domain other than
its size. These global effects are encoded only in the O(1)
correction term, Rα (x0; x0).

The error of the approximation (1) grows as α nears its
Brownian limit of 1, accounting for the worsening discrep-
ancies between the blue x/black o and the (red) analytic
prediction as α gets closer to 1. We also plot v̄ε, the GMFPT of
the Brownian search, obtained from numerically solving (9a)
(black o’s). The red-dashed curve plots the functional form
−(2π )−1 log(ε) + c for some constant c, confirming the well-
known leading-order O(| log ε|) scaling of Brownian search
times (see, e.g., [25–30]).

We give a possible explanation for the longer average du-
ration of Lévy searches. In Fig. 3, we plot the finite-difference
solution for uε(x) when α = 1/2 and ε = 0.03, and compare
a cross section of this solution to that of vε(x). In Fig. 3(b),
we first observe that both solutions are identically 0 for x ∈
Bε(x0) (i.e., searches beginning in and on the target cost zero

FIG. 4. (a) Starting from the point (0,0), the figure shows the
full probability density function of search times for a target of ra-
dius ε = 0.04 centered at p0 = (1/2, 1/2). Results for the Brownian
search are obtained from numerically solving the time-dependent
diffusion PDE while those for the Lévy searches are obtained from
Monte Carlo simulations. Observe the increasingly heavy tail of the
distributions as α decreases. This indicates the increasing likelihood
of long search times, contributing to the longer average search times
of Lévy flights relative to Brownian walks. (b) Finite-difference com-
putation of search time variance averaged over all starting locations,
obtained from the second moments of MFPT in (8c) and (9b).

time). Near the target boundary, we observe a much sharper
rise in uε than for vε, while far from the target, uε is flatter
than vε. This behavior of uε suggests that proximity to the
target of starting location has little impact on the Lévy search
time. This owes to there being a greater likelihood of taking a
long jump in the “wrong” direction, especially when the target
is small.

Thus, a Lévy search that has reached the vicinity of the tar-
get may take a long jump away from it, effectively forcing it to
restart its search from a farther location. Repeated approaches
to the target followed by long jumps away from it can lead to
anomalously long search times, which we show in Fig. 4(a).
Obtained from Monte Carlo simulations of search processes
beginning at (0,0), the probability density distributions of
Lévy search times differ greatly from that of Brownian search
times. In particular, the comparatively slow decay of the tail
for longer search times is apparent, especially for α = 1/4.
The greater variance of Lévy search times is confirmed in
Fig. 4(b), where we show finite-difference computations of
the search time variance averaged over all starting locations.
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We note the near-linear behavior of Lévy flight variances,
suggesting that they, along with the GMFPT ūε, follow a
power-law scaling.

In the following sections, we provide an overview of our
methodology, beginning with a brief outline of our Monte
Carlo algorithm. We then give the elliptic pseudodifferential
equations, which characterize the continuum limit of the Lévy
search process. Mathematical details are presented in Sec. V.
We close by discussing some open problems.

III. MONTE CARLO SIMULATION OF LÉVY FLIGHT
SEARCH ON T 2

We describe here the Monte Carlo algorithm that we used
to generate the simulated Lévy flight search times of the pre-
vious section. The algorithm is motivated by the description
of Lévy flights on Rn given by Valdinoci [40]. We remark
that the purpose of [40] is to describe the derivation of the
(continuous) fractional heat equation from a discrete Lévy
flight framework. It is this discrete framework that we invoke
in Sec. V A to derive the pseudodifferential equation that we
subject to analysis in Sec. V B, resulting in the main result (1).
We base the simulations on this discrete framework. Other
algorithms for simulating stable Lévy process are given in,
e.g., [43–45].

We describe the process on R2 from which we can derive
the process on T 2 simply by identifying (n + r, m + s) ≡
(r, s) for n, m ∈ Z and r, s ∈ (0, 1). For the ( j + 1)th step
starting from x j ∈ T 2 with j = 0, 1, 2, . . ., the jth displace-
ment of the Lévy flight with tail index 0 < α < 1 is given by
hk, where h is a sufficiently small parameter (in particular,
sufficiently smaller than the size of the target) and k ∈ Z2 is a
random variable drawn from a power-law distribution with tail
∼ |k|−2−2α (see Sec. III A). Since 〈|k|2δ〉 is bounded for 0 <

δ < α < 1, we have the scaling of the expected displacement
〈|�x|2δ〉 ∝ hδ , or 〈|�x|2δ〉1/δ ∝ h. We then let �t = Dαh2α so
that 〈|�x|2δ〉2/δ ∝ (�t )1/α as required. Here, Dα is a constant
chosen so that the process is consistent with Brownian motion
in the limit α → 1− [see (26) of Sec. V A]. As mentioned
above, from this jump process on R2 one can deduce the
process on T n simply by modding out Z2.

In Sec. III A, we describe our process for sampling
from a discrete power-law distribution. We then describe, in
Sec. III B, the Monte Carlo simulation of the search process
from which we generate the Monte Carlo estimates for search
times in Fig. 2.

A. Rejection sampling algorithm for Kα

We describe here the rejection sampling algorithm that
we use to draw samples k ∈ Z2 from the discrete power-law
distribution

Kα (k) =
{

0 k = 0
Cα|k|−2−2α k 	= 0 , (2a)

where Cα is the normalizing constant given by

Cα = 1∑
k∈Z2, k 	=0 |k|−2−2α

, (2b)

where k ∈ Z2.

First observe that

Kα (k) � Cα

C̃α

K̃α (k), (3)

where K̃α (k) = C̃α|k|−2−2α
∞ for k ∈ Z2 \ {0}, C̃α is the nor-

malization constant (given below), and | · |∞ is the �∞ norm
on R2. The distribution K̃α serves as a good proposal distri-
bution for rejection sampling because the process of sampling
from it is relatively simple, which we describe now.

The distribution K̃α (k) depends purely on the �∞ norm of
the random variable k ∈ Z2. As such we observe for each
fixed k̂ ∈ Z2, a random variable k ∈ Z2 satisfies

P (k = k̂) = P (|k|∞ = |k̂|∞)P (k = k̂ | |k|∞ = |k̂|∞),

where P (k = k̂ | |k|∞ = |k̂|∞) is uniformly distributed
amongst the 8|k̂|∞ points having �∞ norm |k̂|∞.

For each n ∈ N, using the explicit form of K̃α and the fact
there are 8n points on Z2 having �∞ norm n, we see that

P (|k| = n) = C̃α8n/n2+2α = C̃α8/n1+2α, (4)

where C̃α is given by

C̃α = 1∑∞
n=1 8n−1−2α

. (5)

This distribution can be sampled from using inversion sam-
pling for discrete distributions.

Remark 1. We observe that in the special case when α =
1/2 we can derive explicit analytic expressions for P (|k| =
n). Indeed, we can sum over n in (4) to yield the condition

1 = 8C̃1/2

∞∑
n=1

1

n2
= 4π2

3
C̃1/2.

That is, C̃1/2 = 3
4π2 . Inserting this back to (4) we get, for each

fixed n ∈ N,

P (|k| = n) = 6

π2

1

n2
, (6)

for α = 1/2.
The rejection sampling algorithm for the discrete power

law distribution Kα is thus as follows:
(1) sample n ∈ {1, . . . , 10000} from (4) using inversion

sampling;
(2) for this n ∈ N sample k ∈ Z2 uniformly from the 8n

points on Z2 have �∞ norm n;
(3) for this k ∈ Z2, sample r ∈ (0, Cα

C̃α
K̃α (k)) uniformly. If

r � Kα (k), accept this k ∈ Z2. If not, reject and repeat.
Numerical experiments show that this rejection sampling

algorithm accepts approximately 69% of the time.

B. Monte Carlo algorithm

We describe here the Monte Carlo algorithm used to sim-
ulate Lévy flight searches. Let T 2 be the flat torus [0, 1] ×
[0, 1] with periodic boundary conditions, and udisc

ε (x) be the
expected discrete Lévy flight search time (obtained via simu-
lation of a discrete process) of a circular target Bε (0) of radius
ε > 0 centered at (1/2, 1/2) starting from x ∈ T 2. Then for a
Lévy flight tail index α ∈ (0, 1) and h > 0 sufficiently small,
we perform the following Monte Carlo procedure to compute
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an approximation of udisc
ε (x): Set T = 0 and x = (x1, x2). Re-

peat the following until x ∈ Bε (0):
(1) sample k ∈ Z2 from Kα using the above rejection sam-

pling algorithm;
(2) set y := (y1, y2) = x + hk;
(3) set x = (y1 mod �y1�, y2 mod �y2�), which accounts

for the periodic boundary conditions of T 2;
(4) set T = T + �t , where �t = Dαh2α , with Dα is given

in (26) of Sec. V A.
The jth run of the above generates a stopping time

Tj . After executing M runs and generating stopping times
T1, T2, . . . , TM we calculate

udisc
ε (x) ≈ T1 + T2 + · · · + TM

K
, (7)

for large M ∈ N. Repeating this process over a grid of points
x ∈ T 2 and then averaging, we are able to obtain an approx-
imation of the global mean first passage time (GMFPT); i.e.,
the spatial average of udisc

ε (x) over T 2.

IV. THE ELLIPTIC (PSEUDO)DIFFERENTIAL EQUATIONS

In this section, we briefly discuss the elliptic pseudodif-
ferential equation satisfied by uε(x), the MFPT of the Lévy
search starting from point x ∈ T 2 in the continuous limit.
Adopting the electrostatics approach of [21] for Brownian
searches, we show in Sec. V A that uε(x) satisfies the exterior
problem

Aαuε = −1 on T 2 \ Bε(x0), uε = 0 on Bε(x0), (8a)

where Aα for 0 < α < 1 is the fractional Laplacian of order
α on T 2 given by

Aα f (x) := 4α�(1 + α)

π |�(−α)|
×

∫
[0,1]×[0,1]

∑
m∈Z2

f (y) − f (x)

|x − (y + m)|2+2α
dy, (8b)

where we have identified T 2 isomorphically with [0, 1) ×
[0, 1) so that the expression |x − (y + m)| is well defined.

We remark that the eigenvalues of Aα converge to that of
the usual (local) Laplacian on T 2 as α → 1−. Furthermore,
for a Lévy flight on R2, the operator Aα would simply become
the standard fractional Laplacian of order α given in (12). The
lattice sum kernel of (11) sums the probabilities of all the
possible paths from y to x on T 2. By analogy with [21,31],
we have that the second moment of the MFPT (SMFPT) wε(x)
satisfies

Aαwε = −2uε(x) on T 2 \ Bε(x0), wε = 0 on Bε(x0). (8c)

The boundary value problems for the Brownian search time
(vε(x)) and SMFPT (τε(x)) are well known [21],

�vε = −1 on T 2 \ Bε(x0), vε = 0 on ∂Bε(x0), (9a)

�τε = −2vε on T 2 \ Bε(x0), τε = 0 on ∂Bε(x0). (9b)

The variance of the MFPT (VMFPT) is then given by
VMFPT = SMFPT − MFPT2, plotted in Fig. 4(b). Finite dif-
ference solutions of (8a)–(9b) are straightforward, although
discretizing the operator Aα is computationally expensive.
As such, asymptotic methods for equations of the forms (8a)

and (8c), such as that provided in Sec. V B, may be helpful in
reducing computation requirements.

V. ASYMPTOTIC SOLUTION OF uε(x)

In Sec. V A, we provide a derivation of the pseudodiffer-
ential equation (8a) for uε(x) starting from a random walk
formalism. In Sec. V B, we provide an two-term asymptotic
solution for uε leading to the main result (1) using a matched
asymptotic analysis. Through this analysis, we highlight how
effects of target and search domain geometry enter into the
expression for the GMFPT. In Sec. V C, we discuss how this
analysis extends to the flat 3-D torus as well as closed 2-D
manifolds.

A. Derivation of elliptic (pseudo)differential equations
for average Brownian and Lévy search times

We begin with the derivation of (8), the pseudodifferential
equation for the average search time via Lévy flight of a cir-
cular target of radius ε starting from some point x = (x1, x2).
The derivation is based on a continuum limit of a discrete
process, and is given in [21] for a Brownian search, which
we reproduce first for the purpose of completeness.

Consider a Brownian particle on an N × N grid with
spacing h = 1/(N − 1). At regular intervals of �t , the par-
ticle hops from its current location (x1, x2) to one of its
four neighboring points, (x1 + h, x2), (x1 − h, x2), (x1, x2 +
h), and (x1, x2 − h) with equal probability. Here the addition
by ±h are understood to be carried out mod 1. Let vε(x) be
the expected search time starting from (x1, x2). Then vε(x)
must be the average of the expected search time starting from
one of its four neighboring points, plus the �t traversal time.
That is,

vε(x1, x2) = 1
4 [vε(x1 + h, x2) + vε(x1 − h, x2)

+ vε(x1, x2 + h) + vε(x1, x2 − h)] + �t . (10)

Dividing (10) by �t and rearranging, we have

1

4�t
[vε(x1 + h, x2) + vε(x1 − h, x2) + vε(x1, x2 + h)

+ vε(x1, x2 − h) − 4vε(x1, x2)] + 1 = 0. (11)

Taking the limit h → 0 and �t → 0 in (11) while maintaining
h2/(4�t ) = 1, we obtain

�vε + 1 = 0, x ∈ T 2; vε = 0, x ∈ ∂Bε(x0), (12)

where the boundary condition of (12) is the statement that the
search time starting from the boundary of the target is zero.
For the unit torus T 2, vε(x) would satisfy periodic conditions
on the boundary.

Following the idea of [40], we now generalize this deriva-
tion to Lévy flights characterized by a jump length distribution
whose tail decays according to the power law ∼|k|−2−2α for
0 < α < 1. For the flat torus T 2 with x ∈ [0, 1) × [0, 1), we
have the same N × N grid with spacing h = 1/(N − 1). In-
stead of (10), which allows only for nearest-neighbor jumps,
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we have

uε(hi) =
N−1∑
j1=0

N−1∑
j2=0

w(hi, hj)uε(hj) + �t . (13)

In the above, i = (i1, i2) ∈ [0, N − 1] × [0, N − 1], j =
( j1, j2), and w(hi, hj) is a sum of the probabilities of all
possible paths from hi to hj on T 2, taking into account that
there are an infinite number of ways to travel from one point to
another via a straight line owing to the periodic nature of T 2.
From [40], a jump of hk has the probability given by Kα (k),
where the discrete probability mass function Kα (k) on Z2 is
given by (2) of Sec. III A.

The probability of reaching hi from hj on T 2 must then be
given by the lattice sum

w(hi, hj) =
∑

m∈Z2

Cα|i − (j + m(N − 1))|−2−2α, (14)

where m = (m1, m2) ∈ Z2, and we have tiled R2 with the unit
square, and j + m(N − 1) is the point corresponding to j ∈
T 2 in the square with bottom-left vertex at m(N − 1). In (14),
Cα is the normalization constant of (2b). Since

N−1∑
j1=0

N−1∑
j2=0

w(hi, hj) =
∑
k∈Z2

Cα|i − k|−2−2α = 1, (15)

(13) can be rewritten as

N−1∑
j1=0

N−1∑
j2=0

w(hi, hj)(k)[uε(hj) − uε(hi)] + �t = 0. (16)

Using the formal scaling law of [40],

�t = Dαh2α, (17)

for some constant Dα to be determined, we divide both sides
of (16) by �t to obtain

1

Dα

h2
N−1∑
j1=0

N−1∑
j2=0

w(hi, hj)
[

uε(hj) − uε(hi)
h2α+2

]
+ 1 = 0. (18)

Using (14) in (18), we obtain

Cα

Dα

h2
N−1∑
j1=0

N−1∑
j2=0

∑
m∈Z2

|i − (j + m(N − 1))|−2−2α

×
[

uε(hj) − uε(hi)
h2α+2

]
+ 1 = 0. (19)

Letting x ≡ hi and y ≡ hj, and recalling that h = 1/(N −
1), (19) becomes

Cα

Dα

h2
N−1∑
j1=0

N−1∑
j2=0

∑
m∈Z2

[
uε(y) − uε(x)

|x − (y + m)|2+2α

]
+ 1 = 0. (20)

In the limit h → 0+, (20) is the Riemann sum approximation
to the pseudodifferential equation

Dα

Cα

∫
[0,1]×[0,1]

[uε(y) − uε(x)]

×
∑

m∈Z2

1

|x − (y + m)|2+2α
dy + 1 = 0, (21)

which is the desired form given in (8b).
To motivate the selection of Dα , we rewrite (21) in terms of

the fractional Laplacian defined on R2 by considering the pe-
riodic extension of uε(x) : T 2 → R, which we denote Uε(x) :
R2 → R defined by Uε(x1, x2) = uε((x1 mod 1, x2 mod 1)).
Equation (21) can now be written as

Dα

Cα

∫
R2

Uε(y) − Uε(x)

|x − y|2+2α
dy + 1 = 0, (22)

It is shown in [40] that the integral term in (22) is well defined
as a principal value integral when x is near y,∫

R2

Uε(y) − Uε(x)

|x − y|2+2α
dy = lim

δ→0+

∫
R2\Bδ (y)

Uε(y) − Uε(x)

|x − y|2+2α
dy,

(23)
where Bδ (y) is the ball of radius δ centered at y. With the
fractional Laplacian in R2 given by

−(−�)α f (x) = 4α�(1 + α)

π |�(−α)|
∫
R2

f (y) − f (x)

|x − y|2+2α
dy, (24)

(22) becomes

−Dα

Cα

π |�(−α)|
4α�(1 + α)

(−�)αUε(x) + 1 = 0. (25)

Then setting

Dα = Cα

4α�(1 + α)

π |�(−α)| , (26)

so that the coefficient in front of (−�)αUε(x) is equal to one,
we finally arrive at

−(−�)αUε(x) + 1 = 0. (27)

Returning to T 2, we recover (8).
In (26), Cα is the normalization constant of (2b). Note

that the fractional Laplacian −(−�)α for 0 < α < 1 can
be defined in terms of the Fourier transform F (·)[ξ] by
F ((−�)α f (x))[ξ] = −|ξ |2αF ( f (x))[ξ]. Thus, as α → 1−,
the Fourier multiplier of −(−�)α approach those of the usual
Laplacian operator on Rn.

Note that the Fourier multiplier definition of the fractional
Laplacian on Rn also allows us to deduce that the operator
in (21) is also the fractional Laplacian on T 2 as defined
via a spectral decomposition. Indeed, it is well known that
eik·x are eigenfunctions for the Laplacian on T 2 for k ∈ Z2.
To compute the action of the operator in (21) on eik·x, we
extend it periodically as smooth functions on R2 and ap-
ply the operator in (22) to the extension. Observing that
it has a Fourier multiplier representation, we see that eik·x
gets mapped to −|k|2αeik·x via standard Fourier transform
calculations. Therefore, the operator in (21) has the same
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eigenfunctions as the Laplacian on T 2 and the corresponding
eigenvalues are the eigenvalues of the Laplacian raised to the
power of α ∈ (0, 1).

B. Asymptotic derivation of leading-order Lévy flight
search time

In this section, we provide an asymptotic derivation of the
leading-order behavior of ūε in (1); i.e., the spatial average of
uε(x) as ε → 0+. We begin with the elliptic pseudodifferential
equation (8) for uε(x), where Bε(x0) denotes the ball of radius
ε centered at x0.

To simplify notation, we choose a coordinate sys-
tem, which identifies T 2 with [0, 1) × [0, 1) so that x0 =
(1/2, 1/2), without loss of generality. This will ensure that
the distance dT 2 (·, ·) function on T 2 satisfies dT 2 (x, x0) =
|x − x0| for all x ∈ T 2 ∼= [0, 1) × [0, 1).

In the inner region, we let

z = (x − x0)/ε, uε(x0 + εz) ∼ U (z).

In the inner variable z, we now show that Aα ∼ −ε−2α (−�z)α

as ε → 0+, where −ε−2α (−�z)α is the fractional Laplacian
on R2 with respect to the z variable. To see this, we apply Aα

to f (ε−1(x − x0)), which results in

Aα f (ε−1(x − x0)) = 4α�(1 + α)

π |�(−α)|
∫

[0,1]×[0,1]

∑
m∈Z2

f (ε−1(y − x0)) − f (ε−1(x − x0))
|x − (y + m)|2+2α

dy. (28)

To obtain an expression in the form of the fractional Laplacian (24) from (28), we manipulate the denominator in the sum to
obtain

Aα f (ε−1(x − x0)) = 1

ε2+2α

4α�(1 + α)

π |�(−α)|
∫

[0,1]×[0,1]

∑
m∈Z2

f (ε−1(y − x0)) − f (ε−1(x − x0))
|ε−1(x − x0) − (ε−1(y − x0) + ε−1m)|2+2α

dy. (29)

Substituting ε−1(y − x0) → Y and ε−1(x − x0) → X, (29)
becomes

Aα f (X) = 1

ε2α

4α�(1 + α)

π |�(−α)|

×
∫

R 1
ε

(x0 )

∑
m∈Z2

f (Y) − f (X)

|X − (Y + ε−1m)|2+2α
dy, (30)

where the region of integration R 1
ε
(x0) is the square of side

length ε−1 centered at x0. Now in the limit ε → 0+, only the
m = 0 term in the sum of (30) contributes at a nonzero term,
while the region of integration approaches R2, yielding

Aα f (X) ∼ 1

ε2α

4α�(1 + α)

π |�(−α)|
∫
R2

f (Y) − f (X)

|X − Y|2+2α
dY. (31)

Comparing to (24), we find that the right-hand side of (31)
is simply the fractional Laplacian with respect to the rescaled
X = ε−1(x − x0) variable, scaled by a factor of ε−2α . That is,
Aα ∼ −ε−2α (−�X)α , as required.

We now expand U ∼ ε2α−2U0 + ε2αU1, an expansion,
which we motivate below, so that the leading-order term of
the inner solution U0 satisfies the radially symmetric exterior
problem on R2,

−(−�z)αU0 = 0 on R2 \ B1(0), U0 = 0 on B1(0);

(32a)

U0 ∼ Sα

(
− 1

|z|2−2α
+ χα

)
as |z| → ∞, (32b)

where Sα is an O(1) constant to be found, χα is a constant
that depends on α and, in general, the geometry of the target.
We show below that (32) may be reformulated as an integral
equation on B1(0) [i.e., the domain obtained by rescaling the
target by ε−1 to O(1) size]. For the special case here where
B1(0) is the unit ball, we then refer to [46] for an explicit
solution of this integral equation, which in turn yields an
explicit expression for χα .

In the limit ε → 0+ where the target size shrinks to zero,
the exterior problem for uε in (8a) becomes the pseudodiffer-
ential equation in the punctured domain T 2 \ {x0},

Aαuε = −1, x ∈ T 2 \ {x0}, (33a)

with a prescribed local behavior near x0, which is given by the
far-field behavior of U ∼ ε2α−2U0 in (32b),

uε ∼ ε2α−2Sα

(
− ε2−2α

|x − x0|2−2α
+ χα

)
as x → x0 (33b)

where dT 2 (·, ·) is the distance on T 2 with respect to the
flat metric. We remark that, with Sα ∼ O(1), (33b) indi-
cates that uε ∼ O(1) in the outer region, which must be
the case given that (33a) is independent of ε. This require-
ment is what motivated the expansion for U in the inner
region.

Note also that (33b) prescribes the singular structure of uε

near x0 as well as its regular part at x0. Along with (33a), (33b)
suggests that uε in the limit ε → 0 may be expressed in terms
of the source-neutral Green’s function Gα (x; x0),

uε(x) ∼ Gα (x; x0) + ūε, (34)
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where ūε is the spatial average of uε, while Gα (x; x0) satisfies

AαGα = −1 + δ(|x − x0|), x ∈ T 2 \ {x0};
∫
T 2

Gα (x; x0) dx = 0; (35a)

Gα (x; x0) ∼ − cα

|x − x0|2−2α
+ Rα (x0; x0) + O(|x − x0|) as x → x0; cα ≡ �(1 − α)

4απ�(α)
. (35b)

We remark that the pseudodifferential equation of (35a) is
consistent, since the right-hand side integrates to zero over
T 2. The integral condition of (35a) is required to uniquely
specify Gα since the constant function lies in the nullspace
of Aα . In (35b), the coefficient cα is obtained simply by
replacing α by −α in (24). In particular, the leading-order
singular term of Gα in (35b) is identical to the free space
Green’s function of (42) below. The regular part of the Green’s
function, denoted Rα (x0; x0) in (35b), is given by

Rα (x0; x0) = lim
x→x0

Gα (x; x0) + cα

|x − x0|2−2α
. (36)

In fact, if we set ρ, ρ̃ ∈ C∞
c (R) satisfying ρ(t ) = 1 for t ∈

(−1/8, 1/8) and supp(ρ) ⊂ (−1/4, 1/4) and ρ̃(t ) = 1 for t ∈
(−1/4, 1/4) and supp(ρ̃) ⊂ (−1/2, 1/2), we can write(

Aα

cαρ(·, x0)

| · −x0|2−2α

)
= ρ̃(·, x0)

(
Aα

cαρ(·, x0)

| · −x0|2−2α

)

+ (1 − ρ̃(·, x0))
(
Aα

cαρ(·, x0)

| · −x0|2−2α

)
,

where ρ(x, x0) = ρ(|x − x0|2) and same for ρ̃(x, x0). Ob-
serve that since (1 − ρ̃(·, x0)) and ρ(·, x0) has disjoint
support, the second term is infinitely smooth by the fact that
Aα is given by an integral kernel, which is smooth away from
the diagonal. For the first term, we can directly compute using
normal coordinates centered at x0 to obtain

−
(
Aα

cαρ(·, x0)

| · −x0|2−2α

)
(x) = δ(|x0 − x|) + C∞(T 2).

We may then write Gα (x; x0) = − cαρ(x,x0 )
|x−x0|2−2α + Rα (x; x0) where

Rα (·; x0) : T 2 → R satisfies AαRα (·; x0) = −1 + C∞(T 2). It
can then be shown (see Ch. 10 of [47]) that Rα (x; x0) is
infinitely smooth on T 2.

To determine S and ūε, we perform a leading order match-
ing of the local behavior of uε in (34) to the required
singularity structure of (33b). That is, from (34) and (35b),
we have that as x → x0,

− cα

|x − x0|2−2α
+ Rα (x0; x0) + ūε

= ε2α−2Sα

(
− ε2−2α

|x − x0|2−2α
+ χα

)
. (37)

Matching O(|x − x0|2α−2) and O(1), we arrive at Sα = cα ,
and the GMFPT of uε,

ūε = ε2α−2 �(1 − α)

4απ�(α)
χα − Rα (x0; x0). (38)

We note that the leading-order term (38) depends on the geom-
etry of target through the constant χα to be computed below.
This is in contrast to the 2-D narrow capture problem with

Brownian motion, where target geometry effects enter only
at the O(1) correction term. Global geometric properties of
the search domain are contained in the O(1) correction term
of (38) through the regular part of the Green’s function (36).
We remark also that the dependence of search time on the
starting location x enters only at O(1) through Gα (x; x0)
in (34), which is subdominant to the O(ε2α−2) constant term
ūε. Thus, in the ε → 0+ limit considered here, the better
search strategy will always be the one for which α is closer to
the Brownian limit of 1, regardless of from where the search
begins.

To determine χα , we require the solution to (32). Letting
U0(z) = Sαu(z) in (32), we have for u(z),

−(−�)αu = 0 on R2 \ B1(0), u = 0 on B1(0), (39a)

u ∼ − 1

|z|2−2α
+ χα as |z| → ∞, (39b)

where −(−�)α is with respect to the z variable. Note that
we have normalized the coefficient of |z|2α−2 in the far-
field behavior (39b), which leaves χα as the parameter to be
determined.

We next let

v(z) = u(z) − χα,

so that v satisfies

−(−�)αv = 0 on R2 \ B1(0), v = −χα on B1(0);

(40a)

v ∼ − 1

|z|2−2α
as |z| → ∞. (40b)

The exterior problem (40) for v(z) may be reformulated as the
following problem over all of R2 without boundary,

−(−�)αv = 1

cα

f (z) on R2; f (z) ≡ 0 on R2 \ B1(0);

(41a)

v ≡ −χα on B1(0); v ∼ − 1

|z|2−2α
as |z| → ∞,

(41b)

where cα is the constant given in (35b), and f (z) is an un-
known function to be found by imposing the first condition
in (41b). We now derive this integral equation for f (z).

First, the free space Green’s function G f (z; 0) with source
centered at the origin satisfying

−(−�)αG f = δ(z) on R2; (42a)

G f (z; 0) → 0 as |z| → ∞, (42b)

is given by

G f (z; 0) = −cα

1

|z|2−2α
, (43)
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where cα is given in (35b). Then the solution v(z) of (41) may
be written as a convolution of the right-hand side of (41) with
G f (z; 0) of (43), which yields

v(z) = −
∫

B1(0)

f (y)

|z − y|2−2α
dy, (44)

where the region of integration in (44) is only over B1(0)
because f (z) is compactly supported in B1(0) [see (41a)]. To
impose the normalizing condition on v given in the far-field
condition(41b), we expand the kernel as |z| → ∞ in (44)
as |z − y|2α−2 ∼ |z|2α−2 + O(|z|2α−3), noting that |y| � 1 by
virtue of the region of integration. Substituting this leading-
order expansion into (44) and comparing with the required
far-field behavior of v(z) in (41b), we obtain the normalizing
condition for f (z), ∫

B1(0)
f (z) dz = 1. (45a)

Next, we require that v(z) ≡ −χα for z ∈ B1(0), yielding∫
B1(0)

f (y)

|z − y|2−2α
dy = χα, z ∈ B1(0). (45b)

The integral equation (45b) together with the normalizing
condition (45a) are to be solved simultaneously for f (z) and
χα . To determine an explicit solution to (45), we appeal to
the result of [46] [see Theorem 3.1, and, in particular, (3.37)],
which states that for 0 < β < 1 and any z such that |z| � 1,∫

B1(0)

1

|z − y|2β

1

(1 − |y|2)1−β
dy = π2

sin(βπ )
. (46a)

Identifying β in (46a) with 1 − α, and noting that∫
B1(0)

1

(1 − |y|2)1−β
dy = π

β
, (46b)

we find from (46) that∫
B1(0)

1

|z − y|2−2α

(1 − α)/π

(1 − |y|2)α
dy

= 1 − α

π

π2

sin((1 − α)π )
. (47)

Comparing (46a) with (45), we find that the solution to (45) is
given by

f (z) = 1 − α

π (1 − |z|2)α
, χα = π (1 − α)

sin ((1 − α)π )
. (48)

Substituting χα from (48) into the expression for the GMFPT
ūε in (38), with 0 < α < 1, we arrive at ūε as given in (1).

For the GMFPT ū(L)
ε on the flat 2-D torus of side length

L with a circular target of radius ε, a simple rescaling shows
that ū(L)

ε = L2ūε where ūε is the GMFPT on the flat torus of
unit side length given in (1). This scaling was obtained em-
pirically through particle simulations in [48]. In contrast, our
systematic approach via a asymptotic analysis resulting in (1)

yields not only the α-dependent prefactor in the leading-order
O(ε2α−2) term, but also the geometry-dependent O(1) cor-
rection term. Neither of these terms are given in [48], which
focuses on much broader class of random walks, including
Lévy walks where particle velocity is fixed in contrast to the
possibility of unbounded velocities allowed by Lévy flights
(see also [49]). In the next section, we outline the matched
asymptotic method for the flat 3-D torus as well as closed 2-D
manifolds.

C. Matched asymptotic method for the (flat) 3-D torus
and 2-D manifolds

We now give a brief description of how the analysis of
Sec. V B can be extended to the flat 3-D torus as well as 2-D
closed manifolds. For the unit 3-D torus T 3 = [0, 1)3 with a
spherical target of radius ε centered at x0 = (1/2, 1/2, 1/2),
we have the elliptic problem for the MFPT uε(x) [in analogy
with (8a)],

Aαuε = −1 on T 3 \ Bε(x0), uε = 0 on Bε(x0), (49a)

where Aα for 0 < α < 1 is the fractional Laplacian of order
α on T 3 given by

Aα f (x) := 4α�(3/2 + α)

π3/2|�(−α)|
×

∫
T 3

∑
m∈Z3

f (y) − f (x)

|x − (y + m)|3+2α
dy. (49b)

This fact can be seen by running the same argument as that at
the end of Sec. V A for the fractional Laplacian on the flat 2-D
torus.

To analyze uε(x) near x0, we change variables to x = x0 +
εz and consider the inner problem on R3,

−(−�z)αU0 = 0 on R3 \ B1(0), U0 = 0 on B1(0);

(50a)

U0 ∼ Sα

(
− 1

|z|3−2α
+ χα

)
as |z| → ∞, (50b)

where −(−�z)α in (50a) is the 3-D fractional Laplacian given
by

−(−�z)α f (x) = 1

ε2α

4α�(3/2 + α)

π3/2|�(−α)|
∫
R2

f (y) − f (x)

|x − y|3+2α
dy.

(51)
Following the same analysis that resulted in (38), we obtain
that the GMFPT of a search of a small circular target of radius
ε in T 3 is given by

ūε = ε2α−3 �(3/2 − α)

4απ3/2�(α)
χα − Rα (x0; x0), (52)

where Rα (x0; x0) is the regular part of the Green’s function
satisfying

AαGα = −1 + δ(|x − x0|), x ∈ T 3 \ {x0};
∫
T 3

Gα (x; x0) dx = 0; (53a)

Gα (x; x0) ∼ − cα

|x − x0|3−2α
+ Rα (x0; x0) + O(|x − x0|) as x → x0; cα ≡ �(3/2 − α)

4απ3/2�(α)
. (53b)
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To compute χα , we follow the analysis leading to (45) to
recast (50) as an integral equation inside the 3D unit ball
B1(0), ∫

B1(0)

f (y)

|z − y|3−2α
dy = χα, z ∈ B1(0), (54a)

subject to the normalization condition∫
B1(0)

f (z) dz = 1. (54b)

The solution to (54a), as given by [50], is

f (y) = sin((1 − α)π )
π5/2

�(3/2 − α)

�(1 − β )
χαI

1

(1 − |y|2)α
; (55a)

I ≡ −αB(1/2,−α)

2(1/2 − α)
, (55b)

where the beta function in (55b) is defined by B(z1, z2) ≡
�(z1)�(z2)/�(z1 + z2) is the beta function. Imposing the in-
tegral condition (54b) on f (y) in (55) yields χα , given by

χα = 2
√

π (3/2 − α)(1/2 − α)�(1/2 − α)

α|�(−α)| sin ((1 − α)π )
. (56)

We note that the quantity (1/2 − α)�(1/2 − α) > 0 for α ∈
(0, 1), so χα > 0. Together with (52), the global MFPT is
given to O(1) by

ūε = ε2α−3 2

4απα

[(1/2 − α)�(1/2 − α)]2

�(α)|�(−α)| sin ((1 − α)π )
− Rα (x0; x0).

(57)
Since α ∈ (0, 1), the leading-order scaling of ūε in (57) is
asymptotically larger than the O(ε−1) search time of a Brow-
nian particle in a confined 3-D volume [51].

The analysis on a closed compact 2-D manifold M of unit
area and which is independent of the target size ε can proceed
in a manner similar to the matched asymptotic method of
Sec. V B, with the operator Aα replaced by that given in the
Introduction section of [52] (with the parameter a = 0, sig-
nifying pure Lévy flight). This operator (denoted A in [52])
assumes that a jump from a point p ∈ M occurs along any one
of the geodesics emanating from p, and that the length of this
jump is measured along that geodesic curve. A circular target
Bε(p0) of radius 0 < ε � 1 centered about p0 ∈ M is then
taken to be the set of all points on M whose distance from p0

is less than or equal to ε.
In the O(ε) region centered about p0 and in the appro-

priate Riemannian normal coordinates (see [53] for a similar
matched asymptotic analysis involving the Laplace-Beltrami
operator), it can be shown that A to leading order in ε reduces
to the (flat) fractional Laplacian on R2. In these coordinates,
the analysis of uε in the inner region proceeds exactly as for
the 2-D torus in Sec. V B. Analysis of uε in the outer region
away from p0 also remains largely unchanged with the main
exception being that the Green’s function would involve the
operator A of [52] instead of Aα in Sec. IV.

As a result, we predict that the global MFPT on a closed
2-D manifold of unit area will possess the same leading-order
behavior (1). However, depending on α and the curvature
of M at the center of the target, weaker algebraic and/or
logarithmic singularities in ε may follow the leading O(ε2α−2)

term. Moreover, computation of the regular part of the Green’s
function for the O(1) correction term may be challenging for
general manifolds due to the difficulty of computing the oper-
ator A itself. Further complications (and interesting behavior
of uε) may arise if M contains points connected to p0 by a
family of geodesics that can be parameterized by a continuous
parameter (such pairs of points are absent on the flat torus).

VI. DISCUSSION

Through Monte Carlo simulations, direct numerical solu-
tions, and asymptotic analysis of the limiting nonlocal exterior
problem (8), we have shown that the average search time of
a Lévy flight with tail index 0 < α < 1 on the flat torus T 2

with a small circular target of radius 0 < ε � 1 scales as
O(ε2α−2). In addition, our asymptotic analysis has yielded the
O(1) correction term to search time, along with insights into
how target geometry and search domain geometry and size
impact search times.

By comparing with average search times of the Brown-
ian walk on the same domain, which obey the well-known
O(| log ε|) scaling, we have provided a concrete counterex-
ample to the Lévy flight foraging hypothesis. We emphasize
that our comparison is limited only to the narrow escape
framework, and is not a general statement on the superiority
of Brownian over Lévy search strategies. One possible av-
enue may be to assess whether a search strategy based on a
combination of Brownian motion and Lévy flight (e.g., [54])
can be optimized to be faster than pure Brownian search in
the narrow escape framework. For this, the result of [52]
may be useful, where an infinitesimal generator is obtained
that governs the continuous limit of a Lévy process in which
Brownian motion is “interlaced” with long jumps.

While we presented results only for small target sizes ε, we
note that Lévy search times exceeded Brownian search times
for all ε < 0.5. Within this first-passage time framework, it
may be insightful to seek possible scenarios in which the Lévy
search strategy is superior.

We now discuss some avenues for future work, several
of which are projects currently in progress. While a single
target T 2 is a very simple domain on which to perform this
comparison, it would be interesting to consider more com-
plex domains. For example, a finite domain with reflecting
boundaries containing perhaps small reflecting obstacles may
present challenges from both a modeling and analytic per-
spective. From a particle simulations perspective, reflective
domains and obstacles would require computing trajectories
of flights that undergo reflections. From the pseudodifferential
equation perspective, one must formulate an analog to the
Aα operator of (8b); this new operator must account for all
possible paths between all pairs of points, including those that
reflect off boundaries and obstacles.

A domain featuring nonconstant curvature would also
present computational challenges—geodesics would need to
be computed for both the Monte Carlo algorithm as well as
the finite-difference method for discretizing the corresponding
infinitesimal generator (see [38]). This would add to the al-
ready significant computational cost. The sphere, on the other
hand, has simple geodesics and may be a good candidate
for a follow-up study, especially considering the interesting
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predictions made in [38] regarding the possible optimality of
starting the search from the point antipodal to the center of the
target [see Theorem 1.1 part (iii)].

Another domain feature that we have not considered is
the inclusion of more than one target, one or more of which
may be of noncircular shape. The multiple-target problem has
been considered at length for Brownian motion on flat two-
and three-dimensional geometries using hybrid asymptotic-
numerical methods (see, e.g., [26,30,32,35,51,55–57] and the
references therein). Several numerical optimization studies
have been done to find optimal target arrangements that min-
imize the spatial average of the stopping time (e.g., [58–61]).
The inclusion of more than one target also gives rise to
the question of splitting probabilities (see, e.g., [31,62,63])
and shielding effects [31], and how they compare with their
Brownian counterparts.

One useful aspect of such a hybrid methods is their ability
to capture the higher-order correction terms of the GMFPT,
which encode effects of target locations/configurations. This
can be accomplished by performing a higher-order matching
in the asymptotic solution for uε(x) in Sec.V B, and com-
puting the regular part of the Green’s function Gα in (35).
The greater ease of solving this ε-independent problem with-
out singular features has made possible the computational
optimization studies referenced above. An analogous hybrid
analytic-numerical theory for the fractional Laplacian on T 2

or the more general operator on Riemannian manifolds would
open various avenues of research. A similar method was
recently developed for the Laplacian on Riemannian two-
manifolds using techniques in microlocal analysis [53,64],
which allowed for predictions of localized spot dynamics in
reaction-diffusion systems on manifolds.

Numerical results suggest that the variance of the stopping
time may have a larger scaling with O(1/ε) than the mean.
The large variance suggests that the mean of the stopping
time may not be particularly informative of the probability
distribution of stopping times. Asymptotic computation of the
variance of the MFPT for the narrow escape problem has been
done in, e.g., [31,65] for Brownian motion. To capture all
moments of the probability distribution, however, would re-
quire analysis of the diffusion equation. In [29,65], a Laplace
transform in the time variable was employed to transform the
problem to an elliptic boundary value problem, on which the
hybrid asymptotic-numerical tools of [66] could be applied
before transforming back. A analogous approach may be pos-
sible to characterize the full distribution of stopping times of
a Lévy flight on Riemannian manifolds.

Finally, for Brownian motion, the problem of finding tar-
get configurations that optimize GMFPT is closely related to
the problem of finding stable equilibrium configurations of
localized spots in the Schnakenberg reaction-diffusion system
(cf. [67] and [61]). Furthermore, the question of whether a
mobile target leads to lower GMFPT has been found to be
closely related to a certain instability of the aforementioned
localized spot equilibria [33,34,68]. It would be interesting to
explore whether these relationships still hold when Brownian
motion is replaced by Lévy flights.
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