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Abstract. The Lévy flight foraging hypothesis asserts that biological organisms have evolved to employ

(truncated) Lévy flight searches due to such strategies being more efficient than those based on Brownian

motion. However, we provide here a concrete two-dimensional counterexample in which Brownian search

is more efficient. In fact, we show that the efficiency of Lévy searches worsens the farther the Lévy

flight tail index deviates from the Brownian limit. Our counterexample is based on the framework of the

classic narrow capture problem in which a random search is performed for a small target within a confined

search domain. Our results are obtained via three avenues: Monte Carlo simulations of the discrete search

processes, finite difference solutions and a matched asymptotic analysis of the elliptic (pseudo)-differential

equations of the corresponding continuum limits.
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It is a widely held belief that random search algorithms using Lévy flights can find a target faster than

using Brownian motion [35, 45, 46]. This so called “Lévy flight foraging hypothesis” forms the basis of

many biological models (e.g., [44, 31]) as well as numerical search algorithms [45, 20, 50, 49, 16]. It has

also led the seeking of optimal Lévy tail indices (e.g., [45, 22]) for maximizing the amount of sparsely

spaced targets being captured relative to the distance traversed [45], resulting in the 2020-21 dialogue

that took place on Phys. Rev. Lett. [22, 6, 23].

In contrast to these existing works, we present an alternative means of quantifying efficiency via measuring

the expected search time of a small target in a finite domain and provide an example in two-dimensions

for which the Brownian search strategy is more efficient than strategies based a Lévy flight of any tail

index α. In fact, we demonstrate that in our setting, a certain power-law dependence of the search

time on α that worsens the farther α deviates from its Brownian limit. The framework we employ

for this comparison is consistent with that of first passage time problems (e.g., [30, 1, 2, 37]) in a

geometry motivated by the narrow capture problem used to model biological and ecological processes

(e.g., [34, 18, 17, 36, 3, 29, 21, 14]).

We develop three different approaches to arrive at our result. First, we devise and implement a Monte

Carlo simulation to calculate the expected search time of searches based on Lévy flight. Second, we im-

plement a numerical method for solving (pseudo)-differential equations which yields detailed information

about the expected search time as a function of initial position. We use this numerical solution to gain

insight into the potential mechanism behind why Brownian searches appear to take less time than Lévy

flights. Third, in the Appendix B, we develop a matched asymptotic analysis to derive leading order

analytic predictions for the expected search times. We remark that the comprehensive set of results

from these three different approaches provide more quantitative and qualitative insight than the analytic

asymptotic estimate for the search time discussed recently in [7].
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A schematic of the narrow escape framework for the geometry we consider is shown in Fig. 1. The search

domain is the unit torus T2 of unit side length with periodic boundary conditions and bottom left vertex

at the origin. Two instances are shown of paths traced out by a Brownian (green) and Lévy (blue) search

for a target of disc of radius ϵ centered at x0 = (1/2, 1/2) (red). The pink dots mark the locations x from

where the respective searches begin. The search ends when the search first lands either on the boundary

or inside the target disk.
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Figure 1. Illustration of Lévy flight (blue) and Brownian walk (green) searches for a

target of disc of radius ϵ = 0.25 (red circle indicates its boundary) centered at the point

(0.5, 0.5) on the flat torus T2. The pink markers indicate the starting locations of each

search. Each search continues until it first reaches the target. Closeups of both paths are

shown in insets. The Lévy search path (tail index α = 0.5) exhibits series of small jumps

separated by occasional long jumps while the Brownian path lacks the latter. Note that

ϵ is set relatively large for illustrative purposes; we consider a smaller range of ϵ in this

Letter.

The qualitative differences in the two paths are due to the probability distributions of their respective

jump lengths. For the Brownian search, jump lengths are normally distributed with zero mean and

variance of ∆t sufficiently small, leading to the linear-in-time mean squared displacement ⟨|∆x|2⟩ ∝ ∆t.

In the Lévy search with tail index 0 < α < 1, jump lengths |y| are given by |y| = (∆t)1/(2α)|k|, where
k is distributed according to a power-law distribution with tail ∼ |k|−(2+2α) (see, e.g., [26, 43, 15, 27, 1]

and references therein). This leads to an unbounded mean squared displacement, and the super-linear

scaling ⟨|∆x|2δ⟩1/δ ∝ (∆t)1/α for δ < α.

In the next section, we present our main findings and give possible reasons for the inferiority of Lévy

search strategies within the narrow escape framework.

1. Main results and interpretation

For a random search on T2, let us denote uϵ(x) (vϵ(x)) the average search time (i.e., mean first passage

time, or MFPT) of a Lévy (Brownian) search starting from location x, and Bϵ(x0) the circular target of

radius ϵ centered at x0. Then the global mean first passage time (GMFPT) [37] is the expected search

time averaged uniformly over all starting points x ∈ T2 \ Bϵ(x0). That is, the GMFTP, ūϵ, of the Lévy

search is given by ūϵ =
∫
T2\Bϵ(x0)

uϵ(x) dx, and similarly for the GMFPT, v̄ϵ, of the Brownian search.

We show in Fig. 2 our primary result demonstrating that Brownian search is on average faster than

Lévy search. Moreover, the Lévy flight search time increases the more its tail index α deviates from its
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Brownian limit of 1. In the figure, we plot the Lévy search GMFPT ūϵ for three different tail indices and

for a range of target sizes ϵ on a log-log scale. The blue x’s are obtained from Monte Carlo simulations

(see Fig. 1), which we discuss below. The black o’s are obtained from finite difference solutions of the

elliptic pseudo-differential equation for uϵ(x) given by (3.1a) corresponding to the continuum limit of

the Monte Carlo process. Both confirm the leading order analytic result (shown in red) derived via a

matched asymptotic analysis in (B.22) of Appendix B, stating that in the limit ϵ → 0+ with 0 < α < 1,

ūϵ ∼ Aαϵ
2α−2 ; Aα :=

Γ(1− α)(1− α)

4αΓ(α) sin((1− α)π)
. (1.1)

The error of this approximation grows as α nears its Brownian limit of 1, accounting for the worsening

discrepancies between the blue x/black o and the (red) analytic prediction as α gets closer to 1. We

also plot v̄ϵ, the GMFPT of the Brownian search, obtained from numerically solving (3.2a) (black o’s).

The red dashed curve plots the functional form −(2π)−1 log(ϵ) + c for some constant c, confirming the

well-known the leading order O(| log ϵ|) scaling of Brownian search times (see, e.g., [34, 18, 17, 36, 3, 29]).
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Figure 2. (a) For Lévy flight tail index α = 0.25, α = 0.5, α = 0.75, and Brownian

motion, with target of radius ϵ centered at (1/2, 1/2), we plot the GMFPT versus ϵ. The

results indicate that Brownian search is faster on average than the three Lévy searches

considered, and that average search times increase further the tail index α is from its

Brownian limit of 1. The quantities plotted in blue x’s and black o’s are obtained from

Monte Carlo simulations and numerical solutions of the corresponding elliptic (pseudo)-

differential equations, respectively. The solid red lines indicate the leading order power-

law scaling of (1.1) given by (B.22) of Appendix B, while the dashed red curve plots the

functional form −(2π)−1 log(ϵ) + c for some constant c.

We give a possible explanation for the longer average duration of Lévy searches. In Figs. 3, we plot

the finite difference solution for uϵ(x) when α = 1/2 and ϵ = 0.03, and compare a cross section of this

solution to that of vε(x). In Fig. 3b, we first observe that both solutions are identically 0 for x ∈ Bϵ(x0)

(i.e., searches beginning in and on the target cost zero time). Near the target boundary, we observe a

much sharper rise in uϵ than for vϵ, while far from the target, uϵ is flatter than vϵ. This behavior of uϵ

suggests that proximity to the target of starting location has little impact on the Lévy search time. This

owes to there being a greater likelihood of taking a long jump in the “wrong” direction, especially when

the target is small.

Thus, a Lévy search that has reached the vicinity of the target may take a long jump away from it,

effectively forcing it to restart its search from a farther location. Repeated approaches to the target

followed by long jumps away from it can lead to anomalously long search times, which we show in Fig.

4a. Obtained from Monte Carlo simulations of search processes beginning at (0, 0), the probability density

distributions of Lévy search times differ greatly from that of Brownian search times. In particular, the

comparatively slow decay of the tail for longer search times is apparent, especially for α = 1/4. The
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(a) uϵ(p)
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(b) horizontal cross-section of uϵ, vϵ

Figure 3. For α = 1/2 with target of radius ϵ = 0.03 centered at (1/2, 1/2), we show in

(a) the numerical solution for uϵ of (3.1a). The red line indicates the contour plotted in red

and (b), where, in blue, we also plot the corresponding contour of the numerical solution

vϵ of (3.2a). Note that uϵ (vϵ) is plotted on the left (right) vertical axis. The spatial

average of uϵ is approximately 8.57 while that of vϵ is approximately 0.357, indicating

that an average search conducted via the Lévy process with α = 1/2 for a small target

will be significantly longer in comparison.

greater variance of Lévy search times is confirmed in Fig. 4b, where we show finite difference computations

of the search time variance averaged over all starting locations. We note the near-linear behavior of Lévy

flight variances, suggesting that they, along with the GMFPT ūϵ, follow a power-law scaling.
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(b) average variance

Figure 4. (a) Starting from the point (0, 0), the figure shows the full probability density

function of search times for a target of radius ϵ = 0.04 centered at p0 = (1/2, 1/2). Results

for the Brownian search are obtained from numerically solving the time-dependent diffu-

sion PDE while those for the Lévy searches are obtained from Monte Carlo simulations.

Observe the increasingly heavy tail of the distributions as α decreases. This indicates the

increasing likelihood of long search times, contributing to the longer average search times

of Lévy flights relative to Brownian walks. (b) Finite difference computation of (3.1c) and

(3.2b) of search time variance averaged over all starting locations.

In the following sections, we provide an overview of our methodology, beginning with a brief outline of

our Monte Carlo algorithm . We then give the elliptic pseudo-differential equations which characterize

the continuum limit of the Lévy search process. Mathematical details are presented the Appendix. We

close by discussing some open problems.
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2. Monte Carlo Simulation of Lévy Flight Search on T2

We describe here the Monte Carlo algorithm that we used to generate the simulated Lévy flight search

times of the previous section. The algorithm is motivated by the description of Lévy flights on Rn given

by Valdinoci [43]. We describe the process on R2 from which we can derive the process on T2 simply by

identifying (n+ r,m+ s) ≡ (r, s) for n,m ∈ Z and r, s ∈ (0, 1).

For the (j + 1) − th step starting from xj ∈ T2 with j = 0, 1, 2, . . ., the j-th displacement of the Lévy

flight with tail index 0 < α < 1 is given by hk, where h is a sufficiently small parameter and k ∈ Z2 is

a random variable drawn from a power-law distribution with tail ∼ |k|−2−2α. Since ⟨|k|2δ⟩ is bounded

for 0 < δ < α < 1, we have the scaling of the expected displacement ⟨|∆x|2δ⟩ ∝ hδ, or ⟨|∆x|2δ⟩2/δ ∝ h2.

We then let ∆t = Dαh
2α so that ⟨|∆x|2δ⟩2/δ ∝ (∆t)1/α as required. Here, Dα is a constant chosen so

that the process is consistent with Brownian motion in the limit α → 1− (see (A.18) of Appendix A). As

mentioned above, from this jump process on R2 one can deduce the process on Tn simply by modding

out Z2.

We simulate this process on T2 until the position xN+1 of the search first encounters Bϵ(x0). The duration

of the search is then given by N∆t, where ∆t = Dαh
2α. The search beginning from x1 is repeated for

500, 000 iterations, the average search time of which is taken to be the simulated MFPT starting from

x1. The GMFPT is obtained by varying the starting location x1 over T2, repeating the process, then

averaging over all starting locations. We note that results did not change significantly when 1 × 106

iterations were run from each starting location instead of 5× 105. More details are given in Appendix D,

while the rejection sampling algorithm used to draw random variables in Z2 from a power-law distribution

is given in Appendix C.

3. The Elliptic (Pseudo)-Differential Equations

In this section, we briefly discuss the elliptic pseudo-differential equation satisfied by uϵ(x), the MFPT of

the Lévy search starting from point x ∈ T2 in the continuous limit. Adopting the electrostatics approach

of [30] for Brownian searches, we show in Appendix A that uϵ(x) satisfies the exterior problem

Aαuϵ = −1 on T2 \Bϵ(x0), uϵ = 0 on Bϵ(x0) , (3.1a)

where Aα for 0 < α < 1 is the fractional Laplacian of order α on T2 given by

Aαf(x) :=
4αΓ(1 + α)

π|Γ(−α)|
×

∫
[0,1]×[0,1]

∑
m∈Z2

1

|x− (y +m)|2+2α
[f(y)− f(x)] dy , (3.1b)

where y+m are all points corresponding to y ∈ T2 in the tiling of R2 with unit squares. We remark that

the eigenvalues of Aα converge to that of the usual (local) Laplacian on T2 as α → 1−. Furthermore, for

a Lévy flight on R2, the operator Aα would simply become the standard fractional Laplacian of order α

given in (3.1b) of Appendix A. The lattice sum kernel of (3.1a) sums the probabilities of all the possible

paths from y to x on T2. By analogy with [30, 21], we have that the variance of the MFPT, σϵ(x),

satisfies

Aασϵ = −2uϵ(x) on T2 \Bϵ(x0), σϵ = 0 on Bϵ(x0) . (3.1c)

The boundary value problems for the Brownian search time (vϵ(x)) and variance (τ(x)) are well-known

([30]):

∆vϵ = −1 on T2 \Bϵ(x0), vϵ = 0 on ∂Bϵ(x0) , (3.2a)

∆τϵ = −2vϵ on T2 \Bϵ(x0), τϵ = 0 on ∂Bϵ(x0) . (3.2b)
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Finite difference solutions of (3.1a)-(3.2b) are straightforward, although discretizing the operator Aα is

computationally expensive. As such, asymptotic methods for equations of the forms (3.1a) and (3.1c),

such as that provided in Appendix B, may be helpful in reducing computation requirements.

4. Discussion

Through Monte Carlo simulations, direct numerical solutions and asymptotic analysis of the limiting

nonlocal exterior problem (3.1), we have shown that the average search time of a Lévy flight with tail

index 0 < α < 1 on the flat torus T2 with a small circular target of radius 0 < ϵ ≪ 1 scales asO(ϵ2α−2). By

comparing to average search times of the Brownian walk on the same domain, which obey the well-known

O(| log ϵ|) scaling, we have provided a concrete counterexample to the Lévy flight foraging hypothesis.

We emphasize that our comparison is limited only to the narrow escape framework, and is not a general

statement on the superiority of Brownian over Lévy search strategies. One possible avenue may be to

assess whether a search strategy based on a combination of Brownian motion and Lévy flight (e.g., [28])

can be optimized to be faster than pure Brownian search in the narrow escape framework.

The discrete process that we model with Monte Carlo simulations, the continuum limit of which is

described by (3.1), allows the search to cross “over” the target without the target being accounted as

found. It would be interesting to determine whether a Lévy process that terminates when such jumps

occur is appreciably more efficient.

Lastly, while we presented results only for small target sizes ϵ, we note that Lévy search times exceeded

Brownian search times for all ε < 0.5. Within this first-passage time framework, it may be insightful to

seek possible scenarios in which the Lévy search strategy is superior.

We now discuss some avenues for future work, several of which are projects currently in progress. While

a single target T2 is a very simple domain on which to perform this comparison, it would be interesting

to consider more complex domains. For example, a finite domain with reflecting boundaries containing

perhaps small reflecting obstacles may present challenges from both a modeling and analytic perspective.

From a particle simulations perspective, reflective domains and obstacles would require computing tra-

jectories of flights that undergo reflections. From the pseudo-differential equation perspective, one must

formulate an analog to the Aα operator of (3.1b); this new operator must account for all possible paths

between all pairs of points, including those that reflect off boundaries and obstacles.

A domain featuring non-constant curvature would also present computational challenges - geodesics would

need to be computed for both the Monte Carlo algorithm as well as the finite difference method for

discretizing the corresponding infinitesimal generator (see [7]). This would add to the already significant

computational cost. The sphere, on the other hand, has simple geodesics and may be a good candidate

for a follow-up study, especially considering the interesting predictions made in [7] regarding the possible

optimality of starting the search from the point antipodal to the center of the target (see Theorem 1.1

part (iii)).

Another domain feature that we have not considered is the inclusion of more than one target, one or

more of which may be of non-circular shape. The multiple-target problem has been considered at length

for Brownian motion on flat 2- and 3-dimensional geometries using hybrid asymptotic-numerical methods

see (e.g., [14, 25, 29, 11, 13, 5, 4, 18] and the references therein). Several numerical optimization studies

have been done to find optimal target arrangements that minimize the spatial average of the stopping
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time (e.g., [12, 9, 32, 10]). The inclusion of more than one target also gives rise to the question of splitting

probabilities (see e.g., [21, 33, 8]) and shielding effects [21], and how they compare to their Brownian

counterparts.

One useful aspect of such a hybrid methods is their ability to capture the higher order correction terms

of the GMFPT, which encode effects of target locations/configurations. This can be accomplished by

performing a higher order matching in the asymptotic solution for uε(x) in Section B, and computing the

regular part of the Green’s function Gα in (B.9). The greater ease of solving this ϵ-independent problem

without singular features has made possible the computational optimization studies referenced above.

An analogous hybrid analytic-numerical theory for the fractional Laplacian on T2 or the more general

operator on Riemannian manifolds would open various avenues of research. A similar method was recently

developed for the Laplacian on Riemannian 2-manifolds using techniques in microlocal analysis [38, 41],

which allowed for predictions of localized spot dynamics in reaction-diffusion systems on manifolds.

Numerical results suggest that the variance of the stopping time may have a larger scaling with O(1/ϵ)

than the mean. The large variance suggests that the mean of the stopping time may not be particularly

informative of the probability distribution of stopping times. Asymptotic computation of the variance of

the MFPT for the narrow escape problem has been done in, e.g., [21, 24] for Brownian motion. To capture

all moments of the probability distribution, however, would require analysis of the diffusion equation. In

[24, 3], a Laplace transform in the time variable was employed to transform the problem to an elliptic

boundary value problem, on which the hybrid asymptotic-numerical tools of [47] could be applied before

transforming back. A analogous approach may be possible to characterize the full distribution of stopping

times of a Lévy flight on Riemannian manifolds.

Finally, for Brownian motion, the problem of finding target configurations that optimize GMFPT is closely

related to the problem of finding stable equilibrium configurations of localized spots in the Schnakenberg

reaction-diffusion system (cf. [39] and [10]). Furthermore, the question of whether a mobile target leads

to lower GMFPT has been found to be closely related to a certain instability of the aforementioned

localized spot equilibria [42, 40, 48]. It would be interesting to explore whether these relationships still

hold when Brownian motion is replaced by Lévy flights.

Appendix A. Derivation of elliptic (pseudo)-differential equations for average

Brownian and Lévy search times

We provide here a derivation of the pseudo-differential equation for the average search time via Lévy

flight of a circular target of radius ϵ starting from some point x = (x1, x2). The derivation is based on

a continuum limit of a discrete process, and is given in [30] for a Brownian search, which we reproduce

first for the purpose of completeness.

Consider a Brownian particle on an N × N grid with spacing h = 1/(N − 1). At regular intervals of

∆t, the particle hops from its current location (x1, x2) to one of its four neighboring points, (x1 + h, x2),

(x1 − h, x2), (x1, x2 + h), and (x1, x2 − h) with equal probability. Let vϵ(x) be the expected search time

starting from (x1, x2). Then uϵ(x) must be the average of the expected search time starting from one of

its four neighboring points, plus the ∆t traversal time. That is,

vϵ(x1, x2) =
1

4
[vϵ(x1 + h, x2) + vϵ(x1 − h, x2) + vϵ(x1, x2 + h) + vϵ(x1, x2 − h)] + ∆t . (A.1)
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Dividing (A.1) by ∆t, we have

h2

4∆t

vϵ(x1 + h, x2) + vϵ(x1 − h, x2) + vϵ(x1, x2 + h) + vϵ(x1, x2 − h)− 4vϵ(x1, x2)

h2
+ 1 = 0 . (A.2)

Taking the limit h → 0 and ∆t → 0 in (A.2) while maintaining h2/(4∆t) = 1, we obtain

∆vϵ + 1 = 0 , x ∈ T2 ; vϵ = 0 , x ∈ ∂Bϵ(x0) , (A.3)

where the boundary condition of (A.3) is the statement that the search time starting from the boundary

of the target is zero. For the unit torus T2, vε(x) would satisfy periodic conditions on the boundary.

Following the idea of [43], we now generalize this derivation to Lévy flights characterized by a jump length

distribution whose tail decays according to the power law ∼ |k|−2−2α for 0 < α < 1. For the flat torus

T2 with x ∈ [0, 1) × [0, 1), we have the same N ×N grid with spacing h = 1/(N − 1). Instead of (A.1)

which allows only for nearest-neighbor jumps, we have

uϵ(hi) =
N−1∑
j1=0

N−1∑
j2=0

w(hi, hj)uϵ(hj) + ∆t . (A.4)

In (A.4), i = (i1, i2) ∈ [0, N − 1] × [0, N − 1], j = (j1, j2), and w(hi, hj) is a sum of the probabilities of

all possible paths from hi to hj on T2, taking into account that there are an infinite number of ways to

travel from one point to another via a straight line owing to the periodic nature of T2. From [43], a jump

of hk has the probability given by Kα(k), where the discrete probability mass function Kα(k) on Z2 is

given by

Kα(k) =

0 k = 0

Cα|k|−2−2α k ̸= 0
, (A.5a)

where Cα is the normalizing constant given by

Cα =
1∑

k∈Z2 , k̸=0

|k|−2−2α
, (A.5b)

so that ∑
k∈Z2

Kα(k) = 1 . (A.5c)

The probability of reaching hi from hj on T2 must then be given by the lattice sum

w(hi, hj) =
∑
m∈Z2

Cα|i− (j+m(N − 1))|−2−2α , (A.6)

where m = (m1,m2) ∈ Z2, and we have tiled R2 with the unit square, and j + m(N − 1) is the point

corresponding to j ∈ T2 in the square with bottom left vertex at m(N − 1). Since

N−1∑
j1=0

N−1∑
j2=0

w(hi, hj) =
∑
k∈Z2

Cα|i− k|−2−2α = 1 , (A.7)

(A.4) can be rewritten
N−1∑
j1=0

N−1∑
j2=0

w(hi, hj)(k) [uϵ(hj)− uϵ(hi)] + ∆t = 0 . (A.8)

Using the formal scaling law of [43],

∆t = Dαh
2α , (A.9)

for some constant Dα to be determined, we divide both sides of (A.8) by ∆t to obtain

1

Dα
h2

N−1∑
j1=0

N−1∑
j2=0

w(hi, hj)

[
uϵ(hj)− uϵ(hi)

h2α+2

]
+ 1 = 0 . (A.10)
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Using (A.6) in (A.10), we obtain

Cα

Dα
h2

N−1∑
j1=0

N−1∑
j2=0

∑
m∈Z2

|i− (j+m(N − 1))|−2−2α

[
uϵ(hj)− uϵ(hi)

h2α+2

]
+ 1 = 0 . (A.11)

Letting x ≡ hi and y ≡ hj, and recalling that h = 1/(N − 1), (A.11) becomes

Cα

Dα
h2

N−1∑
j1=0

N−1∑
j2=0

∑
m∈Z2

[
uϵ(y)− uϵ(x)

|x− (y +m)|2+2α

]
+ 1 = 0 . (A.12)

In the limit h → 0+, (A.12) is the Riemann sum approximation to the pseudo-differential equation

Dα

Cα

∫
[0,1]×[0,1]

[uε(y)− uε(x)]
∑
m∈Z2

1

|x− (y +m)|2+2α
dy + 1 = 0 , (A.13)

which is the desired form given in (3.1b).

To motivate the selection of Dα, we rewrite (A.13) in terms of the fractional Laplacian defined on R2

by considering the periodic extension of uϵ(x), which we denote Uϵ(x). With Uϵ(x1, x2) = u((x1 mod

⌊x1⌋, x2 mod ⌊x2⌋)), (A.13) can be written

Dα

Cα

∫
R2

Uϵ(y)− Uε(x)

|x− y|2+2α
dy + 1 = 0 , (A.14)

It is shown in [43] that the integral term in (A.14) is well defined as a principal value integral when x is

near y: ∫
R2

Uε(y)− Uε(x)

|x− y|2+2α
dy = lim

δ→0+

∫
R2\Bδ(y)

Uε(y)− Uε(x)

|x− y|2+2α
dy , (A.15)

where Bδ(y) is the ball of radius δ centered at y. With the fractional Laplacian in R2 given by

−(−∆)αf(x) =
4αΓ(1 + α)

π|Γ(−α)|

∫
R2

f(y)− f(x)

|x− y|2+2α
dy , (A.16)

(A.14) becomes

−Dα

Cα

π|Γ(−α)|
4αΓ(1 + α)

(−∆)αUε(x) + 1 = 0 . (A.17)

Then setting

Dα = Cα
4αΓ(1 + α)

π|Γ(−α)|
, (A.18)

so that the coefficient in front of (−∆)αu(x) is equal to one, we finally arrive at

−(−∆)αu(x) + 1 = 0 . (A.19)

In (A.18), Cα is the normalization constant of (A.5b). Note that the fractional Laplacian −(−∆)α for 0 <

α < 1 can be defined in terms of the Fourier transform F(·)[ξ] by F((−∆)αf(x))[ξ] = −|ξ|αF(f(x))[ξ].

Thus, as α → 1−, the eigenvalues of −(−∆)α approach those of the usual local Laplacian operator ∆.

Appendix B. Asymptotic derivation of leading order Lévy flight search time

We provide here an asymptotic derivation of the leading order behavior of ūε in (1.1); i.e., the spatial

average of uε(x) as ε → 0+. We begin with the elliptic pseudo-differential equation (3.1):

Aαuϵ = −1 on T2 \Bϵ(x0), uϵ = 0 on Bϵ(x0) , (B.1a)
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where Aα for 0 < α < 1 is the fractional Laplacian of order α on T2 given by

Aαf(x) :=
4αΓ(1 + α)

π|Γ(−α)|

∫
[0,1]×[0,1]

∑
m∈Z2

1

|x− (y +m)|2+2α
[f(y)− f(x)] dy . (B.1b)

In (B.1a), Bϵ(x0) denotes the ball of radius ε centered at x0. In the inner region, we let

z = (x− x0)/ε , uε(x0 + εz) ∼ U(z) .

In the inner variable z, we now show that Aα ∼ −ε−2α(−∆z)
α as ε → 0+, where −ε−2α(−∆z)

α is the

fractional Laplacian on R2 with respect to the z variable. To see this, we apply Aα to f(ε−1(x − x0)),

which results in

Aαf(ε
−1(x− x0)) =

4αΓ(1 + α)

π|Γ(−α)|

∫
[0,1]×[0,1]

∑
m∈Z2

f(ε−1(y − x0))− f(ε−1(x− x0))

|x− (y +m)|2+2α
dy . (B.2)

To obtain an expression in the form of the fractional Laplacian (A.16) from (B.2), we manipulate the

denominator in the sum to obtain

Aαf(ε
−1(x− x0)) =

1

ε2+2α

4αΓ(1 + α)

π|Γ(−α)|

∫
[0,1]×[0,1]

∑
m∈Z2

f(ε−1(y − x0))− f(ε−1(x− x0))

|ε−1(x− x0)− (ε−1(y − x0) + ε−1m)|2+2α
dy .

(B.3)

Substituting ε−1(y − x0) → Y and ε−1(x− x0) → X, (B.3) becomes

Aαf(X) =
1

ε2α
4αΓ(1 + α)

π|Γ(−α)|

∫
R 1

ε
(x0)

∑
m∈Z2

f(Y)− f(X)

|X− (Y + ε−1m)|2+2α
dy , (B.4)

where the region of integration R 1
ε
(x0) is the square of side length ε−1 centered at x0. Now in the limit

ε → 0+, only the m = 0 term in the sum of (B.4) contributes at a nonzero term, while the region of

integration approaches R2, yielding

Aαf(X) ∼ 1

ε2α
4αΓ(1 + α)

π|Γ(−α)|

∫
R2

f(Y)− f(X)

|X−Y|2+2α
dy . (B.5)

Comparing to (A.16), we find that the right-hand side of (B.5) is simply the fractional Laplacian with

respect to the rescaledX = ε−1(x−x0)) variable, scaled by a factor of ε−2α. That is, Aα ∼ −ε−2α(−∆X)α,

as required.

We now expand U ∼ ε2α−2U0 + ε2αU1 so that the leading order term of the inner solution U0 satisfies

the radially symmetric exterior problem on R2:

−(−∆z)
αU0 = 0 on R2 \B1(0) , U0 = 0 on B1(0) ; (B.6a)

U0 ∼ S

(
− 1

|z|2−2α
+ χα

)
as |z| → ∞ , (B.6b)

where S is an arbitrary constant, χα is a constant that depends on α and, in general, the geometry of

the target. We show below that (B.6) may be reformulated as an integral equation on B1(0) (i.e., the

domain obtained by rescaling the target by ε−1 to O(1) size). In the special case here where B1(0) is the

unit ball, we refer to [19] for an explicit solution of this integral equation, which in turn yields an explicit

expression for χα.

In the limit ε → 0+, we have uε satisfies the pseudo-differential equation in the punctured domain

Aαuε = −1 , x ∈ T2 \ {x0} , (B.7a)
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with the leading order singularity structure given by the far-field behavior of U ∼ ε2α−2U0 in (B.6b),

leading to

uε ∼ ε2α−2S

(
− ε2−2α

|x− x0|2−2α
+ χα

)
as x → x0 . (B.7b)

Equation (B.7a) with the local behavior (B.7b) suggests that uε in the limit ε → 0 may be expressed in

terms of the source-neutral Green’s function Gα(x;x0),

uε ∼ Gα(x;x0) + ūε , (B.8)

where ūε is the spatial average of uε, while Gα(x;x0) satisfies

AαGα = −1 + δ(|x− x0|) , x ∈ T2 \ {x0} ;
∫
T2

Gα(x;x0) dx = 0 ; (B.9a)

Gα ∼ − cα
|x− x0|2−2α

[
1 +O(|x− x0|2−2α)

]
as x → x0 ; cα ≡ Γ(1− α)

4απΓ(α)
. (B.9b)

We remark that the pseudo-differential equation of (B.9a) is consistent, since the right-hand side inte-

grates to zero over T2. The integral condition of (B.9a) is required to uniquely specify Gα since the

constant function lies in the nullspace of Aα. In (B.9b), the coefficient cα is obtained simply by replacing

α by −α in (A.16).

To determine S and ūε, we perform a leading order matching of the local behavior of uε in (B.8) to the

required singularity structure of (B.7b). That is, as x → x0,

− cα
|x− x0|2−2α

+ ūε = ε2α−2S

(
− ε2−2α

|x− x0|2−2α
+ χα

)
(B.10)

Matching O(|x− x0|2−2α) and O(1) in (B.10), we arrive at S = cα, and the GMFPT of uε,

ūε = ε2α−2Γ(1− α)

4απΓ(α)
χα . (B.11)

It now remains to determine χα. Let us begin with the problem for u(x) on R2 given by

−(−∆)αu = 0 on R2 \B1(0) , u = 0 on B1(0) . (B.12a)

u ∼ − 1

|x|2−2α
+ χα as |x| → ∞ , (B.12b)

where −(−∆)α is with respect to the x variable. Note that we have normalized the coefficient of |x|2α−2

in the far-field behavior (B.12b), which leaves χα as the parameter to be determined.

We next let

v = u− χα

so that v satisfies

−(−∆)αv = 0 on R2 \B1(0) , u = −χα on B1(0) ; (B.13a)

v ∼ − 1

|x|2−2α
as |x| → ∞ , (B.13b)

The exterior problem (B.13) for v(x) may be reformulated as the following problem over all of R2 without

boundary,

−(−∆)αv =
1

cα
f(x) on R2 ; f(x) ≡ 0 on R2 \B1(0) ; (B.14a)

v ∼ − 1

|x|2−2α
as |x| → ∞ , (B.14b)

where cα is the constant given in (B.9b), and f(x) is an unknown function to be found. In particular,

f(x) is determined through an integral equation that results from requiring that v ≡ −χα on B1(0). We

now derive this integral equation for f(x).
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First, the free space Green’s function Gf (x;0) with source centered at the origin satisfying

−(−∆)αGf = δ(x) on R2 ; (B.15a)

Gf (x;0) → 0 as |x| → ∞ , (B.15b)

is given by

Gf (x;0) = −cα
1

|x|2−2α
. (B.16)

Then the solution v(x) of (B.14) may be written as a convolution of the right-hand side of (B.14) with

Gf (x;0) of (B.16), which yields

v(x) = −
∫
B1(0)

f(y)

|x− y|2−2α
dy , (B.17)

where the region of integration in (B.17) is only over B1(0) because f(x) is compactly supported in

B1(0) (see (B.14a)). To impose the normalizing condition on v given in the far-field condition(B.14b),

we expand the kernel as |x| → ∞ in (B.17) as |x−y|2α−2 ∼ |x|2α−2 +O(|x|2α−3), noting that |y| ≤ 1 by

virtue of the region of integration. Substituting this leading order expansion into (B.17) and comparing

to the required far-field behavior of v in (B.14b), we obtain the normalizing condition for f(x),∫
B1(0)

f(x) dx = 1 . (B.18a)

Next, we require that v(x) ≡ −χα for x ∈ B1(0), yielding∫
B1(0)

f(y)

|x− y|2−2α
dy = χα , x ∈ B1(0) . (B.18b)

The integral equation (B.18b) together with the normalizing condition (B.18a) are to be solved simulta-

neously for f(x) and χα. To determine an explicit solution to (B.18), we appeal to the result of [19] (see

Theorem 3.1, and, in particular, (3.37)), which states that for 0 < β < 1,∫
B1(0)

1

|x− y|2β
1

(1− |y|2)1−β
dy =

π2

sin(βπ)
. (B.19a)

Identifying β in (B.19a) with 1− α, and noting that∫
B1(0)

1

(1− |y|2)1−β
dy =

π

β
, (B.19b)

we find from (B.19) that∫
B1(0)

1

|x− y|2−2α

(1− α)/π

(1− |y|2)α
dy =

1− α

π

π2

sin((1− α)π)
. (B.20)

Comparing (B.19a) with (B.18), we find that the solution to (B.18) is given by

f(x) =
1− α

π(1− |x|2)α
, χα =

π(1− α)

sin((1− α)π)
. (B.21)

Substituting χα from (B.21) into the expression for the GMFPT ūε in (B.11), we finally arrive at

ūε = ε2α−2 Γ(1− α)(1− α)

4αΓ(α) sin((1− α)π)
; 0 < α < 1 , (B.22)

as given in (1.1).
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Appendix C. Sampling algorithm

To implement the Monte Carlo simulation for the discrete Lévy flight, we first need a way to sample from

the discrete power law distribution Kα(k) of (A.5), where k ∈ Z2. We will use rejection sampling to do

this. First observe that

Kα(k) ≤
Cα

C̃α

K̃α(k) , (C.1)

where K̃α(k) = C̃α|k|−2−2α
∞ for k ∈ Z2 \ {0}, C̃α is the normalization constant (given below), and | · |∞ is

the ℓ∞ norm on R2. The estimate (C.1) is quite tight, and because K̃α is simple to sample from, it serves

as a good proposal distribution for rejection sampling. We now describe how we sample from K̃α(k).

The distribution K̃α(k) depends purely on the ℓ∞ norm of the random variable k ∈ Z2. As such we

observe for each fixed k̂ ∈ Z2, a random variable k ∈ Z2 satisfies

P(k = k̂) = P(|k|∞ = |k̂|∞)P(k = k̂ | |k|∞ = |k̂|∞) ,

where P(k = k̂ | |k|∞ = |k̂|∞) is uniformly distributed amongst the 8|k̂|∞ points having ℓ∞ norm |k̂|∞.

For each n ∈ N, using the explicit form of K̃α and the fact there are 8n points on Z2 having ℓ∞ norm n,

we see that

P(|k| = n) = C̃α8n/n
2+2α = C̃α8/n

1+2α , (C.2)

where C̃α is chosen so that C̃α

∞∑
n=1

8n−1−2α = 1. We can sample from this distribution using inversion

sampling for discrete distributions.

Remark 1. We observe that in the special case when α = 1/2 we can derive explicit analytic expressions

for P(|k| = n). Indeed, we can sum over n in (C.2) to yield the condition

1 = 8C̃1/2

∞∑
n=1

1

n2
=

4π2

3
C̃1/2.

That is, C̃1/2 =
3

4π2 . Inserting this back to (C.2) we get, for each fixed n ∈ N,

P(|k| = n) =
6

π2

1

n2
, (C.3)

for α = 1/2.

Rejection Sampling Algorithm for Distribution Kα:

(1) sample n ∈ {1, . . . , 10000} from (C.2) using inversion sampling;

(2) for this n ∈ N sample k ∈ Z2 uniformly from the 8n points on Z2 have ℓ∞ norm n;

(3) for this k ∈ Z2, sample r ∈
(
0, Cα

C̃α
K̃α(k)

)
uniformly. If r ≤ Kα(k), accept this k ∈ Z2. If not,

reject and repeat.

Numerical experiments show that this rejection sampling algorithm accepts ≈ 69% of the time.
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Appendix D. Monte Carlo algorithm

Let T2 be the flat torus [0, 1] × [0, 1] with periodic boundary conditions, and udiscϵ (x) be the expected

discrete Lévy flight search time (obtained via simulation of a discrete process) of a circular target Bϵ(0) of

radius ϵ > 0 centered at (1/2, 1/2) starting from x ∈ T2. Then for a Lévy flight tail index α ∈ (0, 1) and

h > 0 sufficiently small, we perform the following Monte Carlo procedure to compute an approximation

of udiscϵ (x):

Set T = 0 and x = (x1, x2).

Repeat the following until x ∈ Bϵ(0):

(1) sample k ∈ Z2 from Kα using the above rejection sampling algorithm;

(2) set y := (y1, y2) = x+ hk;

(3) set x = (y1 mod ⌊y1⌋, y2 mod ⌊y2⌋), which accounts for the periodic boundary conditions of T2;

(4) set T = T +∆t, where ∆t is as in (A.9).

The j-th run of the above generates a stopping time Tj . After executing M runs and generating stopping

times T1, T2, . . . , TM we calculate

udiscϵ (x) ≈ T1 + T2 + · · ·+ TM

K
, (D.1)

for large M ∈ N. Repeating this process over a grid of points x ∈ T2 and then averaging, we are able

to obtain an approximation of the global mean first passage time (GMFPT); i.e., the spatial average of

udiscϵ (x) over T2.
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