GREEN’S FUNCTIONS OF THE FRACTIONAL LAPLACIAN ON A SQUARE -
BOUNDARY CONSIDERATIONS AND APPLICATIONS TO THE LEVY FLIGHT
NARROW CAPTURE PROBLEM

J. C. TZOU'

ABSTRACT. For a particle undergoing a Lévy flight of index s € (0,1) in the unit square, we analyze
the first hitting time to a set of small targets of radius O(e) for 0 < ¢ < 1. In particular, we show
how boundary interactions and the configuration of targets within the unit square impact the expected
first hitting time. Furthermore, we illustrate how a target can be “shielded” by absorbing obstacles,
and how a Lévy flight search can be significantly superior in navigating these obstacles versus Brownian
motion. As part of this analysis, we introduce a method for accurately computing source-neutral Green’s
functions of the fractional Laplacian operator on the unit square with either periodic or homogeneous
Neumann boundary conditions, the latter of which we formulate and interpret using a method of images-
type argument. Our approach involves analytically constructing the singular behavior of the Green’s
function in a neighborhood around the location of the singularity, and then formulating a “smooth”
problem for the remainder term. This smooth problem can be solved for numerically using a basic finite
difference scheme, and leads directly to accurate extraction of the regular part of the Green’s function
(and its gradient, if so desired). Incorporating this new method for computing Green’s functions into a
matched asymptotic analysis framework enables us to provide new insights into the 2-D Lévy flight narrow
capture problem beyond those of leading order theory. All asymptotic predictions are confirmed by full

numerical solutions.

Keywords: fractional Laplacian, boundary conditions, Green’s functions, Lévy flight, nar-
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1. INTRODUCTION

Since 2004 [1], the classic narrow capture/escape problem, which seeks the mean time (and related
statistics) for a particle undergoing Brownian motion in a bounded (multi-dimensional) domain to first
reach a set of small targets in the interior (narrow capture) or on the boundary (narrow escape) of the
domain, has been used as a model for a wide array of applications. A small sampling includes the exit
of a sodium ion through narrow valves on the cell membrane [2]; a diffusing intracellular molecule in
search of a localized reaction site [3]; animals foraging for food and water sources [4, 5]. We refer to
the previous references, along with, e.g., [6, 7], for a more comprehensive review of applications that the
narrow capture/escape problem has been used to model.

In the context of Brownian motion, with the Laplacian operator as the infinitesimal generator, this class
of problems has been subject to analysis within various geometric settings. Asymptotic, microlocal,
conformal mapping, and numerical methods have been used to consider flat two-dimensional geometries
(e.g., [8, 2, 9]), cusp-like geometries [10, 11, 12], Riemannian surfaces [13, 14, 12], and three-dimensional
geometries [15, 16, 17].
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Variations on the narrow capture/escape problem include cases in which targets are mobile [18, 19, 20]
or where they are partially absorbing, modeling scenarios in which an escape or reaction event occurs
with probability less than one upon the particle encountering the target [3, 21, 22, 23, 24]. Recently,
stochastic resetting has been incorporated, where the diffusing particle’s position resets to some fixed
position in the domain according to a Poisson process [25, 26].

Related problems include computation of the principal eigenvalue of the Laplacian in various two-
dimensional domains with Neumann [27] and periodic boundary conditions [28], computation of the
variance of the first hitting time (as opposed to its first moment) [4, 29], full distributions of the first
hitting time (i.e., all moments) [29, 30, 31, 26|, and splitting probabilities [32, 4, 17], i.e., the probability
that the diffusing particle reaches a desired target before hitting some other obstacle(s) in the search

domain.

Many results for the above are given in terms of relevant Green’s functions of the Laplacian operator
on the domain in which the problem is posed. In some cases, such as the unit disk [8], ellipse [33], or
periodic Bravais lattices [34], explicit formulae for these Green’s functions are known. In more general
cases, they must be computed numerically via a scheme that yields sufficient accuracy for the particular
application [29].

While a fairly comprehensive suite of results for the narrow capture/escape framework has been compiled
for the case when the searching particle undergoes Brownian motion, significantly less is known when
the particle undergoes a Lévy flight [35]. In contrast to the linear-in-time mean squared displacement
(|Az|?) ~ At of Brownian motion, the Lévy flight model of superdiffusion possesses an unbounded mean
squared displacement. Instead, a Lévy flight of index s € (0,1) in d spatial dimensions is characterized

~ E—d—Zs

by a jump distribution p(¢) with power-tail p(¢) resulting in a diverging variance and the

superlinear scaling (|Az[?)1/% ~ AtY/$ for § < s.

Lévy flight dynamics have been observed in animal foraging behavior, from insects to sharks to shearwa-
ters [36, 37], with evidence suggesting in some instances that these movement patterns may result from
the organisms’ neural underpinnings (e.g., [38, 39, 40]). These studies have prompted comparisons of the
efficacy of random searches by a particle undergoing Lévy flight to one undergoing Brownian motion (see,
e.g., [41, 42, 38, 39, 40]). Lévy-like characteristics have also been observed in bacterial motion [43, 35],
and have served as a basis for numerical search algorithms [44, 45]. Materials have also been developed
through which the diffusive transport of light is governed by Lévy flights [46].

Here, we focus on a particular aspect of Lévy flight search on a bounded two-dimensional domain in which
the target(s) is (are) small in comparison to the search domain. Analytic progress of this Lévy flight
variant of the narrow capture problem has only begun in earnest recently: in [47], a two-term expansion
was derived for the global mean first hitting time (GMFHT) on the unit square and cube with periodic
boundary conditions and a single target. The expansion for the unit square is given below in (1.1), where
the small parameter 0 < ¢ < 1 is the target radius. In [48], the analogous expansion was derived for
multiple targets on a one-dimensional interval with periodic boundary conditions. In both results, the
O(1) correction term was expressed in terms of a certain Green’s function that encodes information about
the geometry of the search domain and/or the spatial distribution of targets in the domain. In [49], a
leading order estimate, similar to the leading order term of [47] (see (1.1) below) and [48] was derived
for Anosov Riemannian manifolds (without boundary).
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As we detail below, the primary new contributions in this paper are (1) the formulation of a Neumann-
type boundary condition (in contrast to the periodic boundary conditions of [47, 48]) in the special case
of a square domain, and (2) the introduction of a method for computing Green’s functions that does
not rely on expansions in terms of explicitly known eigenfunctions. These new developments allow us to
evaluate the aforementioned O(1) correction terms and thereby illustrate boundary effects and shielding
effects in the Lévy flight narrow capture problems on the unit square. We note that our formulation
of the Neumann-type boundary condition extends also to rectangular domains, while our method for
computing Green’s functions with periodic boundary conditions generalizes to arbitrary periodic Bravais
lattices.

In contrast to Brownian motion, the infinitesimal generator for a Lévy flight is nonlocal, which presents
new difficulties in analysis as well as numerical computation over the classical narrow capture/escape
problem. One consideration is that of formulation (and interpretation) of Neumann-type boundary
conditions. In [48, 47], the boundaries were assumed to be periodic, while in [49], the manifolds consid-
ered were without boundary. Most physical systems, however, are not accurately described by periodic
boundary conditions — indeed, narrow capture/escape problems are often formulated with homogeneous
Neumann conditions assuming particle reflection at the boundary. We refer to [50, 51] for a discussion
around challenges in prescribing Neumann-type boundary conditions in nonlocal frameworks, as well as
an overview of those proposed. Another difficulty in the Lévy flight narrow capture/escape problem is
that of computing the required Green’s functions. In one dimension, [48] provides a rapidly converging
infinite series in terms of eigenfunctions of the Laplacian with periodic boundary conditions, but no such
series has been given in higher dimensions. In such cases, including those in which eigenfunctions are not
explicitly known, an accurate numerical method must be developed for computing Green’s functions.

In this paper, we address these two difficulties in the special case of the two-dimensional square (only
slight modifications are needed to generalize to all rectangular domains). That is, we (1) address the
formulation and physical interpretation of a Neumann-type boundary condition discussed in [52, 53, 54] for
Lévy flights in a bounded domain, and (2) introduce a method for accurately computing Green’s functions
of the fractional Laplacian with both the Neumann-type as well as periodic boundary conditions.

We apply these new developments within the context of the the Lévy flight narrow capture problem.
For the calculation of the GMFHT, we highlight effects of reflecting boundary conditions and also of
target configuration, while for the splitting probability problem, we illustrate “shielding” effects in which
the target is surrounded by obstacles. Regarding the latter, we show how Lévy flight searches become
less susceptible to such shielding effects as s decreases away from its Brownian limit of 1. All of these
effects are encoded in corrections terms involving certain Green’s functions, which we derive and use our
new method to compute. With respect to the boundary condition discourse, we emphasize here that
our purpose is to illuminate a particularly simple physical interpretation of a Neumann-type boundary
on a geometry that facilitates a convenient method for analysis and computation — we again refer to
[50, 51] for a thorough discussion on the various Neumann-type conditions proposed and their theoretical

underpinnings.

Prior to outlining the sections of the paper, we give a brief overview of the main result of [47] for the Lévy
flight narrow capture problem with a single target of radius 0 < ¢ < 1 on the unit square Q = [0, 1] x [0, 1]
with periodic boundary conditions. For a search conducted by a particle undergoing a Lévy flight of index
s € (0,1), with s — 1~ being the Brownian limit, the GMFHT, aép), is given by
m(l—s)

Xs _Rgp)(X03X0)5 Xs = m (1.1)

~ L1 —3s)
(P) o 2522\ " °)
Ue c 457 (s)



LEVY FLIGHT NARROW CAPTURE PROBLEM 4

In (1.1), the constant xs was obtained through recasting a certain inner problem as an integral equation
on the rescaled domain of the target; for the disk-shaped target considered in [47], the integral equation
yielded an analytic solution for xs given by [55]. The O(1) correction term in (1.1), P (x0;%0), is the

regular part of a certain Green’s function Ggp ) (x;x0) periodic on € satisfying

APIGP) = 1 4 §(x—xq), x€Q\{xo}; /Ggp)(x;xo) dx =0, (1.2a)
Q
0 (x:x0) ~ - ) (e _ . A Ut
GP (x;%0) bR + RP(x;x0) + O(|x — x0|) as x — X0 cs = T (s) (1.2b)

Note that the required periodic boundary conditions on 9f2, the boundary of ), are encoded in the
operator A( itself, derived in [47] through a discrete-continuum probabilistic argument and given by

1
= C, / Z |Trg§)(y) e dy, x=(x1,m2) € (1.3a)

meZ2
Tr(ﬁ)(y) =y+m, meZ?, (1.3b)
for f(x) periodic on €. In (1.3a), the constant Cs is defined by
4°T'(1 + s)
Cs = ———-, (1.3¢)
m|I'(=s)]

which ensures that Ag (p)(bl(»p ) = —\)\gp )]5¢5p ), where ()\Ep ), ¢§p )(x)) are eigenpair of the regular Laplacian.

Regarding (1.1), the leading order term was confirmed in [47] via both Monte Carlo simulations as well
as a finite difference solution of the narrow escape elliptic problem Ag” )u?’ ) — 1 with u = 0 when
|x —xg| < e. However, in the absence of a method for accurately computing the regular part Rgp ) (%0;X0),
the O(1) term was left unverified. Furthermore, the periodic boundary conditions assumed in [47], which
are encoded in A(f ) and which assume that a Lévy flight particle exiting {2 on one edge via a long jump

returns through the opposite edge, do not lend well to the modeling of physical systems.

We address these two shortcomings in §§2 and 3. In §2, we construct an operator Aﬁ”) on Q =[0,1]x[0,1]
that models specular reflection at 0f) of particles that hit 92 mid-jump and would have otherwise exited
the domain. Through a heuristic argument, we show that this operator is in fact equivalent to the spectral
representation of the fractional Laplacian on 2 with restriction to the set of Laplacian eigenfunctions
d)l(-n), 1=0,1,..., satisfying Ol,qﬁl(-n) = 0 on 012, where 0, denotes the normal derivative. That is, for these
Laplacian eigenfunctions on {2 corresponding to eigenvalues )\En) <0,:=0,1,..., respectively, we argue
that Aé”)gbg”) = —\/\En)\sqbl(-n). We note that the specification of the usual &,gbgn) = 0 condition on 9f)
through the spectral representation of the fractional Laplacian was discussed in [52, 53, 54].

In §3, we introduce a method for accurate computation of the periodic Green’s function Ggp ) of (1.2) as
well as the analogous Neumann Green’s function Gg") for the Aé”) operator with a,,GE") =0 on 0f). By
constructing the singular part of the Green’s functions analytically, and formulating a smooth numerical
problem for the remainder term, this method yields accurate values for the regular parts Rép ) (x;%0)
for the periodic Green’s function and its Neumann counterpart Rﬁ”) (x;%0). We note that this method
does not invoke the spectral interpretation of Agp ) and Ag”), and thus does not rely on possession of the

Laplacian eigenfunctions on €.

In §4, we leverage the Green’s function computations of §3 to compute the O(1) correction terms of
the GMFHT. For the periodic domain, we focus on the case of multiple targets, deriving the O(1)
correction term in terms of the Green’s function Ggp ) of (1.2) to predict the effect of target configuration
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FIGURE 1. (a) In Q with periodic boundary conditions, we center one circular target
at (0.25,0.25) and another at (a,a), where 0.25 < a < 0.75. Both targets have radius
0 < e < 1. (b) The global mean first hitting time versus a for s = 0.6 and ¢ = 0.03.

The red curve is generated from a finite difference solution for ué” ) satisfying (4.2) with A

replaced by Agp ), while the blue curve is obtained through an asymptotic analysis along

with the algorithm for accurate computation of Ggp ),

on GMFHT. The schematic of this problem is shown in Fig. 1a, where two targets of radius ¢ are centered
at (0.25,0.25) and (a,a), respectively. In Fig. 1b, we plot the GMFHT as the parameter a is varied,
showing that it reaches a minimum when a = 0.75. We note the close agreement between the asymptotic
prediction and the numerical values.

Due to the symmetry of a periodic domain, the GMFHT is independent of target location in the single-
target problem. This symmetry however, is broken in the case of reflective boundary conditions. For
the case of specular reflection at the boundary, we use our computation of the Green’s function ng)
to predict the how GMFHT changes as the location of a single target is varied in €). The schematic of
this problem is shown in Fig. 2a, where one target of radius ¢ is centered at (a,a). In Fig. 2b, we plot
the GMFHT as the parameter a is varied, showing that it reaches a minimum when a = 0.5. We note
the close agreement between the asymptotic prediction and the numerical values. This variation in the
GMFHT as the target location is varied is absent in the case of periodic boundary conditions, and is due

solely to the effects of the reflective boundary.

In §5, on the unit square with reflective boundaries, we consider the splitting probability of reaching a
desired target before hitting one of the obstacle targets that surround it. The schematic of this problem
is depicted in Fig. 3a, where the desired target (heavy line) is “shielded” by five other targets (light line).
In particular, we compare this splitting probability across various Lévy flight indices s ranging from 0.2
to the Brownian limit of s = 1. The results are shown in Fig. 3b.

Through an asymptotic analysis of a certain elliptic problem, we derive an expansion for the splitting
probability in terms of quantities associated with the Neumann Green’s function ng). We demonstrate
that as s increases, the average probability of reaching the desired target prior to one of the surrounding
targets decreases, illustrating the (perhaps expected) phenomenon that a Lévy flights with its long

jumps are less susceptible to “shielding” effects than Brownian motion. In §6, we discuss other possible
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FIGURE 2. (a) In Q with reflective boundary conditions, we center a single circular target
of radius 0 < ¢ < 1 at (a,a), with a € (0,0.5). (b) The global mean first hitting time
versus a for Lévy flight index s = 0.6 and target radius € = 0.03. The red curve is
generated from a finite difference solution for ué”) satisfying (4.2) with A replaced by
A&”’, while the blue curve is obtained through an asymptotic analysis along with the
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1 0.18
0.16 1 —O—asyrup-t.t)t.ir:
0.8f 1 —e— numerical
O 0.14 +
g O & 0.12
0.4}
e—>O— O 0.1¢
2
0.2 0.08 |
0 . . ; 0.06 : * : g . : :
0 0.2 0.4 0.6 0.8 1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1
T 8
(a) target centered at (a,a) - reflective BCs (b) average splitting probability versus s

FIGURE 3. (a) In Q with reflective boundary conditions, the desired target at the center
(heavy line) is “shielded” by five obstacle targets. The average splitting probability, @én),
is the probability of reaching the desired target before hitting any of the obstacle targets,
averaged over all starting locations in €. (b) Plot of 17§n) versus Lévy flight index s, where
s = 1 is the Brownian limit. The red curve is generated from a finite difference solution

for vén) satisfying (5.1), while the blue curve is obtained through an asymptotic analysis

along with the algorithm for accurate computation of ng). As expected, Lévy flights with
smaller index s, which experience more long jumps, are less susceptible to the shielding

effect.
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applications of our work as well as how it can be extended. We also comment on the limitations of our

work, and conclude with a brief discussion of some related open problems.

2. THE FRACTIONAL LAPLACIAN FOR REFLECTIVE BOUNDARY CONDITIONS ON Of2

In this section we derive an expression for the operator Aé") describing a Lévy flight process with index
s € (0,1) in the domain Q = [0, 1] x [0, 1], where we assume specular reflection of particles on 0€2. That
is, we assume that a particle whose jump would take it outside of €2 instead reflects off 92 in a specular
manner and remains inside Q (see Fig. 4b). This is in contrast to the periodic boundary conditions
depicted in Fig. 4a, where a particle exiting the domain simply re-enters through the opposite edge.

(%) _ A5

For Aﬁ”) derived under this assumption of specular reflection on 9€2, we argue that AE")@.

1 =0,1,.... Here, d)z(»n) is the i-th eigenfunction of the Laplacian operator on ) with 8V¢§n) =0 on 0f)
(n)

while )\En) < 0 is the corresponding eigenvalue. To see this, let @, (x), x € R?, be the even extension of

gf)g") onto R%. That is, suppose y = (y1,%2) € €, and let

T (y) = (my+ mod (m1,2)+(—1)™y1, ma+mod (ma,2)+(—1)"2ys);  m = (m1,ms) € Z%. (2.1)

Then (I)E”) (T,&?) (y)) = gzbz(n) (y). In (2.1), T (y) are simply image points of y; the first component is
obtained by successively reflecting y a number |m;| times across the lines 1,2,...,m; when m; > 0 and
across the lines 0,—1,...,m; + 1 when m; < 0, and similarly for the second component. The point
Tgf ) (y) lies in the unit square whose lower left vertex is at the point m; we denote this unit square Qp,
so that Qg = Q. Note that 7.\ (y) is a one-to-one map from 2 to Q.

re-entry
0.8F 1 0.8}
0.6} ; 1 0.6}
& end location a3 end location
0.4} 1 0.4

i start location
start location

0.2f 0.2
i exit . i reflect .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
£ £
(a) periodic boundary condition (b) specular reflection at boundary

FIGURE 4. Periodic boundary (a) versus specular reflection at the boundary (b). In (a),
a particle whose trajectory causes it to exit the domain through the bottom boundary
simply re-enters at the same angle from the top boundary. In (b), the same trajectory is
reflected off the boundary at the same angle as the incident trajectory. The total distance
traveled by the particle is the same in both cases; the distribution of this distance follows

a power-law distribution.
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For the fractional Laplacian —(—A)® defined on R2, we have that —(—A)sq)(n) (x) is given by

)

o™ (y) — " (x)

7

— (=)0 (x) = C, dy = -V x); xeR?, (2:2)

g2 |y —x[?F2s

where the integral near y = x is taken in the principal value sense. Since R? can be tiled as |J Qm,
meZ?
we may rewrite the right-hand side of (2.2) as

o™
—(—A)*® = C, Z/ ()dy:—|A§">|sq>§”>(x); xeR2.  (2.3)

= ’y _ X|2+2s

Since each y € Qp, has one corresponding point in €2, we make the change of variable y — Ty, (y) in (2.3)
for each integration over Qp,

(n)
Ay = ¢ Y / —2 ) gy P xeRE, (24

meZ2 |T n) X‘2+2s

where Ty (y) is given in (2.1). Using that <I>Z(-n) (Tm(y)) = ngl(n) (y), and restricting x to 2, we obtain from

(2.4)
) g) o
Ayt = 3 [ St By = W xen @

meZ2

Interchanging the sum and integral in (2.5), we obtain

A = / -9 ﬂ 2. : dy = —[\"PoM(x);  xeQ. (26)

S IT () — x[2+2s

Thus, with Ty, (y) defined in (2.1), the action of the operator Ag”), defined in (2.6) on Neumann eigen-
functions of the Laplacian on 2 is equivalent to that of the spectral definition of the fractional Laplacian
on (). Like its periodic counterpart, A&p ), it inherits the property of self-adjointness from the fractional
Laplacian —(—A)?® of (2.2), the latter of which is due the symbol of —(—A)?® being real-valued.

Now consider a function u™ (x), x € Q, that represents the mean first hitting time (MFHT) of a Lévy
flight starting from location x to a target of radius € centered at xg € 2. Also, let Oyugn) =0 on 092. We
claim that, for such a Lévy flight with index s € (0, 1), ne (x) satisfies

Ay (x) = -1, xeQ\ Ba(xo); u™ =0 for x € B.(xq); x0€Q, (2.7)

where A is the operator defined in (2.6), and B.(x() denotes a disk of radius e centered at xg.
Furthermore, we claim that (2.7) describes specular reflection of the Lévy flight particle on 92 as depicted
in Fig. 4b.

To show this, let us first consider the even extension onto R? of ugn)( ), which we denote Ul (x). That
is, for x € Q and m € 72, let U™ be such that U™ (Tm(x)) = u™ (x), where Tin(x) € R? is defined in
(2.1). Note that ulm (x) represents the MFHT from x € R? to the set of targets (J,,cz2 BE(T,SI?) (x0))-

We formulate the problem for Ul (x) using the discrete-continuum approach employed in [47] and [56]
as follows. First, we discretize R? into the set of discrete points hi with i € Z, h = 1/N, N € Z*, and
N > 1. Then, by conditioning on the first jump, we have that the MFHT starting from point hi is the
weighted average of the MFHT’s from all the points to which the particle can jump, plus the At time it
takes to make the jump:

U (hi) = w(hi, iU (b)) + At,  hie R?\ | Bo(Tw(x0)), (2.82)
jez? meZ?
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with the exterior condition
U™ (hi) =0 when hie | ] B.(Tw’(x0)). (2.8b)
meZ2
In (2.8a), the weight w(hi, hj) is the probability of jumping from hi to hj. Here, we take the approach of
Valdinoci in [56] and use the discrete power law distribution
0 i=j,
w(hi, hj) = ) (2.92)
Nli—jI727% i#],
where N in (2.9a) is a normalization constant given by
1

No= ——a (2.9D)
i=72,i#0
Since » ;cz2 w(hi, hj) = 1 by (2.9), we may rewrite (2.8a) as
n) g s (n) /7.
N, Us "/ (hj) — Uz (hi)
N > =—1. (2.10)

P’ ’1 _ j|2+23

Using the formal scaling law of [56], At = Dsh?* for some constant D, we obtain the Riemann sum on
the left-hand side

Ns o 5 U2 (5) — U (h)

- 1. (2.11)

s hil2+2s

D, i |hi — hj
Letting hi = x and hj =y, (2.11) together with (2.8b) yield the exterior problem
—(~APUM(x) = ~1, xeR\ |J BT (x0)). (2.12a)
meZ2

U™ (x) =0 when x € | J B(Tw(x0)), (2.12b)

meZ?

where in (2.11), we have chosen the constant Dy so that

Ny 4T(1+3s)

Dy #ll(=s)|

Finally, restricting x to 2 in (2.12a), and using the reflection symmetry U (TI(I? ) (x)) = ne (x), we have
that ul™ (x) must satisfy (2.7) with A defined in (2.6).

We now give a brief argument for why u§”) (x) satisfying (2.7) is equivalent to the case of specular reflection
on 9Q. To see this, note that in the same way that the |i — j|7272° term in (2.11) is directly related to
the probability of the particle jumping from hi to hj, the infinite sum in > .o \TI(T?) (y) — x|7272
arises from the infinite number of paths from x to y and their associated probabilities. For example, the
m = 0 term is simply the straight-line path from x to y of length |y — x|; the m = (1,0) term represents
the unique path from x to y that involves a single specular reflection off of the 1 = 1 boundary; the
m = (1, 1) represents the unique path from x to y that involves a single specular reflection off of each of
the 1 = 1 and x5 = 1 boundaries, and so on. Sample paths from x to y, along with their trajectories,
are shown in Fig. 5.
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F1Gure 5. Four different paths from x to y in Q = [0, 1] x [0, 1] with reflective boundaries.
The direct path from x to y of length |y — x| has probability ~ |y — x|~272%. The other
paths involve one or more reflections off of 92, and have probability ~ [T (y) — x|~272¢
for m € Z2.

3. COMPUTATION OF THE GREEN’S FUNCTIONS

In this section, we introduce a scheme for accurate computation of the regular part of the periodic Green’s
()

function G4 satisfying (1.2) as well as a Neumann Green’s function ng) satisfying
AMGM (x;x0) = —1 + 6(x — X)), x € Q\ {x0}; /Gg") (x;%0)dx =0, (3.1a)
Q
G (x5 x0) ~ — s + B (x5%0) + Ol1x = x0) s x = x0, (3.1b)

=X

for A" defined in (2.6) and constant ¢, defined in (1.2b). Since the approach for both is similar, we
drop the superscripts ® and () for the remainder of this section and simply let G satisfy

AGs(x5%0) = =1+ 0(x — %q), x € Q\ {x0}; /QGS(X;XO)dx:O, (3.2a)

Cs

Gs(x;x0) ~ + Rs(x;x0) + O(|x — x¢|) as x — xg¢. (3.2b)

TR
We note that the right-hand side of (3.2a) is orthogonal to the (co)kernel of the formally self-adjoint

operator Ay (i.e., the set of all constant functions). The equation for Gy is thus consistent; the integral
equation in (3.2a) enforces uniqueness.

We begin by decomposing the Green’s function Gs(x;%¢) as

N c
Gs(x;x0) = x(x — x0)up(x — x0) + Rs(X;%X0) ; up(x) = —|X‘278_2S ,

(3.3a)
where ]:Zs(x;xo) satisfies the same boundary conditions as G, and is everywhere finite and infinitely
smooth on  (see [47]), while x(x) is an infinitely smooth radially symmetric cut-off function, monotonic
in |x|, centered at x = 0 such that, for ro < rq,

1 0L |X‘ <70
x(x) = , (3.3b)
0 m< ’X’
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and rq is chosen so that the support of x(x —xg) lies entirely in 2. In (3.3a), ug is the free-space Green’s
function of the fractional Laplacian satisfying

—(=A)’ug(x — x9) = d(x — X0) . (3.4)

This can be easily seen by noting that (—A)® has the Fourier symbol |k|?* along with the distributional
Fourier transform pair F {c,|x|**72} (k) = |k|=** in R? for 0 < s < 1, where ¢, is defined in (1.1).

We will formulate a “smooth” equation for R,(x;xg) that can be solved for numerically using standard
finite difference methods. Note that, comparing (3.2b) with (3.3a) and (3.3b), we have Ry (x;Xo) =
R4 (x;%p) for x € By, (xp), while Ry(x;%0) = Gs(x;%0) for x € Q\ By, (o).

Substituting G in (3.3a) into (3.2a), we obtain
As(x(x = x0)ug(x — x0) + Rs) = —1 4 8(x — x0),
or
AsRg = —1+ 0(x — x0) — As(x(x — Xo)uo(x — x0)) - (3.5)

It now remains to determine A;(x(x — xg)ug(x — Xg)). To do so, we appeal to the equivalence between
applying A; to a function f(x) on Q and applying —(—A)?® to the (periodic or even, depending on whether
AP or A s being considered) extension of f(x) onto R?. We thus have that

Ags(x(x — x0)up(x — x0)) = —(—A)° Z X(x — T (%0))uo(x — Tm(x0)) , x €N, (3.6)

mecZ2

where Ty, may be either 7 in (1.3b) or T8 in (2.1) depending on whether the Green’s function being
computed is Ggp ) or ng), respectively. Let us consider first the m # 0 terms of the sum in (3.6), given
by

pm (%) = =(=A)*[x(x = T (x0))uo(x = Tm(x0))] =

X(Y = Tm(%0))uo(y — Tm(%0)) — X(Xx — T (X0))uo(x — Tm(X0))

C
* Jr2 ly — x|?+2s

dy , xe . (3.7)

Since 71 in the cut-off function x is chosen so that the support of x(x — Tm(xo)) in (3.7) lies entirely
inside 0y, we have that x(x — Tm(x0)) = 0 for x € . So, (3.7) becomes

pm(x) = C; X(¥ — Tm(x0))uo(y — Tm(x0)) dy

, x€. 3.8
(1< Bry (Ten (x0)) |y —x[>% (38)

Since x € Q and y € By, (Tm(x0)), which has no intersection with €, the domain of integration in
(3.8) does not include x. Thus, the integrand in (3.8) contains only one singularity, occurring when
y = Tm(x0), proportional to |y — Tim(x0)|?*~2, which is integrable in R? when s € (0,1). The m # 0
terms in (3.6) are thus easily obtained using standard methods of numerical integration.

We now consider the m = 0 term in (3.6),

— (—=A)*[x(x — x0)uo(x — x0)] =

Cs
R2

X(y — Xo)uo(y — Xo) — x(Xx — Xo)uo(x — Xo)
|y —x[>+2

dy , xe. (3.9)

The integral on the right-hand side of (3.9) is unbounded at x = x¢ owing to when the variable of
integration y — xg. To extract this singularity, we rewrite the right-hand as

X(y — Xo)uo(y —Xo) — X(X — Xo)uo(x —%0) ,

C
* Jre ly — x[?+2s

y = —x(x=x0)(=A)uo(x —x0) +po(x); (3.10a)
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uo(y — x0) (X (y — x0) — x(x = X0))
=Cy dy , .10b
po(x) =C - ly — x[2+2s y (3.10b)
By (3.4), the first integral on the right-hand side of (3.10a) is equal to x(x — x¢)d(x — xg), or simply
d(x — xq), which cancels the 6(x — x¢) term in (3.5).

We now show that po(x) in (3.10b) is finite when x = x¢, where xq is the location of the singularity in
Gs(x;x%0). When x = x, the x(y —x0) — x(x — %) term in the numerator of (3.10b) vanishes for all
y € By, (x0). The O(]y — xo|™*) singularity at y = x¢ from the O(|y — xo|72*2%) and O(|y — xo|~27%)
contributions of ug(y —x¢) and |y — x| 72725, respectively, thus need not be considered since the integrand
vanishes for all y € By, (xo). The integrand is finite for all y € R?\ B, (xo), and has decay rate ~ |y|~*
as |y| — oo, which is integrable in R2. Therefore, po(xo) is finite.

When x € By, (x0) \ {X0}, the integrand still vanishes for all y € B, (xo) since then x(y — xo) =
x(x —x9) = 1. As in the x = xq case, the region of integration is thus y € R?\ B,,(x0). Both the

— x|7272 appear in B,,(xg), and so

singularity at y = xo from ug(y — xp) and that at y = x from |y
the integrand is always finite in the domain of integration. Moreover, as above, the integrand decays as

~ |ly|™* as |y| — oo, which is integrable in R?. Thus, po(x) is finite when x € By, (x0) \ {xo}

When x € R?\ B, (xq), i.e., outside the support of the cut-off function, we have x(x — %) = 0. Since
x(y—xo) also vanishes when y € R?\ B, (xo), the domain of integration is simply y € B, (x¢). They = x
singularity from the |y —x|~272% term thus lies outside of the domain of integration. The O(|y —xo|~2+2%)
singularity at y = xo from ux — X) is in the domain of integration, but is integrable when 0 < s < 1.
The integrand is finite otherwise, and since the domain of integration is also finite, po(x) is finite when
x € R?\ By, (x0).

When ry < |x — xg| < r1, both the y = x¢ and y = x singularities lie in the domain of integration.
The O(|y — xo|~2%2%) singularity at y = xq is integrable in R? when 0 < s < 1, while the integral near
the O(|y — x|~272%) singularity is well-defined and finite as a principal value since x(y — xq) is at least
twice differentiable at x (see [56]). As before, the integrand has decay rate ~ |y|=* as |y| — oo, which is
integrable in R?. Thus, po(x) is finite when ro < |x — xq| < 71.

From (3.5) - (3.10b), we thus have a “smooth” problem for R, (i.e., we have replaced the singular §(x —xg)
term with one that is bounded on 2),

AR (x;%x0) = —1— Z Pm(x); x € Q; /RS(X;XO) dy = — /X(x—xo)uo(x—xo) dy . (3.11)
me7z2 Q Q
Note that, by construction, the right-hand side of (3.11) must be orthogonal to 1. Subject to the integral
constraint, (3.11) yields a unique solution for R.

In Figs. (6) and (7) below, we plot Ggp ) and Gg") constructed using the above procedure, where we
truncate the sum in (3.11), (2.6), and (1.3a) at a suitable value of |m|s = Mmax such that changing
Mmax does not appreciably change the result. In Figs. (6a) and (7a), we plot the right-hand side of
(3.11). In Figs. (6b) and (7b), we plot RY (x;x0) and B (x;x0) obtained by solving (3.11) numerically
subject to the integral constraint. In Figs. (6¢) and (7c), we plot the Green’s functions Gl (x35%0)
and G{") (x;x0) satisfying (1.2) and (3.1), respectively. Note that the singularity at x¢ has the exact
construction given by (3.3a).

Lastly in Figs. (6d) and (7d), we plot cross-sections of R (x;x0) and R (x;x0) through xo. We recall
that R(x;xg) = Rs(x;%g) for x € B, (x0), so the correction term of (1.1), for example, can be directly
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FIGURE 6. (a) The right-hand side of (3.11), which is orthogonal to 1. (b) The solution of
(3.11), RY (x;%0). (c) —G® as obtained from RY along with (3.3a). (d) Cross-section
of Rgp ) (x;x0) along x1 for 9 = 0.5. Note that the cross-section exhibits periodicity at
x1 =0 and 21 = 1. Here, s = 0.6 and xo = (0.5,0.5). Note that the gradient of Rg”) at

the location of the singularity, xq, is equal to zero.

obtained from R, (x;xg). We also recall that R (x;xg) = Gs(x;%0) for x € Q\ By, (x0), so the boundary
conditions satisfied by R, are also satisfied by Gs(x;x0). In Fig. 6d, we observe that R (x;x0) is
periodic at the boundary (in fact, since x¢ is centered in €, it is also Neumann by symmetry); In
Fig. 6d, RS") (x;x0) is Neumann at the boundary despite xp being uncentered in 2. We note that the
quantity Vi R (x;X0) |x=x, is also immediately available from R (x;x0) — the first component of
VXRSn) (x;X0) |x=x, 1s simply the slope at z; = 0.2143 of Fig. 7d. This gradient of the regular part
evaluated at the location of the singularity is a quantity that can be used in the context of determining
the slow dynamics of localized spot solutions in singularly perturbed reaction-diffusion systems (see, e.g.,

57, 58, 59, 60, 61, 62]).
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FIGURE 7. (a) The right-hand side of (3.11), which is orthogonal to 1. (b) The solution
of (3.11), Rg")(x;xo). (¢) =G (x;x¢) as obtained from R along with (3.3a). (d)
Cross-section of R&") (x;x0) along x1 for zo = 0.2143. Note that the cross-section has zero
derivative at 1 = 0 and z; = 1. Here, s = 0.6 and xo = (0.2143,0.2143). Note that
the gradient of Rﬁ”) at the location of the singularity, xg, is nonzero, owing to boundary

effects.

4. APPLICATION 1: EFFECTS OF TARGET CONFIGURATION AND LOCATION IN THE LEVY FLIGHT
NARROW CAPTURE PROBLEM

In this section, we discuss how the GMFHT for the narrow capture problem is impacted by (1) the
placement of a single target within a domain with reflective boundary conditions (see Fig. 2a), and (2)
the relative placement of multiple targets within a domain with periodic boundary conditions (see Fig.
la). For (1), we note that a two-term expansion for the GMFHT of a single target within a periodic
domain derived in [47] and given in (1.1). A similar procedure yields the identical expansion for al™ in
the case of Neumann boundary conditions, except with the regular part of the Neumann Green’s function,
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Rﬁ”) (x0;X0), in the place of its periodic counterpart Rgp )(xo; X):

m(l—s)

~ SI'(1—s)
(n) 2522\ 2/ RM)(x.. : =_ '\ °
u& € XS RS (X07X0) ) XS — Sln[(l o S)T(')] .

457 (s) (4.1)

While the leading order terms of agp ) and u§"> are the same, their O(1) correction terms behave quite

differently. By symmetry, Rgp ) (x0;Xp) is independent of xg, and so the GMFHT aép ) remains unchanged
no matter where in €2 the target is centered. This not true, however, in the Neumann case where boundary
effects are important. This is shown in Fig. 2b, which shows how a&”) varies as a function of the target’s
position in Q, (a,a) for 0 < a < 0.5. The red curve is obtained by numerically solving (2.7) via finite
differences, while the blue is obtained from (4.1) with Rﬁ”) (x0;%x0) computed from §3. All variation with
respect to the parameter a is due to the variation of Rﬁ”) (x0;X0) as xq is varied in 2. By symmetry, u§”)
reaches its minimum when the target is at the center of  (i.e., when a = 1/2). When the target is near
09 (e.g., when a is small), the target is partially “shielded” by the boundary, contributing to a higher
GMFHT. We discuss shielding effects in more detail in §5.

Before deriving the expansion for aép ) for multiple targets, we highlight the utility of our hybrid asymptotic-
numerical approach in contrast to the straightforward numerical solve of (2.7) or its periodic counterpart.
We begin by noting that the nonlocal nature of Ag” ) and Aﬁ") means that their discretization results in a
full matrix, A;. This contrasts the sparse matrix that results from discretization of the regular Laplacian
operator. Assuming a uniform grid spacing of h, As; must then have O(1/h?*) entries. Each of these
entries involves computing the distance from one grid point to every other grid point (as well as their
corresponding image points). When the target size ¢ is small, the computational time it takes to populate
the matrix A, along with the memory needed to store it, can become prohibitive. Because h must scale
in proportion to €, the computational time and memory requirements scale must then scale as O(1/e*)

(symmetry in the periodic case can be used to circumvent the O(1/e*) for the computational time).

In our hybrid asymptotic-numerical approach, the small € scale is handled asymptotically, leaving the
numerical problem for Gy free of . Furthermore, by removing the singular part of G5 analytically, we
are left with a numerical problem without features requiring a small grid spacing to resolve. Thus, this
numerical problem can employ a grid spacing h that is larger than that required for the e-dependent
problem - a doubling of the grid spacing can result in a 16-times reduction in the computational time and
memory requirements. We should note, however, that because the support of the cutoff function must
lie entirely inside Q (otherwise R, would not satisfy the same boundary conditions as G s), the numerical
method of §3 may require a smaller grid spacing when xq is very near the boundary due to the large
gradient of x in (3.3b).

We now derive a two-term expansion for 4. using a matched asymptotic analysis. The procedure is the
same for ﬂép ) and a§”), and hence we will dispense with the superscripts as in §3. The method follows that
of, e.g., [48, 63, 17, 8, 27, 47|, and will thus be brief. Let u.(x) denote the mean first hitting time to one
of a set of N targets of radius €; = k;e centered at x; € Q. Here, 0 < ¢ < 1, k; > 0 and k; ~ O(1) with
respect to € for i = 1,..., N. We assume that the target centers are well-separated, i.e., [x; —x;| ~ O(1)

with respect to € for i # j. Then u.(x) satisfies

N N
Au.(x) = -1, XGQ\UBEi(Xi); ue =0 for XEUBEi(Xi); x; € for i=1,...,N. (4.2a)
i=1 =1
N
UEZOfOI"XEUBai(Xi); x, €Q fori=1,...,N; g =rie, 1=1,...,N. (4.2b)

i=1
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The GMFHT, ., is the average of u. over €,
1
Ue = — /ug(x) ,dx . (4.3)
Q Ja

We begin in the O(g;) region centered at x;, and let
X =X; +&Z; Ui(z) = us(x; + €;2) . (4.4a)
We expand the inner variable U; as
Ui ~ e2 U +e2°Uy . (4.4b)

As shown in [47], Asf(g; %) ~ —&;2(—=A,)* f(z) as e; — 0T, where —(—A,)* is the fractional Laplacian
with respect to the variable z.

Substituting (4.4a) and using (4.4b), we obtain the leading order inner equation near x;,
—(=A,)* Ui =0, zeR*\Bi(0), Uip=0, ze B(0), (4.5a)

where the target that is the disk of radius ¢; centered about x; is now the unit disk centered at the origin
due to the change of variables (4.4a). As |z| — oo, we assume that Ujg is radially symmetric and takes
the form

1
Uz‘() ~ SZ <_‘Z‘2_25 + Xs> as ‘Z| — Q. (45b)

In (4.5b), x5 is an O(1) constant given in (1.1) that depends on s as well as the geometry of the rescaled
target. Since we have assumed that all targets are in the form of a circular disk, for which an explicit
formula exists for x, (see [47] and [55]), xs is the same for each inner region. For general target geometries,
a numerical solution of a certain integral equation may be required to obtain ;.

In the outer region, in the limit ¢ — 0T, the exterior condition near x; of (4.2) is replaced by a local
behavior, obtained from the far-field behavior of Ujg in (4.5b) with (4.4), that specifies both the singular
structure of u. as x — x;, as well as the regular part, yielding

N
Auc(x) = -1, xeQ\ [ J{xi}; (4.6a)
i=1
62_25
uswgzzS*ZSi <—Z22+X5> as X — X, ’L:].,,N (46b)
|x — x;|2728
Comparing (4.6) to (3.2), the leading order solution to u. may be written as
1
e~ — > 5iGa(x; %) + e (4.7)
¥ i=1

By (4.3) along with the zero-integral condition for G in (3.2a), @, in (4.7) is the mean of u. over ; i.e.,
e is the GMFHT of the first hitting process described by (4.2).

We now formulate a system of N + 1 equations for u. and S;, i = 1,..., N. We note first that
| X
Asue = — >S4 6(x —xi)]. (4.8)
=1
Comparing (4.8) to (4.6) for x € @\ UN, {x;}, we require the consistency condition for S;,

N
> Si=cs. (4.9)
=1
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To obtain the other N equations, we match the local behavior near x; of u. given by (4.7) to that required
by (4.6b). The former is given by

N
S; c 1 _ .
Up ~ sz <—|X_X5i‘2_28—|—R5(xi;xi)) —&—%;Sst(xi;xj)—i—us, i=1,...,N. (4.10)

Matching the local behavior of (4.10) to that in (4.6b), we obtain the N equations

N
SiRs(xi; %) + Z SiGs(xi3%5) + colie = 05525*%?5_25@-)@ ) t=1,...,N. (4.11)
J#i

In matrix form, the NV + 1 equations given by (4.9) together with (4.11) are
GsS + cslice = coxs£25 2Ks e's = ¢, (4.12a)
where the entries of the N x N matrices G; and K, along with the IV x 1 vectors S and e are given by

1 S
e=|:1; s=] :|. (4.12b)
1 Sy

25—2 .
2 SR
Gs(xi;xj) 275]7 0 7’75]7

Finally, it remains to solve for @, in (4.12a). First, we invert for s to find
S = Cyslle [CSX5525_21C — gs] e, (4.13)

Note that c,x,e2° 2K — G5 must be a strictly diagonally dominant matrix in the limit € — 07, since K
is diagonal. Hence, it must be invertible. We then take the inner product of both sides of (4.13) with e,
and use the second equation of (4.12a) to obtain for .,

1

Ug ~ . 4.14
el [csxse2572KC — gs]‘l e ( )

In the case N =1 of the single target of radius € at xg € 2, we have G; = R4(x0; X0), and (4.14) reduces
to (1.1). Expanding (4.14) to two orders, we obtain

CSX852S_2 1
Ue ™ = Ti1a  [alk—leal2
el'K-le [elK~1le]

e’k g, K le. (4.15)

In the case where all targets are disks of radius €, we have k; =1 for ¢ =1,..., N, and K = I, where [
is the N x N identity matrix. In this case, (4.15) simplifies to
2s—2
CsXs€ 1 T
Ug ~ T — ﬁe gse. (416)
Compared to (1.1), the leading order term is simply scaled by N, the number of targets, while the
O(1) correction term has been augmented to include the off-diagonal terms of the Green’s interaction
matrix Gs, accounting for interactions between all possible pairs of targets. It is this correction term

) i Fig. 1b as the parameter a is varied, where (a,a) is the location of

that captures the change of @
the second trap with the first being at (0.25,0.25). For a near 0.25, the two targets are relatively close
together (see Fig. la), inducing a shielding effect on each other. As a is increased and the two targets
become more evenly spaced, the shielding effect is lessened, and the GMFHT decreases. By symmetry,

the GMFHT is minimized when a = 0.75.
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5. APPLICATION 2: SPLITTING PROBABILITIES IN THE BROWNIAN AND LEVY FLIGHT NARROW
CAPTURE PROBLEMS

In this section, we derive a two-term expansion for the splitting probability to reach one particular target
inside the domain before hitting any of the other targets. See Fig. 3a for a schematic representation. Let
us denote by v.(x) the probability of hitting a target of radius 9 = kpe centered at xg before hitting
any of the N other targets of radius e; = k;e centered at x; € ). As before, we have 0 < ¢ < 1 and
k; ~ O(1) with respect to € for i = 0,..., N. We assume that the target centers are well-separated, i.e.,
|x; — x;| ~ O(1) with respect to ¢ for i # j, and also that minkegq |x; — x| ~ O(1) with respect to ¢ for
i =20,...,N. Following a similar derivation to [47] of the elliptic problem for the narrow escape time,
and in analogy with the Brownian splitting probability [64, 65, 3, 32, 4], v-(x) satisfies

N
Ave =0, xeQ\|JB.,(x), (5.1a)
i=0
N
ve =1 for x € B, (x0), ve = 0 for XEUB&(XZ'); g =kKie, 1=0,...,N. (5.1b)
i=1

Note that v. = 1 when the starting location is inside the desired target at xg, while v. = 0 when the
starting location is inside an obstacle target at x; for ¢ = 1,..., N. We define the average splitting
probability, v., as the average of v. in (5.1) over €,

v —l Ve(X) ax
o= g [ vex)dx. (5:2)

We now derive a two term expansion for ¥.. The procedure is similar to that of §4 for the GMPFT, so
what follows will be brief. In the O(g) region centered at x;, i =0,1,..., N, we let

X = X; + &;Z; Vi(z) = ve(x; + €;2) . (5.3)
Letting V; ~ €272V}, we have for the i-th inner region
—(=A)*Vig =0, ze€R?\Bi(0), Vopp=1and Vjy=0, ze€By(0), i=1,....,N, (5.4a)
supplemented by the far-field behavior
1 1 .
‘/OONSO<_‘Z|2—2$+XS>+1 and ‘/’LONSZ<_|Z’2—28+XS> as ’Z’-)OO, 2:1’...,N. (54b)

In the limit ¢ — 07" in (5.1), we obtain

Av. =0, XEQ\LNJ{XZ'}, (5.5a)
i=0
along with the required singularity conditions near x;, i =0, ..., N, from (5.4b)
g2-2s
Ve~ 5?5—2& (_|x—le\225 +x5> +dp; as x > x;, 0=1,...,N, (5.5Db)

where dp; is the Kronecker delta function.

Comparing (5.5) to (3.2), we may write

ve(x) ~ — Z SiGs(x;%;) + T2, (5.6)
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where the weights .S; must satisfy the consistency condition

N
> 8 =0, (5.7a)
=0

owing to the fact that the right-hand side of (5.5a) is homogeneous. To find the other N + 1 linear
equations for S;, ¢ = 0,..., N and 0., we match the singularity condition of v. in (5.6) to that required
by (5.5b), obtaining

N
S; 1
C—ZRS(xi;xi) + o Z SiGs(xi5%5) + 0. = 525*2@28_2)(852- +dgi, i=1...,N. (5.7b)
S S ]:0
J#

In matrix vector form, (5.7) becomes
Gss + csU.e = cyxss2s_21Cs + cqeq ; els=0, (5.8)

where G, s, and K are given in (4.12b), except they have dimension N + 1 in (5.8) with a starting index
of 0 instead of 1, and e; is the (N + 1)-vector given by e; = (1,0,...,0)7.

From (5.8), s is given by
S = cq [CSXSE2S_2IC — gs] -1 (v.e —eq). (5.9)

Applying the zero-sum condition on s from (5.8), we obtain that v, is given by

. el [eoxse> 2K — G e (5.10)
: el [csxse2 2K — gs]‘l e .

2—2s

The formula for v, in (5.10) effectively sums all powers of ¢ . For a more informative formula for 7.,

we can expand (5.10) for small e, which yields,
eTK e £2-2s
el-le ¢y, (eTK le)
And if all targets have radius ¢ (i.e., L = I, where I here is the (N +1) x (N + 1) identity matrix), (5.11)
simplifies to

Ve ™~

2eTIC_lgSlC_1 [(eTIC_le) e — (eTIC_lel) e] . (5.11)

1 82_28
~ +
N+1  coxs(N+1)

The leading order term in (5.12) is a function only of the number of “desired” targets (in this case, we

7. se G [(N +1)e; —e] . (5.12)

have assumed one) and the number of obstacle targets (N). The O(£272%) correction term accounts for

how the targets are located within the domain and their positions relative to one another.

In Fig. 3a, the desired target (center, heavy line) is surrounded, or “shielded”, by five obstacle targets.
All targets have radius 0 < € < 1. In Fig. 3b, we plot the average splitting probability versus the Lévy
flight index s. The red curve is obtained from a finite difference solution of (5.1), while the s < 1 portion
of the blue curve are given by o, in (5.10), with the Green’s functions computed by the methods of §3.
The s = 1 asymptotic estimate comes from the Brownian analog of (5.10) (not given), the derivation of
which is similar to that leading to (5.10).

With N =5, in the absence of the effect of relative positions of desired and obstacle targets, the leading
order of v. given by (5.12) simply yields 1/6. In Fig. 3b, we see that 0. ~ 0.165 when s = 0.2, meaning
that relative positions play little role when s is small. In this instance, the frequency of long jumps
is relatively high; in combination with the fact that the derivation leading to (5.1) allows jumps over
obstacles (see also [48, 47]), the near-absence of “shielding effects” (see, e.g., [4]) in the small-s case is

2723)

not surprising. This is also seen clearly in (5.12), where the O(e scaling of the correction term
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FIGURE 8. Numerical solution of (5.1) for the splitting probability v.(x) corresponding
to the configuration in Fig. 3a. Here, the common radius of all targets is ¢ = 0.03 while
s =0.21in (a) and s = 1 in (b). The “desired’ target is centered at (0.5,0.5), while
the “obstacle” targets are located at (0.5,0.5) + 7e(cosd,sin@) for 0 = 7/2 + 2nn/5 for
n=0,1,...,4. The decay from v. =1 in (a) is faster than in (b) owing to the power-law
decay of the Green’s function for s < 1 versus the logarithmic behavior for s = 1. Outside
the ring of obstacle targets, however, v, is closer to 0 in (b) due to the likelihood of a
particle hitting an obstacle target first when starting outside of the ring of obstacles. In
effect, the obstacle targets “shield” the desired target from particles that start outside
of the ring. In contrast, particles in (a) undergo long jumps (which can pass over the
obstacle targets) with relatively high frequency, mitigating the shielding effect.

means that it becomes asymptotically smaller as s becomes smaller. By contrast, Fig. 3b shows that o,

decreases to ~ 0.079 in the s = 1 (Brownian) limit.

In Fig. 5.1, we contrast v.(x) for s = 0.2 (Fig. 8a) and the Brownian limit s = 1 (Fig. 8b) in the
case where the desired target is centered at (0.5,0.5) while the obstacle targets are located at (0.5,0.5) +
7e(cosB,sinf) for 0 = w/2 + 2nw/5 for n = 0,1,...,4 with ¢ = 0.03. Notice that v.(x) = 1 when
|x — (0.5,0.5)] < e, and v-(x) = 0 at the locations of the obstacle targets.

From (5.6) and the Green’s function of the fractional Laplacian (3.2b), v in Fig. 8a (s = 0.2) follows
a power-law decay away from (0.5,0.5), which is steeper than that seen in Fig. 8b (s = 1), which
exhibits logarithmic decay due to the corresponding Green’s function of the Laplacian. This is due to
the likelihood of particles that start near (0.5,0.5) taking a long jump and effectively having to restart
the random walk from a far-away location. However, outside of the ring of obstacle targets, v, is closer
to 0 in the s = 1 case due to the likelihood of particles starting there to hit one of the obstacles prior to
reaching the desired target. This shielding effect is far less impactful for Lévy flight particles, which are
able to take long jumps with relatively high frequency and jump over the obstacle targets.
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6. DISCUSSION

On the unit square €2, we have derived an expression for an infinitesimal generator Aﬁ") describing a
Lévy flight process with index s € (0,1) where we assume specular reflection of particles on 992. We gave
a heuristic argument showing this operator is equivalent to the spectral representation of the fractional
Laplacian on  with restriction to the set of Laplacian eigenfunctions with zero normal derivative on

5!’ ), we proposed a method for accurately computing its

o). For Af!”, as well as its periodic analog A
source-neutral Green’s function. In particular, the method accurately determines the value of the regular

part of the Green’s function at the location of the singularity.

We applied this method within an asymptotic framework to determine narrow capture times for two
targets in a periodic square and for one target in an insulating square. For the former, our method
accurately determined the effect on the average search time of target configuration — i.e., how the two
targets are placed relative to one another within the search domain. For the latter, our method accurately
determined how the average search time is affected by where a single target is placed relative to an
reflective boundary. Note that both of these effects arise as O(1) correction terms that are not captured
by the leading order theory and which require accurate computation of Green’s functions to obtain.

Using a similar approach, we analyzed splitting probabilities in the narrow capture problem. In particular,
we highlighted the difference between how effective Lévy flights and Brownian motion are at navigating
obstacles to reach a desired target. Our example consisted of a desired target surrounded by five obstacles,
for which we computed the average probability of a particle undergoing a Lévy flight of index s to reach the
target before hitting any of the obstacles. Our asymptotic analysis along with our method for computing
Green’s functions showed that this probability is a decreasing function of s. In fact, for sufficiently small
s, the probability was close to the uniform value of 1/6 indicating almost no shielding effect. On the other
hand, the probability was decreased by approximately a factor of 2 when s approached its Brownian limit
of 1.

This approach of using matched asymptotic methods to recast an e-dependent problem into a canonical
Green’s function problem, which can then be accurately solved numerically, has the benefit of avoiding
having to solve a numerical problem where the grid spacing scales poorly with €. This is especially
relevant in the two-dimensional nonlocal problems considered in §4 and 5, where discretization of the
operator results in a full matrix that may become very memory-intensive to store and invert as the
number of grid points is increased. Our methods can also be applied to the three-dimensional analogs,

where this issue becomes even more accute.

Another type of problem where this approach may be beneficial is that of determining the stability and
slow dynamics of localized spot solutions in singularly perturbed reaction-diffusion systems exhibiting
Lévy flights in bounded domains. The use of asymptotic methods and Green’s functions to extract
detailed results and stability thresholds in the Brownian case was pioneered in, e.g., [57, 66, 58]. Since
then, efforts have been made to numerically compute Green’s functions on general manifolds in order
to extend the theory beyond domains in which Green’s functions are explicitly known [61, 62]. More
recently, [67, 68] have extended this theory to Lévy flights in one spatial dimension, where the Green’s
function was computed in terms of a rapidly converging series of eigenfunctions. Our methods of §3
can facilitate further extending the theory to two spatial dimensions, including those on which explicitly

known eigenfunctions are not available.
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While the square domain we considered was particularly convenient for our method of images-type ap-
proach to computing the Neumann Green’s function of Aﬁ”), we expect that our approach can be easily

)

adapted to computing the periodic source-neutral Green’s functions of Agp on general periodic Bravais
lattices. This then makes it possible to compute the principal eigenvalue of the fractional Laplacian
on such lattices. The was done for the Laplacian operator in [69], which relied on an explicitly known
formula for the source-neutral Green’s function as well as a rapidly converging sum representation of
the Helmoholtz Green’s function. For the latter, modifications to (3.3a) would need to be made to the
construction of the Green’s function; depending on the value of s, there may be additional, weaker terms
other than up(x — xp) in (3.3a) that become unbounded at xg. These terms must be included in the
original decomposition so that the remaining regular part to be computed numerically remains bounded

at xo. To do this, one would consider the free space Helmholtz Green’s function, G ¢(x) satisfying
—(—A)SGf—va =0(x), XERz, (6.1)

for some constant scalar v. The Fourier transform of Gf(x), which we denote G #(k) for the Fourier
variable k, satisfies

A 1
k)=—+. 2
Gyll) =~ m (6.2
For large |k|, (6.2) has the expansion
A 1 v v? v3
=———|1- + - +...0, k| >1. (6.3)
I O R

The singular behavior near the origin of G can then be obtained by inverting (in the sense of distri-
butions) the terms in the sum (6.3). The n = 1 term gives rise to ug in (3.3a) with ¢s defined in (1.1),
while the n > 1 terms are successively weaker singular terms whose boundedness at x = 0 depends on
the value of s. The computation of the Helmholtz Green’s function would also be useful in determining
the full distribution of search times where the constant v in (6.1) plays the role of the Laplace transform
variable — we refer to, e.g., [29, 26, 30] for more details.

We now comment on limitations of our work. As alluded to above, our method of images-type approach
to computing the Neumann Green’s function of A§") was made possible by the square domain. While
only slight modifications are required for rectangular domains, our approach does not extend naturally
to general bounded domains. In such settings, it is also unclear, based on the argument presented in §2,
what particle-boundary interaction is being modeled when homogeneous Neumann boundary conditions
are imposed via the spectral interpretation of the fractional Laplacian. On general domains, adapting
our approach to the Neumann-type boundary conditions discussed in [50, 51] may be an interesting and
worthwhile endeavor.

A second limitation in the computation of ng) (x;x0) arises when x( is located near the reflecting
boundary. Since the support of the cutoff function y must lie entirely in the domain, the method may
require a finer grid to resolve the steep gradients that may result. A third limitation is that our asymptotic
analysis relies on a solution of the inner problem (4.5a), or at least its far-field behavior, to the first two
leading terms. While our assumption of the target as a circular disk allowed for an explicit solution, a
more general method is needed in order to handle general target geometries. For the analogous problem
with Brownian motion in two dimensions, conformal mapping [70] and boundary integral [71] methods
have been employed for non-circular geometries. It may be worthwhile to develop an analogous framework
for the problem involving the fractional Laplacian.
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