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EIGENVALUE VARIATIONS OF THE NEUMANN LAPLACE

OPERATOR DUE TO PERTURBED BOUNDARY CONDITIONS

MEDET NURSULTANOV, WILLIAM TRAD, JUSTIN TZOU, AND LEO TZOU

Abstract. This work considers the Neumann eigenvalue problem for the weighted

Laplacian on a Riemannian manifold (M, g, ∂M) under the singular perturbation.

This perturbation involves the imposition of vanishing Dirichlet boundary condi-

tions on a small portion of the boundary. We derive a sharp asymptotic of the

perturbed eigenvalues, as the Dirichlet part shrinks to a point x∗ ∈ ∂M , in terms

of the spectral parameters of the unperturbed system. This asymptotic demon-

strates the impact of the geometric properties of the manifold at a specific point

x∗. Furthermore, it becomes evident that the shape of the Dirichlet region holds

significance as it impacts the first terms of the asymptotic. A crucial part of this

work is the construction of the singularity structure of the restricted Neumann

Green’s function which may be of independent interest. We employ a fusion of

layer potential techniques and pseudo-differential operators during this work.
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1. Introduction

Comprehending the disturbances within physical fields caused by inhomogeneities
in a known environment is crucial for various purposes. It helps to understand the
robustness of the body’s behaviour under small perturbations of its constituent ma-
terial; see [3, 11] for more such applications. Mathematically, this task involves
performing an asymptotic analysis of the solution of the partial differential equation,
when defining domain or properties of the material are slightly perturbed. Many
examples of this general question have been studied, including investigations into the
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conductivity equation [6, 15, 16] and other areas, such as linearized elasticity [5, 10],
Maxwell equations [7, 27], and cellular biology [14, 29].

Here, we investigate the eigenvalues of the weighted Laplace operator under mixed
Dirichlet-Neumann boundary conditions when the Dirichlet region disappears. More
precisely, we formulate the problem as follows. Let (M, g) be a compact, connected,
orientable Riemannian manifold with smooth non-empty boundary ∂M . Consider
the eigenvalue problem

(1.1) −∆gu− g(F,∇gu) = λu, u|Γε
= 0, ∂νu|∂M\Γε

= 0,

where ∆g is the negative Laplace-Beltrami operator, ∇g is the gradient, ν is the
outward pointing normal vector field, F is a force field, and Γε ⊂ ∂M is a connected
piece of boundary of size ε > 0. We denote the corresponding operator by −∆F

Mix,ε.

The objective is to derive an asymptotic of the eigenvalues {λj,ε}j∈N of −∆F
Mix,ε as ε

tends to zero, that is, as Γε shrinks in a suitable sense that will be specified later. We
will do this in terms of the spectral parameters of the unperturbed operator, which
is the weighted Neumann Laplacian, denoted by −∆F

N .
The problem at hand is closely related to the "narrow escape problem," which has

gained significant attention in recent years due to its relevance in cellular biology
[14, 29]. In this scenario, M denotes a cavity with a reflecting boundary, except for
a small absorbing window Γε. The particles in M are modelled as Brownian motions
that exit only through the region Γε. The mean first-passage time, which represents
the expected duration a particle will wander before escaping, is a crucial metric in
this context. The narrow escape problem concerns the asymptotic behaviour of the
mean first-passage time as the size of the window Γε tends towards zero.

1.1. Previous results. The investigation of the behaviour of eigenvalues of elliptic
boundary value problems under the singular perturbation of boundary conditions has
a long history, see for instance [1, 2, 12, 13, 17, 20–26, 35, 39]. Detailed analysis of
the two-dimensional planar domain has been performed in [24], where the author
provided the full asymptotic expansion of the perturbed eigenvalues. Moreover, a
complete pointwise expansion of the perturbed eigenfunctions is provided as well.

In [17], the perturbed eigenvalues in a three-dimensional Euclidean domain with a
smooth boundary were studied. The author derived the asymptotic behaviour of the
perturbed eigenvalues up to an unspecified o(ε) term:

λj,ε = λj + 4π|uj(x∗)|2cε+ o(ε),

where {λj}j∈N and {uj}j∈N are unperturbed eigenvalues and the corresponding nor-
malized eigenfunctions, c is the constant depending on geometry of Γε.

The problem of perturbed eigenvalues in a domain with a Lipschitz boundary in
the Euclidean space was examined by the authors in [21]. They obtained the asymp-
totic behaviour of the perturbed eigenvalues, expressed in terms of the unperturbed
eigenvalues and the relative Sobolev uj-capacity of Γε:

λj,ε = λj + CapM(Γε, uj) + o (CapM(Γε, uj)) .

The case of a two-dimensional planar domain in the presence of a force field was
considered in [2]. The authors used layer potential techniques to derive the asymptotic
expansion

λj,ε = λj + π|uj(x∗)|2eφ(x
∗) log ε+O(| log ε|−2),

where φ is a potential, that is F = ∇φ.
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Additionally, we refer to the studies [18, 19, 31, 38, 42], which employed the method
of matched asymptotic expansions.

1.2. Main results. Despite the large number of works on this topic, there are still
many questions regarding more general geometries. The present work is devoted to
answering this question. In our setting, the Dirichlet region, Γε,a, is considered to

be a small geodesic ellipse centred at x∗ ∈ ∂M , with eccentricity
√
1− a2 and size

ε → 0 (to be made precise later). Moreover, the force field is given by a smooth up
to the boundary potential φ, that is F = ∇gφ. Our main objective is to investigate
how the geometric characteristics of the manifold M at a specific point x∗ impact
the asymptotic expansion. We use a combination of the methods used in [2] and [37]:
layer potential technique and microlocal analysis.

In our current analysis, it is crucial to understand the singular structure of the
Neumann Green function, which is represented by the following equation:

{
∆gG

ω
M(x, y)− divg(F (y)G

ω
M(x, y)) + ω2Gω

M(x, y) = −δx(y),
∂νG

ω
M(x, y)− gy(F (y), ν)G

ω
M(x, y)|y∈∂M = 0.

where ω2 is an element of the resolvent set of the eigenvalue problem (1.1). Let us
consider a formal restriction of Gω

M to the boundary ∂M . We denote this by the
symbol Gω

∂M . For an exact definition of this restriction, refer to Section 3. We obtain
the singularities structure of Gω

∂M near the diagonal and in the neighbourhood of
an eigenvalue of (1.1), when w2 approaches it. To state it, let us set the necessary
notions. For x, y ∈ ∂M , let H(x) denote the mean curvature of the boundary at x,
dg(x, y) the geodesic distance given by metric g, dh(x, y) the geodesic distance given
by induced metric h on the boundary ∂M , and

IIx(V ) := II(V, V ), V ∈ Tx∂M,

the scalar second fundamental form (see pages 235 and 381 of [33] for definitions).

Proposition 1.1. Let (M, g, ∂M) be a compact connected orientable Riemannian
manifold of dimension three with a non-empty smooth boundary. Let λj be a simple
eigenvalue of −∆F

N and Vj be a neighbourhood of λj which does not contain any other
eigenvalue of −∆F

N . Then there exists a neighbourhood of

Diag := {(x, x) ∈ ∂M × ∂M}
where the singularity structure of Gω

∂M given by:

Gω
∂M(x, y) =

1

2π
dg(x, y)

−1 − H(x)

4π
log dh(x, y) +

gx(F, ν)

4π
log dh(x, y)

+
1

16π

(
IIx

(
exp−1

x (y)

| exp−1
x (y)|h

)
− IIx

(
⋆ exp−1

x (y)

| exp−1
x (y)|h

))

+
1

4π
hx

(
F ||(x),

exp−1
x (y)

| exp−1
x (y)|h

)
(1.2)

+
uj(x)uj(y)

λj − ω2
eφ(y) +Rω

∂M(x, y),

where ω2 ∈ Vj \ {λj}, Rω
∂M(x, y) ∈ C0,α(∂M × ∂M) for α ∈ (0, 1), F || denotes the

tangential component of F and ⋆ denotes the Hodge star operator.
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In deriving the singularity structure, we employed a standard pseudo-differential
parametrix construction as described in [36, 37] by observing that Gω

∂M is an ap-
proximate inverse to a Dirichlet-to-Neumann map. To determine the singularity with
respect to ω near the eigenvalues of −∆F

N , we have used an approach similar to that
of [4]. Using the aforementioned proposition, we derive an asymptotic expression for
the eigenvalues λj,ε as ε → 0. For the sake of clarity, we begin by presenting the main
result for Γε,a being a geodesic ball, that is a = 1:

Theorem 1.2. Let (M, g, ∂M) be a compact connected orientable Riemannian man-
ifold of dimension three with a non-empty smooth boundary. Fix x∗ ∈ ∂M and let
Γε be the boundary geodesic ball centred at x∗ of geodesic radius ε > 0. Assume that
F = ∇gφ for a potential φ smooth up to the boundary. Let {λj,ε}j∈N be the eigen-
values of −∆F

Mix,ε. If λj is a simple eigenvalue of −∆F
N and uj is the corresponding

eigenfunction normalized in L2(M, eφdµg) (weighted L2 space with a weight eφ), then

λj,ε − λj = Aε+Bε2 log ε+ Cε2 +O(ε3 log2 ε),

where

A = 4|uj(x∗)|2eφ(x
∗),

B = 4π|uj(x∗)|2eφ(x
∗)(H(x∗)− ∂νφ(x

∗)),

C = |uj(x∗)|2eφ(x
∗)

(
8 log 2− 6

π
(H(x∗)− ∂νφ(x

∗))− 16R
λj
∂M(x∗, x∗)

)
.

Here, H is the mean curvature of the boundary, R
λj
∂M(x∗, x∗) is the evaluation at

(x, y) = (x∗, x∗) of the kernel R
λj
∂M(x, y) in Proposition 1.1.

Theorem 1.2 does not realize the full power of Proposition 1.1 as it does not see the
inhomogeneity of the local geometry at x∗, only the mean curvature shows up. This
limitation arises from the fact that Dirichlet regions are specifically geodesic balls.
However, by considering geodesic ellipses instead of geodesic balls, we observe that
the inclusion of the second fundamental form term in Proposition 1.1 contributes to
an asymptotic term, which is the difference in principal curvatures. The ellipse, we
consider, is defined as follows. Let E1(x

∗), E2(x
∗) ∈ Tx∗∂M be the unit eigenvectors

of the shape operator at x∗ corresponding respectively to principal curvatures κ1(x
∗)

and κ2(x
∗). For a ∈ (0, 1] fixed, we set

Γε,a := {expx∗;h(εt1E1 + εt2E2) | t21 + a−2t22 ≤ 1}.(1.3)

Now, we are ready to state the main result:

Theorem 1.3. Let (M, g, ∂M) be a compact connected orientable Riemannian mani-
fold of dimension three with a non-empty smooth boundary. Fix x∗ ∈ ∂M and let Γε,a
be the boundary geodesic ellipse given by (1.3). Assume that F = ∇gφ for a potential
φ smooth up to the boundary. Let {λj,ε}j∈N be the eigenvalues of −∆F

Mix,ε. If λj is

a simple eigenvalue of −∆F
N and uj is the corresponding eigenfunction normalized in

L2(M, eφdµg), then

λj,ε − λj = Aε+Bε2 log ε+ (C1 + C2 + C3)ε
2 +O(ε3 log2 ε).
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Here, the constants are defined as follows

Ka =
π

2

∫ 2π

0

a

(a2 cos2 θ + sin2 θ)1/2
dθ

A =
4π2a

Ka
|uj(x∗)|2eφ(x

∗),

B =
4π3a2|uj(x∗)|2eφ(x∗)

K2
a

(H(x∗)− ∂νφ(x
∗))

and

C1 =
a2π(H(x∗)− ∂νφ(x

∗))|uj(x∗)|2eφ(x∗)
K2
a

×

×
∫

D

1

(1− |s′|2)1/2
∫

D

log ((t1 − s1)
2 + a2(t2 − s2)

2)
1/2

(1− |t′|2)1/2 dt′ds′,

C2 =
a2π (κ1(x

∗)− κ2(x
∗)) |uj(x∗)|2eφ(x∗)

4K2
a

×

×
∫

D

1

(1− |s′|2)1/2
∫

D

(t1 − s1)
2 − a2(t2 − s2)

2

(t1 − s1)2 + a2(t2 − s2)2
1

(1− |t′|2)1/2dt
′ds′

C3 =
16π4a2R

λj
∂M(x∗, x∗)|uj(x∗)|2eφ(x∗)

K2
a

,

where R
λj
∂M (x∗, x∗) is the evaluation at (x, y) = (x∗, x∗) of the kernel R

λj
∂M(x, y) in

Proposition 1.1.

From this result, we can conclude that the shape of the Dirichlet region is im-
portant. The eccentricity of the ellipse affects the main term of the asymptotic.
Moreover, we observe a difference in the principal curvatures, which is not visible in
case a = 1.

1.3. Outline of the paper. In Section 2, we initiate the exposition by introducing
the necessary notations and providing a more precise formulation of the problem at
hand. Section 3 is devoted to the computation of the singular structure of Green’s
function. Moving on to Section 4, we employ variational principles to derive addi-
tional bounds for the perturbed eigenvalues. Ultimately, in this section, we establish
the proof of the main theorem.

2. Preliminaries

In this section, we introduce basic notations and formulate the problem. Through-
out this work, we use (M, g) to denote a compact connected orientable Riemannian
manifold of dimension three with a non-empty smooth boundary. The corresponding
volume form and geodesic distance are denoted by dµg(·) and dg(·, ·), respectively.
Let ι∂M : ∂M →֒ M be the trivial embedding of the boundary ∂M into M . This
allows us to define the boundary metric h := ι∗∂Mg inherited by g. We similarly use
dµh(·) and dh(·, ·) to denote respectively the volume form on the boundary and the ge-
odesic distance on the boundary given by metric h. We denote the Laplace-Beltrami
operator by ∆g = −d∗d.
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For x ∈ ∂M , let E1(x), E2(x) ∈ Tx∂M be the unit eigenvectors of the shape oper-
ator at x ∈ ∂M corresponding respectively to the principal curvatures κ1(x), κ2(x).
We will drop the dependence in x from our notation when there is no ambiguity. We
choose E1 and E2 such that E♭

1 ∧ E♭
2 ∧ ν♭ is a positive multiple of the volume form

dµg (see p.26 of [33] for the “musical isomorphism” notation of ♭ and ♯). Here we use
ν to denote the outward-pointing normal vector field. By H(x), we denote the mean
curvature of ∂M at x. We also set

IIx(V ) := IIx(V, V ), V ∈ Tx∂M,

to be the scalar second fundamental form. Note that, in defining II and the shape
operator, we will follow the standard literature in geometry (e.g. [33]) and use the
inward-pointing normal so that the sphere embedded in R3 would have positive mean
curvature in our convention.

In this article, we will often use boundary normal coordinates. Therefore, we briefly
recall its construction. For a fixed x∗ ∈ ∂M , we will denote by Bh(ρ; x

∗) ⊂ ∂M the
geodesic disk of radius ρ > 0 (with respect to the metric h) centred at x∗ and Dρ to
be the Euclidean disk in R2 of radius ρ centred at the origin. In what follows ρ will
always be smaller than the injectivity radius of (∂M, h). Letting t = (t1, t2, t3) ∈ R3,
we will construct a coordinate system x(t; x∗) by the following procedure:

Write t ∈ R
3 near the origin as t = (t′, t3) for t′ = (t1, t2) ∈ Dρ. Define first

x((t′, 0); x∗) := expx∗;h(t1E1 + t2E2),

where expx∗;h(V ) denotes the time 1 map of h-geodesics with initial point x∗ and
initial velocity V ∈ Tx∗∂M . The coordinate t′ ∈ Dρ 7→ x((t′, 0); x∗) is then an h-
geodesic coordinate system for a neighborhood of x∗ on the boundary surface ∂M . We
can then construct a coordinate system for a neighbourhood of x∗ ∈M by considering
g-geodesic rays γx∗,−ν : [0, ρ) → M emanating from points in ∂M orthogonal to ∂M .
In particular, we can then smoothly extend t′ to U by setting t′ to be constant
functions along γx∗,−ν . If we then define t3 to be the unit speed parameter of γx∗,−ν ,
then (t1, t2, t3) form coordinates for M in some neighborhood of x∗ ∈ M . As a
consequence, t3 is a boundary-defining function, that is t3 > 0 away from ∂M and
t3 = 0 on ∂M . We will call these local coordinates, boundary normal coordinates. For
convenience we will write x(t′; x∗) in place of x((t′, 0); x∗). Readers wishing to know
more about boundary normal coordinates can refer to [33] for a brief recollection of
the basic properties we use here for detailed construction.

We will also use the rescaled version of this coordinate system. For ε > 0 sufficiently
small we define the (rescaled) h-geodesic coordinate by the following map

(2.1) xε(·; x∗) : t′ = (t1, t2) ∈ D 7→ x(εt′; x∗) ∈ Bh(ε; x
∗),

where D is the unit disk in R2. Given the boundary normal co-ordinate construction,
we define the geodesic ellipse Γε,a as the following subset of ∂M

Γε,a := {expx∗;h(εt1E1 + εt2E2) | t21 + a−2t22 ≤ 1}.(2.2)

2.1. Formulation of the problem. Now we are ready to state the problem. Let
us consider the operator

u→ ∆gu+ g(F,∇gu),
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where F is a force field, which is given by F = ∇gφ for a smooth up to the boundary
potential φ. We can re-write this operator in the following way

∆F
g · := ∆g ·+g(F,∇g·) =

1

eφ
divg(e

φ∇g·).

According to [28], the operator ∆F
g is called a weighted Laplacian and the pair

(M, eφdµg) is called a weighted manifold. Note that eφ is bounded and strictly pos-
itive on M . Therefore, L2(M) = L2(M, eφdµg) as sets with equivalent norms. We
also note that the operator ∆F

g with initial domain C∞
0 (M) is essentially self-adjoint

in L2(M, eφdµg) and non-positive definite. We want to study the operator ∆F
g with

Dirichlet and Neumann boundary conditions on Γε,a and ∂M \Γε,a, respectively. This
operator can be defined via quadratic form as follows. Consider the quadratic form

aε(u, v) :=

∫

M

eφ(z)g(∇gu(z),∇gu(z))dµg(z),

with the domain

D(aε) := {u ∈ H1(M) : supp(u|∂M ⊂ ∂M \ Γε,a}.
Since eφ is strictly positive and bounded on M , this quadratic form is non-negative,
closed, symmetric and densely defined in L2(M, eφdµg), and hence, generates the
self-adjoint non-negative operator; see Theorem 2.6 in [30, Ch. 6.2]. We denote this
operator by −∆F

Mix,ε and call it a weighted Laplace operator corresponding to the
aforementioned mixed boundary conditions.

Since H1(M) is compactly embedded in L2(M, eφdµg), the spectrum of −∆F
Mix,ε

is discrete and consists of the eigenvalues with finite multiplicity accumulating at
infinity. We denote them, taking into account their multiplicities, as follows

0 ≤ λ1,ε ≤ λ2,ε ≤ · · · <∞.

The corresponding normalized, in the L2(M, eφdµg) sense, eigenfunctions are denoted
by {uj,ε}j∈N.

We also consider the operator −∆F
g with a Neumann boundary condition, which

is generated by the quadratic form

aN (u, u) :=

∫

M

eφ(z)g(∇gu(z),∇gu(z))dµg(z), with D(aN) = H1(M).

We denote this operator by −∆F
N . By the same arguments above, we conclude that

the spectrum spec(−∆F
N ) is discrete and consists of eigenvalues with finite multiplicity

accumulating at infinity. We donate them by

0 = λ1 ≤ λ2 ≤ · · · <∞.

By {uj}j∈N, we denote the corresponding normalized, in the L2(M, eφdµg) sense,
eigenfunctions. We aim to derive an asymptotic expansion for λj,ε as ε→ 0 in terms
of λj and uj.

3. Neumann Greens Function

In this section, we consider the Greens function Gω
M defined as the solution (in the

distributional sense) to the following boundary value problem
{
∆gG

ω
M(x, y)− divg(F (y)G

ω
M(x, y)) + ω2Gω

M(x, y) = −δx(y),
∂νG

ω
M(x, y)− gy(F (y), ν)G

ω
M(x, y)|y∈∂M = 0,
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where ω2 is a parameter belonging to the resolvent set of the operator −∆F
N . We

seek the singularity structure of ∂M-restriction of Gω
M near the diagonal. A more

precise definition of this restriction will be given later. Our main aim is to obtain
Proposition 1.1.

3.1. Singularity in the spectral parameter. The first step in our analysis is to
express Gω

M as a decomposition of Neumann eigenfunctions. The following result is
similar to a result of [4]. We modify it here for our setting

Proposition 3.1. Let {λj}j∈N be the eigenvalues of −∆F
N and {uj}j∈N be the corre-

sponding L2(M, eφdµg)-orthonormalized eigenfunctions. Then, for x 6= y and ω2 ∈
C \ spec(−∆F

N ), it follows that

Gω
M(x, y) =

∞∑

j=1

uj(x)uj(y)

λj − ω2
eφ(y).

Proof. Since (M, g, ∂M) is assumed to be compact, it follows that eφ is bounded and
strictly positive on M . Therefore, L2(M) = L2(M, eφdµg) with equivalent norms.
Since Gω

M(x, ·) ∈ L2(M, eφdµg), for any x ∈M , we can express

Gω
M(x, y) =

∞∑

j=1

vj(x)uj(y)e
φ(y).

Since eφ > 0 is bounded, it follows that f ∈ L2(M) if and only if eφf ∈ L2(M).
Thus, for fixed x ∈ M , the above expression for Gω

M(x, y) is unique. Green’s identity
in conjunction with the divergence theorem as well as the boundary condition on uj
yields the following calculation

uj(x) =

∫

M

(
−∆gG

ω
M(x, y) + divy(F (y)G

ω
M(x, y))− ω2Gω

M(x, y)
)
uj(y)dµg(y),

= (λj − ω2)
∞∑

k=1

∫

M

vk(x)uk(y)uj(y)e
φ(y)dµg(y),

= (λj − ω2)vj(x)

∫

M

|uj(y)|2eφ(y)dµg(y).

Recall that uj are L2(M, eφdµg)-orthonormalized so that vj(x) = uj(x)/(λj − ω2),
which implies that

Gω
M(x, y) =

∞∑

j=1

uj(x)uj(y)

λj − ω2
eφ(y),

as required. �

Let λj be a simple eigenvalue of −∆F
N and Vj be an open bounded neighborhood

of λj in C such that Vj ∩ spec(−∆F
N ) = {λj}. Within Section 3, we are interested in

deriving explicit asymptotics for the trace of Gω
M . To this end, we write Gω

M as

Gω
M(x, y) =

∑

k 6=j

uk(x)uk(y)

λk − ω2
eφ(y) +

uj(x)uj(y)

λj − ω2
eφ(y),

:= Nω
M(x, y) +

uj(x)uj(y)

λj − ω2
eφ(y),



EIGENVALUE VARIATIONS 9

for ω2 ∈ Vj. From here we can then define Gω
∂M and Nω

∂M as the boundary restrictions
of Gω

M and Nω
M as Schwartz kernels of the trace of the integral operators Gω

M and Nω
M

respectively. That is, for f ∈ C∞(∂M), we have

Gω
∂M : f 7→

(∫

∂M

Gω
M(x, y)f(y)dµh(y)

)∣∣∣∣
x∈∂M

,

Nω
∂M : f 7→

(∫

∂M

Nω
M(x, y)f(y)dµh(y)

)∣∣∣∣
x∈∂M

.

It can also be seen from the perspective of microlocalization that the above restrictions
to ∂M ×∂M are well-defined since Gω

M is the Schwartz kernel of a pseudo-differential
operator with WF(Gω

M) ∩ N∗(∂M × ∂M) = ∅ and the difference between Gω
M and

Nω
M is a C∞(∂M × ∂M) term. Thus, we write the trace of Gω

M as

Gω
∂M(x, y) = Nω

∂M(x, y) +
uj(x)uj(y)

λj − ω2
eφ(y).(3.1)

Our choice of Nω
M suggests that any terms which depend on ω2 in Nω

∂M are negligible,
since, by definition ω2 ∈ Vj \ {λj} and Vj is judiciously chosen such that there are
no other Neumann eigenvalues in Vj . This implies that there is only one significant
singularity in ω2 which is given by the second term of (3.1).

3.2. Singularities along the diagonal. When considering (3.1), it is apparent

that
uj(x)uj(y)

λj−ω2 eφ(y) is jointly smooth on ∂M × ∂M , thus the only difficulty in deriving

asymptotics for Gω
∂M for x near y lies in the derivation of Nω

∂M . We will show that
Nω
∂M is a left parametrix for a Dirichlet-to-Neumann map, which is associated to the

following auxiliary Dirichlet boundary value problem

(3.2)

{
∆guf + g(F,∇guf) + ω2uf = 0,

uf |∂M = f ∈ C∞(∂M).

The Dirichlet-to-Neumann map is given by

Λωg,F : H1/2(∂M) ∋ f 7→ ∂νuf ∈ H1/2(∂M)∗.

In order to construct Nω
∂M , we will require a series of technical lemmas. The first of

which was proven in [32] and [34]. We offer a sketch of the proof for our special case
under consideration.

Lemma 3.2. The Dirichlet-to-Neumann map Λωg,F is an elliptic pseudo-differential
operator of order 1. In addition, the first two terms of the symbol of σ(Λωg,F )(t, ξ

′) are

σ1(Λ
ω
g,F ) = −

√
q̃2,

σ0(Λ
ω
g,F ) =

1

2
√
q̃2
(∇ξ′

√
q̃2 ·Dt′

√
q̃2 − q̃1 − ∂t3

√
q̃2 + Ẽ

√
q̃2),
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where Ẽ, q̃1 and q̃2 are given by

Ẽ(t) := −1

2

∑

α,β

hαβ(t)∂t3hαβ(t)− F 3(t),

q̃1(t, ξ
′) := −i

∑

α,β

(
1

2
hαβ(t)∂tα log δ(t) + ∂tαh

αβ(t)− F α(t)hβα(t)

)
ξβ,

q̃2(t, ξ
′) :=

∑

α,β

hαβ(t)ξαξβ,

Here α, β ∈ {1, 2}, F = F 1(t)∂t1 + F 2(t)∂t2 + F 3(t)∂t3 and δ(t) = det(gαβ).

Proof. Within our choice of co-ordinates, we begin with the following decomposition

−∆g − g(F,∇g·)− ω2 = D2
t3 + iẼ(t)Dt3 + Q̃ω(t, Dt′),(3.3)

where Q̃ω(t, Dt′) is

Q̃ω(t, Dt′) :=
∑

α,β

hαβ(t)DtαDtβ

− i
∑

α,β

(
1

2
hαβ(t)∂tα log δ(t) + ∂tαh

αβ(t)− F α(t)hβα(t)

)
Dtβ − ω2.

It should be noted that the total symbol σ(Q̃ω)(t, ξ′) of Q̃ω(t, Dt′) is given by

σ(Q̃ω)(t, ξ′) = q̃1(t, ξ
′) + q̃2(t, ξ

′)− ω2.

It follows that we can construct a first order, classical, pseudo-differential operator
AωF (t, Dt′) such that

−∆g − g(F,∇g·)− ω2 = (Dt3 + iẼ(t)− iAωF (t, Dt′))(Dt3 + iAωF (t, Dt′)),(3.4)

by equating (3.3) and (3.4). This yields the following equation, up to a smoothing
operator

(3.5) AωF (t, Dt′)
2 + i[Dt3 , A

ω
F (t, Dt′)]− Q̃ω(t, Dt′)− Ẽ(t)AωF (t, Dt′) = 0.

The standard pseudo-differential calculus allows us to write (3.5) equivalently in terms
of symbols associated with the relevant operators (ones which involve some action on
functions defined over ∂M) as follows, up to a smoothing symbol

∑

γ

1

γ!
∂γξ′σ(A

ω
F )D

γ
t σ(A

ω
F )− ∂t3σ(A

ω
F )− σ(Q̃ω)− Ẽ(t)σ(AωF ) = 0.

where γ ∈ Nn denotes some multi-index. Collecting homogeneous terms of degree 2
and then 1 yields the first two terms of the Borel expansion for the symbol of the
pseudo-differential operator AωF (t, Dt′). These terms are

σ1(A
ω
F ) = −

√
q̃2,

σ0(A
ω
F ) =

1

2
√
q̃2
(∇ξ′

√
q̃2 ·Dt′

√
q̃2 − q̃1 − ∂t3

√
q̃2 + Ẽ

√
q̃2).

It should be noted that σ1(A
ω
F ) = 0 only if ξ′ = 0 (which corresponds to the zero

section). Thus, it follows that AωF (t, Dt′) is an elliptic operator. Furthermore, by con-
struction, σ1(A

ω
F ) and σ0(A

ω
F ) are homogeneous symbols, as are the residual symbols
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σj(A
ω
F ) for j ≤ −1. Therefore AωF (t, Dt′) is a first-order, elliptic, classical pseudo-

differential operator. Within the following section of the proof, it is shown that
AωF (t, Dt′) coincides with Λωg,F up to a smoothing operator. This is done by first
considering the region {0 ≤ t3 ≤ T}. The authors in [34], exploited (3.4) in order to
write (3.2) as a system of forward and backward heat equations:

(Dt3 + iAωF )uf = v, uf |t3=0 = f,

(Dt3 + iẼ − iAωF )v = w ∈ C∞([0, T ];D′(R2)),

where uf , v ∈ C∞([0, T ];D′(R2)). Since σ1(A
ω
F ) < 0 for ξ′ 6= 0, the following heat

equation is well-posed

∂t3v + AωF v − Ẽv = −iw,
and thus v ∈ C∞([0, T ]×R

2). Thus, restricting the forward heat equation to {t3 = 0}
implies that, up to a smoothing operator

Λωg,Ff = ∂t3u|t3=0 = AωF (t, Dt′)u|t3=0 .

Consequently, we have that

σ(Λωg,F )(t, ξ
′) = σ(AωF )(t, ξ

′).

�

In addition to establishing the above lemma, we require a lemma that we can use
to link Nω

∂M and Λωg,F . The following lemma elucidates said link as it shows that Nω
∂M

is a left, elliptic pseudo-differential parametrix of Λωg,F . Once again, we consider the
elliptic Dirichlet boundary value problem (3.2).

Lemma 3.3. The Dirichlet-to-Neumann map Λωg,F and Nω
∂M satisfy the following

operator equation

I = Nω
∂MΛωg,F +Ψ−∞,(3.6)

where Ψ−∞ denotes the class of smoothing operators. In particular, Nω
∂M ∈ Ψ−1

cl is
an elliptic pseudo-differential operator.

Proof. We prove the above lemma by integrating by parts (3.2) against the Neumann
Greens function Gω

M(x, y)

−uf(x) =
∫

M

Gω
M(x, z)∆gufdµg(z) +

∫

∂M

(uf(z)∂νG
ω
M(x, z)−Gω

M(x, z)∂νuf(z)) dµh(z)

−
∫

M

uf(z)divg(F (z)G
ω
M(x, z))dµg(z) + ω2

∫

M

uf(z)G
ω
M (x, z)dµg(z).

The divergence theorem yields

−uf(x) =
∫

M

Gω
M(x, z)∆gufdµg(z) +

∫

∂M

uf(z)∂νG
ω
M(x, z)−Gω

M(x, z)∂νuf(z)dµh(z)

+

∫

M

gz(F (z),∇guf)G
ω
M(x, z)dµg(z)−

∫

∂M

uf(z)G
ω
M (x, z)F (z) · νdµh(z)

+ ω2

∫

M

uf(z)G
ω
M(x, z)dµg(z).
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Employing the prescribed Neumann boundary conditions on Gω
M , we conclude

uf(x) =

∫

∂M

Gω
M(x, z)∂νuf(z)dµh(z).

Furthermore, restricting x ∈ ∂M and invoking the prescribed Dirichlet boundary
condition from (3.2) using our definition involving the trace (3.1), we have that

f(x) =

∫

∂M

Gω
∂M(x, z)Λωg,Ff(z)dµh(y),

=

∫

∂M

Nω
∂M (x, z)Λωg,Ff(z)dµh(z) +

∫

∂M

eφ(z)
uj(x)uj(z)

λj − ω2
Λωg,Ff(z)dµh(z).

Since the Neumann eigenfunctions are smooth, the rightmost integral in the above
expression consists of a smooth Schwartz kernel and thus gives rise to a smoothing
operator. That is, we have

I = Nω
∂MΛωg,F +Ψ−∞

Finally, since Λωg,F ∈ Ψ1
cl is an elliptic operator, we conclude that Nω

∂M ∈ Ψ−1
cl . �

Using Lemmas 3.2 and 3.3 we can prove the following theorem by iteratively de-
termining the terms in the Borel summation associated with the parametrix Nω

∂M

modulo smoothing terms.

Proposition 3.4. Let x, y ∈ ∂M such that x 6= y and ω2 ∈ C \ spec(−∆F
N ). In an

open neighbourhood of Diag := {(x, x) ∈ ∂M × ∂M}, we have that

Nω
∂M(x, y) =

1

2π
dg(x, y)

−1 − H(x)

4π
log dh(x, y) +

gx(F, ν)

4π
log dh(x, y)

+
1

16π

(
IIx

(
exp−1

x (y)

| exp−1
x (y)|h

)
− IIx

(
⋆ exp−1

x (y)

| exp−1
x (y)|h

))

+
1

4π
hx

(
F ||(x),

exp−1
x (y)

| exp−1
x (y)|h

)
+Rω

∂M(x, y),

where Rω
∂M (x, y) ∈ C0,α(∂M × ∂M) for α ∈ (0, 1), and F || denotes the tangential

component of F and ⋆ denotes the Hodge star operator.

Within the above expression for Nω
∂M , we obtain a clear image as to the structure of

the singularity in x, y ∈ ∂M near the diagonal (where x = y) as well as the singularity
in ω2 ∈ C \ spec(−∆F

N ) for ω2 near λj. For the sake of clarity, we will include an
outline for the proof of Theorem 3.4. Since we have already determined the nature
of the leading order singularity in ω, all that is left is to reveal the nature of the
singularity of the leading order terms for x near y on ∂M .

Proof of Proposition 3.4. There are infinitely many additional terms in the asymp-
totic series ofNω

∂M , these are formed via an iterative argument on the level of symbols.
However, for our purposes, we only need the first two elements of the kernel expan-
sion and thus, we only need the first two symbols in the Borel expansion of σ(Nω

∂M ).
Upon deriving σ−1(N

ω
∂M) and σ−2(N

ω
∂M) An expression for the asymptotic series of the

Schwartz kernel is given by the fourier transform of σ−1(N
ω
∂M)+σ−2(N

ω
∂M). To begin

this iterative process, we view the operator equation (3.6) on the level of symbols.

(3.7) 1 = σ(Nω
∂M)#σ(Λωg,F )(x, ξ

′) + S−∞,
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where # denotes the standard composition of symbols in correspondence to the com-
position of pseudo-differential operators. Furthermore, we write σ(Nω

∂M)(t, ξ′) in
terms of the following asymptotic series, whose existence is guaranteed by Borel’s
lemma

σ(Nω
∂M)(x, ξ′) ∼

∑

j≥1

σ−j(N
ω
∂M)(t, ξ′), σ−j(N

ω
∂M)(t, ξ′) ∈ S−j

1,0.

Equation (3.7) becomes the following in accordance to the formula for the #-product

1 =
∑

γ

1

γ!
∂γξ′σ(N

ω
∂M)Dγ

t σ(Λ
ω
g,F ) + S−∞.

where γ ∈ N
n denotes a multi-index. In the first iteration, we have that for a smooth

function χ and R ∈ R with χ(ξ′) = 0 for |ξ′| ≤ R and χ(ξ′) = 1 for |ξ′| ≥ 2R

1 = σ−1(N
ω
∂M)(t, ξ′)σ1(Λ

ω
g,F )(t, ξ

′) + S−1
1,0 =⇒ σ−1(N

ω
∂M)(t, ξ′) =

χ(ξ′)

σ1(Λωg,F )(t, ξ
′)
.

We can further iterate for the second term by forming the following equation

1 = σ−1(N
ω
∂M)(t, ξ′)σ1(Λ

ω
g,F )(t, ξ

′) + σ−1(N
ω
∂M )(t, ξ′)σ0(Λ

ω
g,F )(t, ξ

′),

+ σ−2(N
ω
∂M)(t, ξ′)σ1(Λ

ω
g,F )(t, ξ

′) +∇ξ′σ−1(N
ω
∂M) ·Dt′σ1(Λ

ω
g,F ) + S−2

1,0 .

We now equate terms of symbol order −1 to obtain the following equation

0 = σ−1(N
ω
∂M )(t, ξ′)σ0(Λ

ω
g,F )(t, ξ

′) + σ−2(N
ω
∂M)(t, ξ′)σ1(Λ

ω
g,F )(t, ξ

′)

+∇ξ′σ−1(N
ω
∂M) ·Dt′σ1(Λ

ω
g,F ).

So, we choose σ−2(N
ω
∂M)(t, ξ′) as follows

σ−2(N
ω
∂M)(t, ξ′) = − χ(ξ′)

σ1(Λωg,F )(t, ξ
′)

(
p−1(t, ξ

′)σ0(Λ
ω
g,F )(t, ξ

′) +∇ξ′p−1 ·Dt′σ1(Λ
ω
g,F )
)
.

Thus, we have that the Schwartz kernel of the ∂M-restricted Greens function, when
evaluated at the center of the h-geodesic disc Γε,1, up to Ψ−3, when written in local
co-ordinates is given by

1

4π2

(∫

R2

e−iξ
′·t′σ−1(N

ω
∂M)(0, ξ′)dξ′ +

∫

R2

e−iξ
′·t′σ−2(N

ω
∂M)(0, ξ′)dξ′

)
.

This results in the desired singular expansion for the boundary-restricted Greens
function fixed at a central point x∗. It can then be extended via a series of estimates
derived in [37] to Nω

∂M(x, y) for x 6= y, but suitably close (See [36] for full calculation).
�

Finally, we note that Proposition 1.1 follows as a trivial consequence of Proposition
3.4 and relation (3.1)

3.3. Schwartz kernel estimates. Within this section, we investigate Gω
∂M near x∗,

in the local coordinates given by (2.1). We introduce several integral operators related
to the terms on the right-hand side of (1.2). First, we consider a weighted variant of
the normal operator

(3.8) Laf = a

∫

D

f(s′)

((t1 − s1)2 + a2(t2 − s2)2)
1/2
ds′
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acting on functions on the disk D. It is known that La is a self-adjoint operator; see
for instance Section 4 in [37]. Moreover, by [41], it follows that

(3.9) La
(
Ka

−1(1− |t′|2)−1/2
)
= 1, Ka =

π

2

∫ 2π

0

(
cos2 θ +

sin2 θ

a2

)−1/2

dθ.

By (4.4) in [37], it was shown that u(t′) = K−1
a (1 − |t′|2)−1/2 is the unique solution

to Lau = 1 in H1/2(D)∗. Next, we introduce the following operators

Rlog,af(t
′) := a

∫

D

log
(
(t1 − s1)

2 + a2(t2 − s2)
2
)1/2

f(s′)ds′,

R∞,af(t
′) := a

∫

D

(t1 − s1)
2 − a2(t2 − s2)

2

(t1 − s1)2 + a2(t2 − s2)2
f(s′)ds′,

RF,af(t
′) := a

∫

D

F 1(0)(t1 − s1) + aF 2(0)(t2 − s2)

((t1 − s1)2 + a2(t2 − s2)2)1/2
f(s′)ds′,

RI,af(t
′) := a

∫

D

f(s′)ds′.

Remark 3.5. In [37], it was shown that the operators Rlog,a and R∞,a are bounded
maps from H1/2(D)∗ to H3/2(D). Repeating the arguments shows that this is also
true for RF,a.

Note that these lemmas are proved in [36, 37]. We state them here for the conve-
nience of the reader.

Lemma 3.6. We have the following identity
∫

Γε,a

dg(x, y)
−1v(y)dµh(y) = εLaṽ(t

′) + ε3Aεṽ(t
′),

where x = xε(t′), ṽ(t′) = v(xε(t′)), for some Aε : H
1/2(D; ds′)∗ → H1/2(D; ds′) with

operator norm bounded uniformly in ε.

From now on, we will denote by Aε any operator which takes

Aε : H
1/2(D; ds′)∗ → H1/2(D; ds′),

whose operator norm is bounded uniformly in ε.

Lemma 3.7. The following identity holds

(H(x)− gx(F, ν))

∫

Γε,a

log dh(x, y)v(y)dµh(y)

= ε2 log ε(H(x∗)−∂νφ(x∗))RI ṽ(t
′)+ε2(H(x∗)−∂νφ(x∗))Rlog,aṽ(t

′)+ε3 log εAεṽ(t
′),

where x = xε(t′) and ṽ(t′) = v(xε(t′)).

Lemma 3.8. The following identity holds
∫

Γε,a

(
IIx

(
exp−1

x (y)

| exp−1
x (y)|h

)
− IIx

(
⋆ exp−1

x (y)

| exp−1
x (y)|h

))
v(y)dµh(y)

= ε2(κ1(x
∗)− κ2(x

∗))R∞,aṽ(t
′) + ε3Aεṽ(t

′),

where x = xε(t′) and ṽ(t′) = v(xε(t′)). Recall that κ1(x
∗) and κ2(x

∗) denote the
principle curvatures of the boundary ∂M at x∗.
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Lemma 3.9. The following identity holds
∫

Γε,a

hx

(
F ‖(x),

expx;h(y)

| expx;h(y)|h

)
v(y)dµh(y) = ε2RF,aṽ(t

′) + ε3Aεṽ(t
′),

where x = xε(t′) and ṽ(t′) = v(xε(t′)).

Finally, we need to know the behaviour of the final component on the right-hand
side of equation (1.2) as the parameter ω converges towards the spectrum of −∆F

N .
eigenvalue of −∆F

g .

Proposition 3.10. Let λk be a simple eigenvalue of −∆F
g and let Vk be its neigh-

bourhood which is open, bounded, and does not contain any other eigenvalue of −∆F
g .

For λ ∈ Vk, let

(3.10) Rλk,λ : C
∞(∂M) 7→ D′(∂M)

be the operator defined by the integral kernel

Rλk(x, y)− Rλ(x, y),

then

‖Rλk ,λ‖H1/2(∂M)∗ 7→H1/2(∂M) = O(|λk − λ|).

Remark 3.11. Due to Proposition 3.1, for any fixed x, y ∈ ∂M , Rλk
∂M (x, y) is well

defined.

Proof of Proposition 3.10. Throughout the proof, we write x . y or y & x to mean
that x ≤ Cy, where C > 0 is some constant. The dependencies of C will be clear
from the context. By x ≈ y we mean that x . y and x & y.

For ψ ∈ H1/2(∂M)∗, we have the following estimate
∥∥∥∥
∫

∂M

(Rλk(x, y)− Rλ(x, y))ψ(y)dµh(y)

∥∥∥∥
H1/2(∂M)

≤ ‖U‖H1(M),

where

U(x) =
∑

j 6=k

(λk − λ)uj(x)〈ujeφ, ψ〉
(λj − λk)(λj − λ)

and 〈·, ·〉 denotes paring between H1/2∗ and H1/2. Let us consider the following
Neumann boundary value problem

(3.11)

{
(−∆F

g + 1)u = 0 on M,

∂νu = ψ on ∂M.

The corresponding Neumann-to-Dirichlet map is defined by

N : H1/2(∂M)∗ 7→ H1/2(∂M),

Nψ = uψ|∂M ,
where uψ is the solution to (3.11). Using Green’s identity, we obtain

λj(uj, u
ψ)L2(M,eφdµg) = −

∫

M

∆F
g uj(x)u

ψ(x)eφ(x)dµg(x)

=

∫

M

uj(x)∆
F
g u

ψ(x)eφ(x)dµg(x) + 〈ujeφ|∂M , ψ〉.
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Therefore,
〈ujeφ|∂M , ψ〉 = (λj − 1)(uj, u

ψ)L2(M,eφdµg).

Then,

U(x) = (λk − λ)
∑

j 6=k

λj − 1

(λj − λk)(λj − λ)
(uj, u

ψ)L2(M,eφdµg)uj(x).

Let us set

I1(x) :=
∑

j 6=k

1

λj − λ
(uj, u

ψ)L2(M,eφdµg)uj(x)

and

I2(x) :=
∑

j 6=k

λk − 1

(λj − λk)(λj − λ)
(uj, u

ψ)L2(M,eφdµg)uj(x),

so that
U(x) = (λk − λ) (I1(x) + I2(x)) .

By the spectral theorem, we know that

(−∆F
N − λ)−1uψ =

∞∑

j=1

1

λj − λ
(uj, u

ψ)L2(M,eφdµg)uj(x).

Hence,
I1(x) = (Id− Pk)(−∆F

N − λ)−1uψ,

where Id is the identity operator and Pk is the spectral projection to {uk}. Therefore,

‖I1‖H1(M) . ‖∇gu
ψ‖L2(M,eφdµg) + ‖uψ‖L2(M,eφdµg).

Furthermore, using the divergence theorem, we compute

0 =

∫

M

(−∆F
g u

ψ(x) + uψ(x))uψ(x)eφ(x)dµg(x)(3.12)

= ‖∇gu
ψ‖2L2(M,eφdµg)

+ ‖uψ‖2L2(M,eφdµg)
− 〈eφNψ, ψ〉,

which implies that

‖I1‖H1(M) .
√
〈eφNψ, ψ〉.

Next, we estimate I2:

‖I2‖H1(M) ≈ ‖∇gI2‖L2(M,eφdµg) + ‖I2‖L2(M,eφdµg)

.

(
∑

j 6=k

(
(λk − 1)

(λj − λk)(λj − λ)

)2

λj +

(
(λk − 1)

(λj − λk)(λj − λ)

)2
) 1

2

(uj, u
ψ)L2(M,eφdµg).

Therefore,

‖I2‖H1(M) .

(
∑

j 6=k

1

λ3j

) 1

2

(uj, u
ψ)L2(M,eφdµg) . ‖uψ‖L2(M,eφdµg)

Here, as a consequence of Weyl’s law [43], we used that λj ≈ j
2

3 . See also [8] for
weighted Laplace operators. Due to (3.12), we derive

‖I2‖H1(M) .
√
〈eφNψ, ψ〉,

and hence,

‖U‖H1(M) . |λk − λ|
√
〈eφNψ, ψ〉.



EIGENVALUE VARIATIONS 17

Since −1 /∈ spec(−∆F
N ), it follows that N is a bounded operator from H1/2(∂M)∗ to

H1/2(∂M), see for instance [9]. Therefore, we conclude

‖Rλk,λψ‖H1/2(M) ≤ ‖U‖H1(M) . |λk − λ|‖ψ‖H1/2(∂M)∗ .

This completes the proof.
�

4. Proof of the main result

In this section, we prove our main result. We first begin with auxiliary lemmas
which will be used subsequently. The following lemma is well-known in spectral
theory. We state it here for the reader’s convenience.

Lemma 4.1 (Glazman Lemma). Let A be a lower-semibounded self-adjoint operator
in a Hilbert space (H, 〈·, ·〉) with corresponding closed sesquilinear form a and form
domain D(a). Then, it holds

N(λ,A) = sup{dimL | L subspace of D(a) s.th. a(u, u) < λ〈u, u〉 for u ∈ L \ {0}},
where N(λ,A) is the spectral distribution function.

The proofs of the following two lemmas are based on proofs of Lemma 3.1 and
Theorem 3.2 in [40], respectively.

Lemma 4.2. Let λ ∈ R and u ∈ H1(M) such that −∆F
g u = λu. Let x0 ∈ ∂M . If

u |Bh(x0,ε)
= 0 and ∂νu |Bh(x0,ε)

= 0, then u = 0 identically on M . (Recall that we

consider ε being smaller than injectivity radius.)

Proof. Let us extend M to a compact connected smooth Riemannian manifold M̃

such that M̃ \M is compact with non-empty interior and M̃ \M ∩M = Bh(x0, ε).

Let ũ be the extension by zero of u to M̃ . Let F̃ be any smooth extension, up

to the boundary, of F to M̃ , so that we get a new weighted Laplacian −∆̃F̃
g̃ . Since

u |Bh(x0,ε)
= 0 and ∂νu |Bh(x0,ε)

= 0, it follows that ũ ∈ H1(M̃), moreover −∆̃F̃
g̃ ũ = λũ.

Since ũ |M̃\M = 0, the unique continuation arguments imply that u = 0 identically

on M . �

The previous lemma can be used to derive the following strict monotonicity prin-
ciple, which will be used later.

Lemma 4.3. Assume that 0 < ε1 < ε2, then

λj,ε1 < λj,ε2, j ∈ N.

Proof. Since ε1 < ε2, it follows that D(aε2) ⊂ D(aε1), and hence, by Lemma 4.1, we
know that λj,ε1 ≤ λj,ε2. We are now required to show that the previous estimate is
strict.

Let λ = λj,ε2 and δ > 0 be sufficiently small such that

(λ, λ+ δ) ∩ spec(−∆F
Mix,εi

) = ∅, for i = 1, 2.

We denote

k = N
(
λ+ δ,−∆F

Mix,ε2

)
and L := span{u1,ε2, · · · , uk,ε2}.

Then k ≥ j and

(4.1) aε1(u, u) = aε2(u, u) < (λ+ δ)(u, u)L2(M,eφdµg), for u ∈ L.
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Since Γε2,a \Γε1,a has a non-empty interior in ∂M , by Lemma 4.2, it follows that if
v ∈ Ker(−∆F

Mix,ε1
− λ) then v /∈ L. Therefore, we obtain

(4.2) dim
(
Ker(−∆F

Mix,ε1
− λ)⊕ L

)
= dim

(
Ker

(
−∆F

Mix,ε1
− λ
))

+ dimL.

Furthermore, since Ker
(
−∆F

Mix,ε1
− λ
)
⊂ D(−∆F

Mix,ε1
) and L ⊂ D(aε2) ⊂ D(aε1),

Theorem 2.1 in [30, Chapter 6] and estimate (4.1) give

aε1(v + u, v + u) < (λ+ δ)(v, v)L2(M,eφdµg) + (λ+ δ)(u, u)L2(M,eφdµg) + 2aε1(v, u)

< (λ+ δ)
(
(v, v)L2(M,eφdµg) + (u, u)L2(M,eφdµg)

)
+ 2λ(v, u)L2(M,eφdµg)

≤ (λ+ δ)(v + u, v + u)L2(M,eφdµg),

for v ∈ Ker
(
−∆F

Mix,ε1
− λ
)

and u ∈ L. Therefore, by Lemma 4.1, it follows

N
(
λ+ δ,−∆F

Mix,ε1

)
≥ dim

(
Ker

(
−∆F

Mix,ε1 − λ
)
⊕ L

)
,

and hence, by (4.2),

N
(
λ+ δ,−∆F

Mix,ε1

)
≥ dim

(
Ker

(
−∆F

Mix,ε1 − λ
))

+ dimL.

Then

N
(
λ,−∆F

Mix,ε1

)
= N

(
λ+ δ,−∆F

Mix,ε1

)
− dim

(
Ker

(
−∆F

Mix,ε1 − λ
))

≥ k ≥ j,

so that λj,ε1 < λj,ε2. �

Since D(aε) ⊂ D(aN), it follows that λj,ε is bounded from below by λj and decreases
as ε→ 0, by the last lemma. Therefore, we can define the following limit

λj,0 := lim
ε→0

λj,ε.

Next, we show that {λj,0}j∈N coincides with the sequence of eigenvalues of −∆F
N :

Lemma 4.4. For any j ∈ N, the equality λj,0 = λj holds.

Proof. For ε > 0, we know that D(aN) ⊂ D(aε). Therefore, by Lemma 4.1, λj ≤ λj,ε.
Recalling our definition of λj,0, we conclude that λj ≤ λj,0, or equivalently

N(λ,−∆F
N ) ≥ #{λj,0 : λj,0 < λ}, λ > 0.

Therefore, to prove λj,0 = λj , it suffices to show that if λ ∈ spec(−∆F
N ) with multi-

plicity l, then λ appears in {λj,0}j∈R at least l times.
Let λ ∈ spec(−∆F

N ) and l be its multiplicity. Then there exists k ∈ N such that
λ < λk+1 and

λk−l+1 = · · · = λk = λ.

Therefore, there exists α0 > 0 such that N(λ+α,−∆F
N) = k for any α ∈ (0, α0). For

any α ∈ (0, α0), we aim to find a small ε > 0 so that N(λ + α,−∆F
Mix,ε) = k.

Let χε ∈ C∞(M) denote a smooth cutoff function such that

χε(x) =

{
1 for x ∈M \Bg(x

∗, 3ε),

0 for x ∈ Bg(x
∗, 2ε)

and

‖∇gχε‖L2(M,eφdµg) → 0, for ε→ 0.

Consider the set of functions

Lε := {u1χε, · · · , ukχε}.
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Since {uj}kj=1 are linearly independent in L2 and ujχε → uj in L2, it follows that

{ujχε}kj=1 are also linearly independent in L2 for sufficiently small ε > 0, so that
dim(Lε) = k. The definition of χε implies that Lε ⊂ D(aε) and

a(ujχε, ujχε) → a(uj, uj),

(ujχε, ujχε)L2(M,eφdµg) → (uj, uj)L2(M,eφdµg),

as ε→ 0. Therefore, for α ∈ (0, α0), there exists ε > 0 such that

a(u, u)

(u, u)L2(M,eφdµg)

< λ+ α for u ∈ Lε,

which implies that N(λ+ α,−∆F
Mix,ε) = k. Therefore, spec(−∆F

Mix,ε) ∩ (λ, λ+ α) is
not empty. Moreover, since λj < λj,ε, we conclude

{λk−l+1,ε, · · · , λk,ε} ⊂ spec(−∆F
Mix,ε) ∩ (λ, λ+ α).

Since α0 is an arbitrary sufficiently small number, we conclude that λ appears in
{λj,0}j∈N at least l times. This completes the proof. �

Next, we show that the eigenfunctions of −∆F
Mix,ε and −∆F

N are close to each other
in the following sense:

Lemma 4.5. Assume that λj is a simple eigenvalue of −∆F
N . Then there exists

C > 0 such that ∣∣(uj, uj,ε)L2(M,eφdµg)

∣∣ > C,

for sufficiently small ε > 0.

Proof. Recall that {uk}k∈N forms an orthonormal basis on L2(M, eφdµg), so that we
can express

uj,ε(x) =
∑

k∈N

cεkuk.

Assume that the lemma is false, which means that there is a sequence of positive
numbers {εl}l∈N such that

(4.3) εl → 0, cεlj → 0,

as l → ∞. Since λj is simple we can choose α > 0 such that λj + α < λj+1. Let us
define

ωj,εl :=
∑

k 6=j

cεlk uk.

Then

(ωj,εl, ωj,εl)L2(M,eφdµg) = (uj,εl − cεlj uj, uj,εl − cεlj uj)L2(M,eφdµg)

= (uj,εl, uj,εl)L2(M,eφdµg) − 2(uj,εl, c
εl
j uj)L2(M,eφdµg) + (cεlj uj, c

εl
j uj)L2(M,eφdµg),

and hence,
(ωj,εl, ωj,εl)L2(M,eφdµg) = (uj,εl, uj,εl)L2(M,eφdµg) + o(1)

as l → ∞. Similarly, we obtain

(4.4) aN(ωj,εl, ωj,εl) = aN (uj,εl, uj,εl)− 2aN(uj,εl, c
εl
j uj) + aN (cεlj uj, c

εl
j uj)

= λjεl(uj,εl, uj,εl)L2(M,eφdµg) − λj(c
εl
j )

2 = λjεl(ωj,εl, ωj,εl)L2(M,eφdµg) + o(1)

as l → ∞. Since λj,εl → λj as l → ∞, this implies that

aN(ωj,εl, ωj,εl) < (λj + α)(ωj,εl, ωj,εl)L2(M,eφdµg)
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for sufficiently large l ∈ N. Let us show that

(4.5) ωj,εl /∈ span{u1, · · · , uj}
for sufficiently large l ∈ N. Assume this is not true. Without loss of generality, we
assume that (4.5) is false for all l ∈ N, otherwise consider a subsequence. Due to the
definition of ωω,εl, this implies that

ωj,εl /∈ span{u1, · · · , uj−1}.
In this case, we would have

aN(ωj,εl, ωj,εl) ≤ λj−1(ωj,εl, ωj,εl)L2(M,eφdµg).

Since λj is simple, this contradicts to (4.4). Therefore, (4.5) holds.
We now let u ∈ span{u1, · · · , uj}. Then

(4.6) aN(ωj,εl + u, ωj,εl + u)

≤ (λj + α)(ωj,εl, ωj,εl)L2(M,eφdµg) + λj(u, u)L2(M,eφdµg) + 2aN (ωj,εl, u),

for sufficiently large l ∈ N. Let us estimate, the last term of the right-hand side. Let
χεl be the function described in the proof of Lemma 4.4, then

aN (ωj,εl, u) = aN(uj,εl, u)− cεlj a
N (uj, u)

= aN(uj,εl, χεlu) + aN (uj,εl, u− χεlu)− cεlj a
N (uj, u) = aN(uj,εl, χεlu) + o(1)

as l → ∞. Since uj,εl ∈ D(−∆N
Mix,εl

) and uχε ∈ D(aεl), it follows that

aN(uj,εl, χεlu) = λj,εl(uj,εl, χεlu)L2(M,eφdµg) = λj,εl(ωj,εl, u)L2(M,eφdµg) + o(1),

as l → ∞. Therefore,

aN(ωj,εl, u) ≤ (λj + α)(ωj,εl, u)L2(M,eφdµg).

Therefore, (4.6) gives

aN (ωj,εl + u, ωj,εl + u) ≤ (λj + α)(ωj,εl + u, ωj,εl + u)L2(M,eφdµg),

for sufficiently large l ∈ N. Due to (4.5) and Lemma 4.1, we obtain

N(λj + α,∆F
N) ≥ j + 1.

This contradicts to λj + α < λj+1. �

Now, we are ready to prove the main result.

Proof of Theorem 1.3. Let Vj ⊂ C be an open neighbourhood of λj which does not
contain any other eigenvalues of −∆F

N . Since λj is simple, Theorem 4.4 implies that,
for sufficiently small ε > 0, λj,ε is the only eigenvalue of −∆F

Mix,ε in Vj . For ω ∈ Vj
and x, y ∈ ∂M , Proposition 1.1 gives

Gω
∂M(x, y) =

1

2π
dg(x, y)

−1 − H(x)

4π
log dh(x, y) +

gx(F, ν)

4π
log dh(x, y)

+
1

16π

(
IIx

(
exp−1

x (y)

| exp−1
x (y)|h

)
− IIx

(
⋆ exp−1

x (y)

| exp−1
x (y)|h

))

+
1

4π
hx

(
F ||(x),

exp−1
x (y)

| exp−1
x (y)|h

)

+
uj(x)uj(y)

λj − ω2
eφ(y) +R

λj,ε
∂M (x, y).
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From Green’s identity, we know that

uj,ε = (λj,ε − ω2)

∫

M

Gω
M(x, y)uj,ε(y)dµg(y) +

∫

Γε,a

Gω
M(x, y)∂νuj,ε(y)dµh(y).

We choose ω2 = λj,ε and restrict the last identity to Γε,a, to obtain

(4.7)

∫

Γε,a

G

√
λj,ε

∂M (x, y)∂νuj,ε(y)dµh(y) = 0.

Next, we will use the coordinate system given by (2.1). We denote

ũj(t
′) := uj(x

ε(t1, at2)), φ̃(t′) := φ(xε(t1, at2))

and

vε := ∂νuj,ε, ṽε(t
′) := vε(x

ε(t1, at2)).

Note that in these coordinates the volume form for ∂M is given by

(4.8) dµh(y) = aε2(1 + ε2Qε(s
′))ds1 ∧ ds2,

for some smooth function Qε whose derivatives of all orders are bounded uniformly in

ε. Therefore, if we put the expression for G

√
λj,ε

∂M into (4.7) and use Lemmas 3.6-3.9,
we obtain

0 =
1

2π
εLaṽε + aε2

ũj(t
′)

λj − λj,ε

∫

D

ũj(s
′)ṽε(s

′)eφ̃(s
′)ds′

(4.9)

− 1

4π
ε2(H(x∗)− ∂νφ(x

∗))Rlog,aṽε +
1

16π
ε2(κ1(x

∗)− κ2(x
∗))R∞,aṽε

+
1

4π
ε2RF,aṽε + ε2Rλj,ε

a ṽε −
1

4π
ε2 log ε(H(x∗)− ∂νφ(x

∗))RI,aṽε + ε3 log εAεṽε,

where Rω
a : C∞

c (D) 7→ D′(D) is the operator given by the kernel

aRω
∂M(xε(t1, at2), x

ε(s1, as2))

for ω ∈ Vj, and Aε : H1/2(D; ds′)∗ 7→ H1/2(D; ds′) is an operator with the norm
bounded uniformly in ε. From now on, we will denote by Aε any operator which
takes H1/2(D; ds′)∗ 7→ H1/2(D; ds′) whose operator norm is bounded uniformly in ε.

Let us denote

Rλj ,λj,ε := ε2Rλj,ε
a − ε2Rλj

a

Rε := − 1

4π
ε2 log ε(H(x∗)− ∂νφ(x

∗))RI,a −
1

4π
ε2(H(x∗)− ∂νφ(x

∗))Rlog,a

+
1

16π
ε2(κ1(x

∗)− κ2(x
∗))R∞,a +

1

4π
ε2RF,a + ε2R

λj
∂M (x∗, x∗)RI,a + ε3 log εAε.

By Lemma 5.1 in [37], we know that
∥∥∥Rλj

a −R
λj
∂M(x∗, x∗)RI,a

∥∥∥
H1/2(D;ds′)∗ 7→H1/2(D;ds′)

= O(ε log ε),

and hence, (4.9) becomes

(4.10) 0 =
1

2π
εLaṽε + aε2

ũj(t
′)

λj − λj,ε

∫

D

ũj(s
′)ṽε(s

′)eφ̃(s
′)ds′ +Rεṽε +Rλj ,λj,ε ṽ.
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Assume that

(4.11)

∫

D

ũj(s
′)ṽε(s

′)eφ̃(s
′)ds′ = 0.

Then, recalling (4.8), we get
∫

Γε,a

uj(x)∂νuj,ε(x)e
φ(x)dµh(x) = O(ε4).

Using Green’s identity, we derive

(λj,ε − λj)(uj, uj,ε)L2(M,eφdµg) =

∫

M

(∆F
g uj(x)uj,ε(x)− uj(x)∆

F
g uj,ε(x))e

φ(x)dµg(x)

= −
∫

Γε,a

uj(x)∂νuj,ε(x)e
φ(x)dµg(x) = O(ε4).

Then, by Lemma 4.5, it follows

|λj,ε − λj| = O(ε4).

Therefore, by using Proposition 3.10 and recalling Remark 3.5, we estimate

‖Rε +Rλj ,λj,ε‖H1/2(D)∗ 7→H1/2(D) = O(ε2 log ε).

Since La is invertable as an operator from H1/2(D)∗ to H1/2(D), see Section 4 in [37],
it follows that

La +
2π

ε

(
Rε +Rλj ,λj,ε

)
: H1/2(D)∗ 7→ H1/2(D)

is an invertable operator. Therefore, (4.10) and (4.11) imply that ṽε = 0 on D, and
hence, ∂νuj,ε = 0 on Γε,a. Then, by Lemma 4.2, we would have uj,ε = on M , and
hence λj,0 = 0. This contradicts to λj,ε > λj ≥ 0. Therefore,

∫

D

ũj(s
′)ṽε(s

′)eφ̃(s
′)ds′ 6= 0.

Therefore, we can define

ψ̃ε :=
ṽε∫

D
ũj(s′)ṽε(s′)eφ̃(s

′)ds′
.

Then, (4.10) becomes

0 =
1

2π
εLaψ̃ε + aε2

ũj(t
′)

λj − λj,ε
+
(
Rε +Rλj ,λj,ε

)
ψ̃ε.

Let us hit both sides by 2π
ε
L−1
a , to obtain

(4.12) 0 = ψ̃ε + 2πaε
L−1
a ũj

λj − λj,ε
+

2π

ε
L−1
a

(
Rε +Rλj ,λj,ε

)
ψ̃ε.

Since ∥∥L−1
a

(
Rε +Rλj ,λj,ε

)∥∥
H1/2(D)∗ 7→H1/2(D)

= O(ε2 log ε),

relation (4.12), implies that

(4.13) ‖ψ̃‖H1/2(D)∗ =
1

λj − λj,ε
O(ε).
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This will be used later. Now, we multiply (4.12) by ũje
φ̃ and integrate over D to

derive

0 = 1 + 2πaε
〈L−1

a [ũj ], ũje
φ̃〉

λj − λj,ε
+

2π

ε
〈L−1

a

(
Rε +Rλj ,λj,ε

)
ψ̃ε, ũje

φ̃〉.

Equivalently, we write

λj,ε − λj = 2πaε〈L−1
a ũj, ũje

φ̃〉+ 2π

ε
(λj − λj,ε)〈L−1

a

(
Rε +Rλj ,λj,ε

)
ψ̃ε, ũje

φ̃〉.

Let us put (4.12) into the equation above to obtain

(4.14) λj,ε − λj = 2πaε〈L−1
a ũj, ũje

φ̃〉 − 4π2a〈L−1
a

(
Rε +Rλj ,λj,ε

)
L−1
a ũj, ũje

φ̃〉

− 4π2

ε2
(λj − λj,ε)〈L−1

a

(
Rε +Rλj ,λj,ε

)
L−1
a

(
Rε +Rλj ,λj,ε

)
ψ̃ε, ũje

φ̃〉.

Taking into account (4.13), the last identity implies that

λj,ε − λε = O(ε),

so that Proposition 3.10 gives
∥∥Rλj ,λj,ε

∥∥
H1/2(D)∗ 7→H1/2(D)

= O(ε4).

Hence, we can put Rλj ,λj,ε into ε2 log εAε term in the definition of Rε. Further, from
(4.13), we obtain

〈L−1
a RεL

−1
a Rεψ̃ε, ũje

φ̃〉 = 1

λj − λj,ε
O
(
ε5 log2 ε

)
.

Therefore, equation (4.14) gives

λj,ε = λj + 2πεa〈L−1
a ũj, ũje

φ̃〉 − 4π2a〈L−1
a RεL

−1
a ũj, ũje

φ̃〉+O(ε3 log2 ε).

Recalling the definition of Rε and the boundedness of Aε : H
1/2(D; ds′)∗ → H1/2(D; ds′)

we obtain

λj,ε − λj =2πεa

∫

D

L−1
a ũj(s

′)ũj(s
′)eφ̃(s

′)ds′

+ ε2 log εaπ(H(x∗)− ∂νφ(x
∗))〈L−1

a RI,aL
−1
a ũj, ũje

φ̃〉
+ ε2aπ(H(x∗)− ∂νφ(x

∗))〈L−1
a Rlog,aL

−1
a ũj, ũje

φ̃〉(4.15)

− ε2a
π

4
(κ1(x

∗)− κ2(x
∗)) 〈L−1

a R∞,aL
−1
a ũj, ũje

φ̃〉

− ε2aπ〈L−1
a RF,aL

−1
a ũj, ũje

φ̃〉
− ε24π2aR

λj
∂M(x∗, x∗)〈L−1

a RI,aL
−1
a ũj, ũje

φ̃〉
+O(ε3 log2 ε).

We recall the definitions of ũj, φ̃ and use Taylor series, to obtain
∫

D

L−1
a ũj(s

′)ũj(s
′)eφ̃(s

′)ds′ =

∫

D

L−1
a ũj(s

′)uj(x(εs1, aεs2))e
φ(x(εs1,aεs2))ds′

=

∫

D

L−1
a ũj(s

′)
(
uj(x

∗)eφ(x
∗) + ε(c1s1 + c2s2) +R1

2(εs
′)
)
ds′
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where R1
2 is the reminder term of the Taylor series for ũje

φ̃ near zero and c1, c2 are
appropriate constants. Using (4.4) in [37], we derive

∫

D

L−1
a ũj(s

′)ũj(s
′)eφ̃(s

′)ds′ =

∫

D

(
uj(x

∗) + ε(b1s1 + b2s2) +R2
2(εs

′)
)
×

× L−1
a

(
uj(x

∗)eφ(x
∗) + ε(c1s1 + c2s2) +R1

2(εs
′)
)
ds′

where R2
2 is the reminder term of the Taylor series for ũj near zero and b1, b2 are

appropriate constants. Next, we note that
∫

D

L−1
a [1](s′)sjds

′ = 0, ‖Rj
2(ε·)‖H1(D) = O(ε2),

for j = 1, 2. Therefore, the penultimate identity gives
∫

D

L−1
a ũj(s

′)ũj(s
′)eφ̃(s

′)ds′ = |uj(x∗)|2eφ(x
∗)

∫

D

L−1
a [1](s′)ds′ +O(ε2)

=
2π

Ka

|uj(x∗)|2eφ(x
∗) +O(ε2).

Since uj is smooth on ∂M , it follows that ũj(t) − ũj(0) = OH1/2(ε) as ε → 0.
Additionally, we recall thatRI,a, Rlog,a, andR∞,a are bounded operators fromH1/2(D)
to H1/2(D)∗. Therefore, using (4.4) in [37], we write

〈L−1
a Rlog,aL

−1
a ũj, ũje

φ̃〉 = 〈Rlog,aL
−1
a ũj, L

−1
a [ũje

φ̃]〉
= |uj(x∗)|2eφ(x

∗)〈Rlog,aL
−1
a [1], L−1

a [1]〉+O(ε).

Further, using (3.9), we obtain

〈Rlog,aL
−1
a ũj, L

−1
a [ũje

φ̃]〉

= |uj(x∗)|2eφ(x
∗) a

K2
a

∫

D

1

(1− |s′|2)1/2
∫

D

log ((t1 − s1)
2 + a2(t2 − s2)

2)
1/2

(1− |t′|2)1/2 dt′ds′ +O(ε).

Similarly, we collect expressions for 〈L−1
a RI,aL

−1
a ũj, ũje

φ̃〉, 〈R∞,aL
−1
a ũj, L

−1
a [ũje

φ̃]〉 and

〈RF,aL
−1
a ũj, L

−1
a [ũje

φ̃]〉 below

〈L−1
a RI,aL

−1
a ũj, ũje

φ̃〉 = a|uj(x∗)|2eφ(x
∗)

∫

D

L−1
a [1](t′)dt′

∫

D

L−1
a [1](t′)dt′ +O(ε)

=
4π2a

K2
a

|uj(x∗)|2eφ(x
∗) +O(ε),

〈R∞,aL
−1
a ũj, L

−1
a [ũje

φ̃]〉 = |uj(x∗)|2eφ(x
∗) a

K2
a

×

×
∫

D

1

(1− |s′|2)1/2
∫

D

(t1 − s1)
2 − a2(t2 − s2)

2

(t1 − s1)2 + a2(t2 − s2)2
1

(1− |t′|2)1/2dt
′ds′ +O(ε),

and finally (see page 10045 in [36]),

〈RF,aL
−1
a ũj, L

−1
a [ũje

φ̃]〉 = O(ε).

Using the identities above and (4.15) we complete the proof. �
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