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Weakly Nonlinear Analysis of Vortex Formation in a Dissipative Variant of the
Gross-Pitaevskii Equation

J.C. Tzou* P.G. Kevrekidis/ T. Kolokolnikovi and R. Carretero-Gonzilez®

Abstract. For a dissipative variant of the two-dimensional Gross-Pitaevskii equation with a parabolic trap
under rotation, we study a symmetry breaking process that leads to the formation of vortices. The
first symmetry breaking leads to the formation of many small vortices distributed uniformly near the
Thomas-Fermi radius. The instability occurs as a result of a linear instability of a vortex-free steady
state as the rotation is increased above a critical threshold. We focus on the second subsequent
symmetry breaking, which occurs in the weakly nonlinear regime. At slightly above threshold, we
derive a one-dimensional amplitude equation that describes the slow evolution of the envelope of
the initial instability. We show that the mechanism responsible for initiating vortex formation is a
modulational instability of the amplitude equation. We also illustrate the role of dissipation in the
symmetry breaking process. All analyses are confirmed by detailed numerical computations.

Key words. Nonlinear Schrodinger equation, Bose-Einstein condensates, Vortex nucleation, Dissipative Gross-
Pitaevskii equation.
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1. Introduction. The topic of vortex formation upon rotation of an atomic Bose-Einstein
condensate has received a tremendous volume of attention during the past 15 years, with many
of the relevant results finding their way in main archival references on the subject, including
the books [27, 30]. This is natural, not only because of the inherent interest in vortices
as fundamental structures in this and more generally in atomic, quantum, and superfluids
systems [28], but also because this has been a prototypical way of introducing vortices in the
system. These studies not only include theoretical works but also numerous experiments, in
isotropic and anisotropic settings, with few or with many atoms, in oblate or prolate traps in at
least four distinct experimental groups pioneering the early experiments [4, 16, 22, 17]. Even
far more recent experiments, relying chiefly on other techniques, including the Kibble-Zurek
mechanisms utilize rotation as a way of controllably producing vortices of a given (same)
charge [25].

It is then natural to expect a large volume of theoretical literature tackling the relevant
theme. It was realized early on that the surface excitations play a crucial role in the rel-
evant “instability” that leads to the emergence of vortices [9]. The work of Isoshima and
Machida [18] was among the first that recognized the complex energetic balance between
the different scenarios (e.g. stable, metastable or potentially unstable non-vortex states, and
similarly for vortex bearing states). This metastability opens the potential for hysteretic phe-
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nomena, depending on whether, in accordance with the experiment, the rotation frequency
was ramped up or ramped down, as illustrated, e.g., in Ref. [14]. Numerous simulations also
followed these earlier works, including, at different levels, finite temperature considerations.
More specifically, both Refs. [26], as well as Ref. [39] considered the finite temperature model of
the so-called dissipative Gross-Pitaevskii equation (see details below), and of ramps therein, as
a prototypical system where the nucleation and emergence of vortex lattices was spontaneous.
On the other hand, the work of Ref. [37] used the framework of the Hartree-Fock-Bogoliubov
method (in the so-called Popov approximation) as a means of self-consistently including ther-
mal effects, finding that the particular value of the temperature may affect the number of
vortices formed.

From a theoretical perspective, there have been, to the best of our understanding, two
distinct schools of thought. One of these, based on the work of Ref. [5] (see also importantly
the later interpretation of Ref. [10], for the case of a toroidal trap), is based on computing
the Landau criterion threshold, i.e., identifying the order of the mode that will be associated
with the Landau instability and inferring from that the number of vortices that will emerge.
A distinct approach pioneered by the work of Stringari and collaborators [34, 21] (see also
Ref. [38], as well as the review of the relevant considerations in Ref. [30]) involved the bifurca-
tion —from the ground state, be it isotropic or anisotropic— of additional states, beyond the
rotation frequency that renders neutral (i.e., of vanishing frequency) the quadrupolar mode.
These two approaches have both been developed in the limit of large chemical potential, yet
to the best of our knowledge, they have never quite been “reconciled” with each other, aside
from a short remark in the work of Ref. [5] suggesting that Landau method is more relevant
when surface excitations are crucial, while if the instability has a more global character (e.g.,
for smaller atom numbers), then the hydrodynamic approach of Refs. [30, 34, 21, 38] is more
suitable.

While understanding these two approaches, their similarities and differences, and providing
a unified perspective of this problem based on them appears to us an intriguing problem for
further study, we will not pursue it further here. Instead, we will focus on characterizing
exactly how a vortex is “born” and migrates inwards towards the center of the trap. We will
build on our earlier work [8] where we used a multi-scale expansion to obtain a reduction of
the relevant eigenvalue problem, associated with the vortex forming instability. In our case,
where the model of choice is the dissipative Gross-Pitaevskii equation (DGPE), we argued
that there is a true instability, contrary to what is the case with the Hamiltonian case, where
the eigenvalues simply cross the origin of the spectral plane changing “energy” or “signature”
—see the details of Ref. [8]. Here, we take this analysis a significant step further, by reducing
the relevant dynamics, at the periphery of the atomic cloud, to an effective one-dimensional
azimuthal strip.

Remarkably, we find that although the original dynamics pertains to a self-defocusing
Gross-Pitaevskii equation (GPE), this reduced azimuthal evolution bears a self-focusing char-
acter. This trait is manifested through the emergence of a modulational instability (MI) against
the backdrop of the homogeneous background. This, in turn, results in a “spike” emerging as
subtracted from the background, which finally will morph into a vortex initially rotating along
the strip and gradually spiraling inwards in accordance with its dynamical equation of motion
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—for vortex motion within the DGPE realm see, e.g., Ref. [41]'. Our emphasis here will be
in highlighting the mechanism leading to the vortex formation, offering quantitative compar-
isons of our focusing GPE reduction (and its MI mechanism) with the full two-dimensional
numerical results. Our presentation is structured as follows. In Sec. 2, we briefly present the
mathematical setup. In Sec. 3, we discuss the weakly nonlinear analysis and the derivation of
the effective one-dimensional self-focusing GPE. In Sec. 4, we analyze the MI and compare its
predictions to the full system. Finally in Sec. 5, we summarize our findings and present some
directions for future study.

2. Mathematical Setup. Our starting point will be the dissipative variant of the Gross-
Pitaevskii equation (DGPE) of the form [29] (see also the more recent works of Refs. [26, 39])

(2.1) (7 - z')ut = %Au + <M — %Q%rap pQ) u— |u|2u — 1ot Uy,
where |u(p,0,t)|? is the time-dependent two-dimensional density of the atomic condensate
cloud within a parabolic trap of strength €2, and -y accounts for a phenomenological tempera-
ture-dependent dissipation effect (see, e.g., Refs. [31, 26, 32, 7, 19, 15]). This phenomenological
dissipation term provides a prototypical way of effectively accounting for the interaction of
the condensate with the thermal cloud. Physically relevant values of v > 0 are of magnitude
1 x 1073; see, e.g., Ref. [41]. Equation (2.1) is already written in the co-rotating frame of the
trap rotating with frequency ... The chemical potential p is a measure of the strength of
interaction between atoms, which we assume to be large in comparison to all other parameters
in Eq. (2.1). This assumption motivates the following scaling and definitions

1

t = =
Qtrap

T, p V2ur,  u(p,0,t) = /uW(r,0,T);

1

7

where

~ 1 1

Q= _Qrot, g = —Qtrap < 1’
p 2

so that, in rescaled form, the DGPE may be written as
(2.2) (y— i) Wr = 2AW + (1 =) W — [W|W — iQWy; ~ > 0,

where the edge of the atomic cloud, the Thomas-Fermi radius, is now rescaled to r = 1. A
radially symmetric, vortex-free, steady state W = Wy (r) of Eq. (2.2) exists and satisfies

1
Worr—i-—Wor—l-(l—?“Q)Wo— ’WQ‘QW():O, ’WO’ — 0 as r — 0.
T

Notice that the steady state profile is identical to the one of the corresponding Hamiltonian
(v = 0) model.

In the latter case, the precession corresponds to an anomalous (negative energy or signature) mode and
hence the spiraling occurs outwards, but in the presence of rotation this mode becomes normal and similar
dynamical equations describe the spiraling inwards.
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Let us use here an approach extending our recent considerations in Ref. [8]. In that work,
for increasing rotation frequency ﬁ, it was observed that the steady state W first loses stability
to a spatial mode scaling as O(e~%/?). This instability manifests initially in a large number of
small vortices distributed uniformly near the Thomas-Fermi radius » = 1. In fact, the relevant
surface mode going unstable is the one placing in the periphery of the system the number of
vortices filling it by spanning their respective healing lengths. This behavior was analyzed
in Ref. [8], showing it was due to a linear instability of Wy —within the DPGE setting,
although the Hamiltonian solution was still identified as dynamically stable— with increasing
rotation frequency. Numerical solutions of Eq. (2.2) revealed that a subsequent symmetry
breaking mechanism causes only a fraction of these vortices to persist and be pulled into the
bulk of the condensate. For our current considerations, for Q slightly above threshold, we
perform a weakly nonlinear analysis to examine the onset of this second symmetry breaking
process. While the analysis does not predict the fraction of vortices that survive or their
eventual fate as they form in the fully nonlinear regime, our analysis accurately captures all
of the dynamics in the early stages of their development. In particular, we show that the
weakly nonlinear dynamics of the two-dimensional self-defocusing system (2.2) is described
by a one-dimensional perturbed self-focusing nonlinear Schrodinger equation (NLSE). This is
both perhaps intuitively unexpected and at the same time crucially relevant to the observed
phenomenology. This is because, as our analysis shows, the initial pattern selection mechanism
responsible for the formation of vortices is a MI of a non-stationary uniform solution of the
one-dimensional amplitude equation, a mechanism (within the continuum, cubic nonlinearity
considered herein) restricted to the self-focusing variant of the GPE problem.

3. Weakly nonlinear analysis and amplitude equations. Since vortices nucleate near the
Thomas-Fermi (r = 1) radius with critical wavenumber m ~ ~2/3mg when Q ~ £*/3Q with
mo, 2 ~ O(1), we rescale Eq. (2.2) according to

r:1+52/3x, 9252/33/, T:672/3t, W:sl/3w, Q =43,

This way, we are restricting our consideration to the small strip of space near the Thomas-
Fermi radius, while considering small amplitude solutions (since the density approaches zero
near that limit), for longer time scales such that the vorticity is expected to emerge. In these
rescaled variables, Eq. (2.2) to leading order becomes

(3.1) (7 — ) Wy = Wag + wyy — (27 + [w]*) w — iQuwy;

with
|lw| ~ V=22 as x — —oc0, and |w| — 0 as z — oo,
where w is periodic in y. In arriving at Eq. (3.1) from Eq. (2.2), the largest terms that have
been dropped are of order O(2/3). The focus of the analysis and computations herein will be
on Eq. (3.1).
Writing w = u + v with u,v € R, we rewrite Eq. (3.1) as the system

(3.2a) Yt 4 v = Uz + vy — (27 + u? + 0% u + Quy,

(3.2b) Yo — U = Vg + Vyy — (22 + u? 4+ 0%) v — Quy,.
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A steady state of Egs. (3.2) may be written as u = ug(x) and v = 0, where ug(z) is the unique
solution of a Painlevé II equation
up = 2xug + ud,

with limiting conditions (see, e.g., Ref. [1])
ug ~V—2xr as r — —oo, ug— 0 as xr — oo.

With respect to the full system (2.2), ug is the corner layer near r = 1 of the steady state
solution Wy(r). Next, we let u = ug(z) + ¢(z,y,t) and v = V¥(z,y,t) in Eq. (3.2) to obtain

(3.32) Yo + P = bux + Pyy — (27 + 3ud) ¢ — Bugd® — upy?® — i — ¢F + Wy,

(3.3b) Y — ¢ = Yuw + Uy — 22+ ud) b — 2ugdth — ¢ — b — Q.

The steady state of Eq. (3.3) is then ¢ = ¢» = 0. Assuming a perturbation of the form
(6,9) = (iA(z), B(z)) ™+ in Eq. (3.3) (given the invariance of the solution along the
angular variable and the periodicity of the latter, we decompose it in Fourier modes) and
collecting linear terms, we obtain the eigenvalue problem

(3.4a) A" —m?A — 2z + 3ud) A+ mQB; = A\(yA + B),
(3.4b) B" —m*B — (2 + ud)B + mQA; = \(yB — A).

As in Ref. [8], we set A = 0 in Eq. (3.4) and solve the associated eigenvalue problem for Q(m),
yielding the neutral stability curve depicted in Fig. 1(a) (see Ref. [8] for a detailed analysis and
full results). We denote 2 as the smallest value of Q at which the steady state loses stability
to a perturbation with critical wavenumber mq (see Fig. 1(a)). Then, when Q = Qg + §2
with § < 1, numerical computations show that () ~ I()\)/y ~ O(4?). This is depicted in
Fig. 1(b).

To analyze the slow evolution of this perturbation slightly above threshold, we assume the
asymptotic expansion

(35a) Q=Qp+0Qy; ¢ =0¢1 + 672+ 63, =061+ 6%+ Y3 0<I< L

The expansion in Eq. (3.5a) is motivated by the expectation that the bifurcation is of the
pitchfork type, for which ¢,9 ~ O(v/Q — ). The solvability condition is then expected
to arise at O(6®). Recalling that the lowest order term omitted from the leading order in
Eq. (3.1) is of order O(e?/3), we require that 63 > £2/3. We next introduce the slow spatial
and temporal scales

(3.5b) r=X/5, y=Y/5, t=T/5".

The spatial scale is motivated by the O(J) band of wavenumbers that acquires a positive
growth rate as € is increased an O(6?) distance above threshold (see Fig. 1(a)), while the
temporal scale is motivated by the corresponding scaling of A in Eq. (3.4) (see Fig. 1(b)).
Below, we assume that v = O(1) with respect to d.
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Figure 1. (a) A depiction of the neutral stability curve Q(m) (solid thick line). As Q is increased by O(5%)
above Qqo, an O(5) band of wavenumbers around m = mq acquires positive growth rate. (b) The scalings of
R(\) and S(N\) are depicted as Q is increased by O(6%) above Qo. The figures here are for illustrative purposes
only. See Ref. [8] for full results and a detailed analysis.

Substituting Eq. (3.5) into Eq. (3.3), we solve the linear problems at successively higher
orders of 0. At O(9), we obtain the linear terms of Eq. (3.3)

(3.6a) Vo1t + V1t = Prax + Dryy — (27 + 3ud)b1 + Qotbuy,

(36b) ’Wblt - ¢1t = ¢lzz + Q;Z)lyy - (2$ + U%)¢1 - Qo¢1y-

We calculate a t-independent solution to Eq. (3.6) of the form

(3.7) ( fp’i > = O(X,Y,T) ( iéll((;”)) ) €Y 4 c.c.,

where c.c. denotes the complex conjugate. Here, Aj(x) and By(z) are real and satisfy
(3.8a)
Al —miA; — (20 + 3ud) AL + meQw B
Lm0<A1>E 1/ 021 ( 20) PR —0, A1,Bi—0 as @ — +o0,
By Bi — m0B1 — (2.%' + UO)Bl + meQp Ay
with
(3.8b) mo ~ 1111, Qg ~ 2.529.

In addition, we impose the normalization constraint

[e.e]

(3.9) / A? +B}dr =1,  A;,B;>0.
—00

In Eq. (3.7), C(X,Y,T) is a complex quantity that describes the slowly modulated envelope

of the perturbation, while in Eq. (3.8b), mg is the critical wavenumber that first becomes

unstable as €2 is increased above €.
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At O(6?), we have
(3.102) Pous + doyy — (22 + 3ud) d2 + Qothay = 3udT + u? — 2¢1.x — 201,y — Qotry,

(3.10b)  touy + Yoy, — (22 + ud) o — Qoo = 2upd11 — 2U12x — 2015y + Qotry,

with ¢1 and ¢y given in Eq. (3.7), the terms on the right-hand sides of Eq. (3.10) involve
terms proportional to C2e2m0¥  Cxe™™o¥ Cye™0¥ and |C|?, along with the corresponding
complex conjugates. We therefore write the solution to Eq. (3.10) as

(52) = (i) oo (it ) e (520 ) e

A
2 20
+ ‘C’ < BZO(-%') > + c.C.,

where the equations for Ags(x), Boa(x),. .., are given by

Ao . —3UOA% + UOB%
(3.11) L2m0 <322 > = < —2u0A131 s AQQ,BQQ —0 as z — iOO7

A21 B 2moA1 - QOBl
(312&) Lmo <321 > == <2m031 . QoAl s A21,Bgl — 0 as z — :|:OO,

a1 . —2All
(312b) Lmo <B21 > = < —2Bi s 0421,ﬁ21 — 0 as z — :|:OO,
and
2 2
(313) Lo (gZO > = < GUOAl —(i)_ QUOBl > N Ago,Bgo — 0 as * — Fo0.
20

In Egs. (3.11)—(3.13), the linear operator L, is defined in Eq. (3.8a). Since there exists a
non-trivial solution to the self-adjoint system (3.8a), for solutions to Eq. (3.12) to exist, the
right-hand sides must each satisfy the Fredholm conditions

e 2moA1 — Q()Bl . o —2A/1 o
(314) lm(Al,Bl) <2moBl . QoAl > dr=0 and /;OO(Al,Bl) < _231 > dxr = 0.
The second condition in Eq. (3.14) may be seen from integrating by parts once and applying
the boundary conditions in Eq. (3.8a). The first condition may be inferred from the fact that a
solution to Eq. (3.12a) exists and is given by (Aa1, B21) = Om, (A1, B1), which may be seen by
differentiating Eq. (3.8a) with respect to mg while noting that dQ2y/dmg = 0. This condition,
along with the the normalization constraint in Eq. (3.9), yields the identity

00 mo
A1Bidr = —.
/_001133 %
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With Eq. (3.14) satisfied, we impose the additional orthogonality constraints

/ (Al,Bl) <A21 > dx:o, and / (Al,Bl) <0421 > dm:O,
—o0 B o B21

to uniquely specify Ay, Bai, ag1 and [a1. The solutions of Eqgs. (3.11)—(3.13) are depicted in
Fig. 2.

0.7 0.3
0.6 ] 0.25
0.5 0.2t
0.4 0.15
0.3 0.1
0.2 0.05
0.1 0
9 -0.0 ‘ ‘ ‘
30 -20 20 30 30 20 -10 o0 10 20 30
xT
(b) AQQ and BQQ
0.2 0.6
0.1 : 0.4
L}
1
0 ! 0.2r
\‘ 1
1y 1
-0.1 v 0
1 1
y !
Y
-0.2 ' -0.2
A\
=30 -20 -10 0 10 20 30 T30 -20 10 20 30
xT
(C) A21 and B21 (d) Q21 and ,321
C -
-0.1
-0.2
-0.3
-0.4
-30 -20 -10 O 10 20 30
xT

(e) A20 and Bao

Figure 2. Solutions of Egs. (3.11)-(3.13), with A1, A2z, A21, a1 and Az shown in solid, and B1, Baa,
BQl, ﬂzl and Bzo mn dashed.
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At O(8%), we have that

(3.15a) Pawe + Bayy — (22 + 3ug)ds + otz = Ry,
(3.15b) Uaex + bayy — (22 +ud)vs — Qoday = Ry,
where Ry and Ry contain the secular terms Sg(z) €Y and Sy () €Y, respectively, along

with other non-resonant terms that we need not consider. For completeness, we give the
explicit expressions for the amplitudes of these secular term:

. oc o*C o*C
S¢ = (’}/ZAl + Bl) a_T —1 (20/21 + Al) m + (2m0a21 — Qoﬂ21 — 2&’21) m—{—
. o*c .
+1 (Qobgl — 2moas; — Al) m — 1QomoB1C+
+1 (2u0(3A1a20 — 3A1a22 — uOBlbgz) + 3A3 + AlB%) ‘0’207
., oC 9’C d*C
Sy = (vBy —iAy) T (285 + B1) %2 (2moBa1 — Qoaar — 2b5,) axoy
9*C
+ (Qoaz1 — 2moba — By) ve QomoA1C+

+ [QUO (Blagg — Aibyg + Blago) + A%Bl + 3B§] ‘C’QC.

The solution to Eq. (3.15) may then be written as (¢3,3) = (iAs1(z), Bsi(z)) e™0Y + ...,
where A3; and Bsp satisfy the system

(3.16) Lmo < gi ) - < z’? ) '

Applying the Fredholm condition to Eq. (3.16)

/ (Al,Bl) ( _ZS¢ > dr = 0,
oo Sy

we obtain the following amplitude equation for C(X,Y,T):

oC 9*C 9*C 92C
(3.17) (i) —y712) =— + Dxx +iDxy——— + Dyy

R R 2 —
aT X2 XY gy2 ToC TalClC=0.
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The coefficients in Eq. (3.17) are all real, and are given by

o 2m0

2m(2)
T — —(—— = —
Qo

0 =1 = Qo >0
>,T2,UQO2>,

o= —/ Ay [QUO(—?)AlAQQ + 3A1 A9 — B1B22) + 3A% + AlB%] +

—00

B, [QUQ(—AlBQQ + A20B1 + A22B1) + A%Bl + 33%] dx > 0,

Dxx = / Al[—20/21 — Al] + By [—QBél — Bl] dr ~ 0,

o
Dxy = / Aq[245) — 2moany + QoBa1] + B1[2By; — 2mofa1 + Qoaar] dx ~ 0,

Dyy = —/ A1[=Ar = 2moA21 + QoBa1] + Bi[—B1 — 2mo B2 + QoA ] dr > 0.

We note that o > 0 since we assume that the system is above threshold; i.e., Q5 > 0 so
that Q > Qp. With the normalization (3.9) and values of mgo and € given in Eq. (3.8b), we
numerically obtain the following values for the coefficients, accurate to the fifth decimal place:

T~ 0.87834, T =1, o~~097671Q, o~ 0.62184,
(3.18)
Dyy ~ 0.67615, Dxy ~ 1072, and Dxx ~ 1076,

The values above show that, remarkably, Dxx and Dyxy are very close to zero. While they
may or may not be exactly zero, for all practical purposes hereafter, we will indeed set them
to 0. In this way, the two-dimensional dynamics in the weakly nonlinear regime of Eq. (3.1)
reduce to dynamics along only one dimension. The same reduction was observed for the
one-dimensional dynamics of edge modes in a two-dimensional NLSE in the presence of a
honeycomb potential [2]. Indeed, this may be an indication (exactly, or just approximately
so) of an effective “topological protection” [3], a theme of intense recent interest in the physics
community [35]. The reason we indicate the potentially approximate nature of the topological
protection for our (toroidal) domain strip is that eventually the ensuing vortices escape inwards
towards the center of the domain. Nevertheless, exploring this aspect in the context of the
present work further is an especially appealing aspect for further study.

Further proceeding with our reduction, by neglecting the Dx x and Dxy terms as indicated
above, our analysis yields the one-dimensional amplitude equation for the envelope C(Y,T)

. oC 9*C
(3.19) (i1 —79) == + Dyy

5T ] +0C + a|Cl*C = 0.

We make one remark regarding the scaling of v with respect to . Due to the C' — —C
invariance of Eq. (3.7), the largest term omitted from the amplitude equation (3.19) is the
quintic term |C[*C. This term is of O(62) with respect to the rest of the terms in Eq. (3.19).
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Therefore, while we assumed in the analysis that v = O(1) with respect to ¢, we in fact only
require that v > §2 for Eq. (3.19) to be valid. Further, as we show in the next section, when
~ is small, it is responsible only for the growth of low wavenumber perturbations of a spatially
uniform state, and the dissipation of high wavenumber perturbations. The symmetry breaking
mechanism in Eq. (3.19) that initiates vortex formation in the full system (3.1) occurs on an
O(1) time scale independent of . As such, Eq. (3.19) retains all the orders required to
accurately describe the weakly nonlinear dynamics of the full system.

To examine the validity of the weakly nonlinear theory, we solved the two-dimensional
system (3.1) numerically on the domain x € [-7.5,22.5], y € [—807/mg,807/mg)] so that
exactly 80 wavelengths of the critical mode my fit inside the domain of length L, = 1607 /my.
The initial conditions were taken to be of the form given in Eq. (3.7) with an envelope
randomly perturbed from unity. That is C(Y,0) = 1 + 0.01 % rand(y), where rand(y) takes
on a uniformly distributed random value between 0 and 1 at each discrete point in y. The
parameters v and ¢ were taken to be v = 0.01 and § = 0.04. While realistic values of v are
typically smaller than 0.01, this was purely for demonstration purposes and similar results
are obtained for smaller, more realistic, values of v. We also simultaneously solved the one-
dimensional amplitude equation (3.19) on the domain Y € [—8007/my, 8057 /my]; that is, on
a domain of length L = §L,, consistent with the scaling in Eq. (3.5b). The comparison of the
two sets of results is shown in Fig. 3. Each panel 3(a)-3(f) is arranged into a left, center, and
right column. In the center column of each figure, we show a surface plot of |w|, while in the
right column, we show a surface plot of J(w) = 1. Blue (red) regions indicate small (large)
values in the plotted quantity. In the two plots that make up the leftmost column, we show in
red a slice of |¢|/d (top) and |¢|/d (bottom) taken near x = 0, corresponding to the vicinity of
the Thomas-Fermi radius where vortices first form in the original system (2.2). Here, ¢ and
1 are the real and imaginary parts of the perturbation, respectively, and obey Eq. (3.3). In
black, we plot the envelope obtained by solving Eq. (3.19). We observe excellent agreement,
indicating that the two-dimensional dynamics of Eq. (3.1) in the weakly nonlinear regime can
indeed be captured by the one-dimensional amplitude Eq. (3.19).

The initial symmetry breaking is shown in Fig. 3(b), where the uniform C = 1 state (see
Fig. 3(a)) evolves into a spatially periodic state. This is due to a MI in Eq. (3.19), which will
be discussed in Sec. 4. Over a relatively shorter time scale, the envelope enters the weakly
nonlinear regime, oscillating between a slightly localized state (see Fig. 3(c)) and a highly
localized state (see Fig. 3(d)). This stage can still be accurately captured by our effective
one-dimensional model. It then enters the fully nonlinear regime (see Fig. 3(e)) as two of the
localized regions become dominant and results in the formation of two vortices that then get
pulled into the bulk of the condensate (see Fig. 3(f)). As seen in Figs. 3(e) and 3(f), these
vortices manifest as dips in the surface of |w|. In this regime, the weakly nonlinear results
are no longer applicable. However, it is clear that the initial MI (see Fig. 3(b)) in the one-
dimensional amplitude Eq. (3.19) is the symmetry breaking mechanism responsible for the
initiation of the process leading to the formation of vortices in the two-dimensional system
(3.1).

To show that Eq. (3.19) is equivalent to (a dissipative variant of) the self-focusing NLSE
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Figure 3. Evolution of the perturbation at the periphery of the atomic cloud. Each panel (a)—(f) is arranged
into a left, center, and right column. The center and right columns depict, respectively, the amplitude and
imaginary part of the solution, where blue (red) regions indicate small (large) values. The left columns depict
the comparison of the one-dimensional dynamics of the amplitude Eq. (3.19) (black) versus the dynamics of the
full two-dimensional system Eq. (3.1) (red). The red is taken from an x-slice of ¢ (top subpanel) and v (bottom
subpanel), the real and imaginary parts of the perturbation, respectively. Starting from random perturbations
of the envelope about unity (a), the third mode is selected (b). The pattern oscillates between a slightly more
localized state (c¢) and a highly localized state (d), before entering the fully nonlinear regime (e) where two
vortices are nucleated and pulled into the bulk (f).

when v = 0, we introduce the rescaled variables

~ 2 -
(3.20) T=n(1+7)7, Y=+ Dyyn, C,T)=4/=B(n,); where 7= l,
a

1
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to obtain
(3.21) %BT = B,, + 0B + 2|B|*B.

Lastly, we multiply Eq. (3.21) across by 7 + ¢ and scale out the rotation by letting

(3.22) B(n,7) = €T A(n,T),
to obtain
(3.23) A= (F+4) Ay, + 07A+2(7 + i) A A.

Setting ¥ = 0 in Eq. (3.23), we see that Eq. (3.19) is equivalent to the self-focusing nonlinear
NLSE. Due to rotation (4 — Ae®) and dilation (A — AA, n — A, and 7 — A27) invariance
the self-focusing NLSE admits a family of one-soliton solutions of the form

As(n,150,7m) =1 sech [r(n + 2vT)] e_w("’T); O(n,7) =vn+ (v2 — 7“2) T

For ¥ < 1 in Eq. (3.23), a perturbation analysis invoking additional translation (n — ng) and
Galilean (A — Aeien=ic®T and n — n—2c7) symmetries leads to a coupled system of equations
for the slow time evolution of r(77) and v(y7) (see, e.g., Refs. [12, 13, 11, 20] for details).

Based on the time scales in Figs. 3, we find that, once vortices form, they quickly enter
the fully nonlinear regime. As such, a detailed analysis of the evolution of a localized soliton
solution in the amplitude equation, the latter of which is only valid in the weakly nonlinear
regime of Eq. (3.1), is not particularly useful. We are presently not aware of a technique
(aside from the detailed numerical simulations, such as those of Fig. 3(e)-3(f), that could
capture this second stage of (large amplitude) symmetry breaking. Instead, we focus on the
initial symmetry breaking mechanism in Eq. (3.19) that initiates the formation of vortices in
Eq. (3.1). As seen in Fig. 3(b), this symmetry breaking does occur in the weakly nonlinear
regime of Eq. (3.1), and is the result of a MI in Eq. (3.19). We analyze this instability in the
following section.

4. Modulational instability. In this section we analyze the MI of a spatially homogeneous
time-dependent solution of Eq. (3.19). The analysis follows that of Ref. [33]; see also Ref. [36].
To obtain an exact solution of Eq. (3.23) without the spatial term, we take the ansatz

A= Ao(r) = f(r)eD,
where the functions f and g satisfy the ODE’s

ff=Alef+2f%,  f(0) = [A(0)];
(4.1)

g =2f%  g(0) = arg(A(0)).
The system (4.1) is solved analytically, yielding

Vo

(4.2) f(r)= ;og(r) = —% log [—2 + 616_20%] — 0T + ¢o,

N/ =2+ 616—20577
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where
o o

a=2+ AOE = > log <W> + arg(A(0)).

A spatially homogeneous solution Cy(7T') of Eq. (3.19) is then given by Eq. (4.2) and the
scalings in Egs. (3.20) and (3.22). In particular, we calculate that

20 1 20
4. - ; =24+ ————.

_ 2y op?
—2—{—606 1+52 11

In what follows, we let C' — u, T'— t, Y — y, and Dyy — D for cleaner notation.
To analyze the stability of ug (), we introduce the perturbation

(4.4) u(y,t) = up(t)(1 + ew(t) cos qy); e 1.
Substituting Eq. (4.4) into Eq. (3.19) and equating coefficients of cos qy at the leading order
in €, we obtain

!

(4.5) (i1 — ) [@w + w'] — ¢*Dw + ow + alug|*[w + 2w] = 0.
Uug

Next, noting that ug(t) is a solution of Eq. (3.19), yields

/

, u
(4.6) (i1 —7)—2 = —0 — alup|?.
uQ

Substituting Eq. (4.6) into Eq. (4.5) and simplifying yields
(it —y)w' — [¢*D — |uo|*] w — alup*w = 0.

Now, letting w = w,+iw; and separating real and imaginary parts, yields the matrix eigenvalue
problem

an () ;(ﬂ(uaﬂuor?—q?m —n[(l—a)\uO\Q—q?D])<wr>_

dt \w;) ~2+ 2 \n [(1 + a)|ug)? — qQD] ~y [(1 —a)|ugl? — q2D] W

The system (4.7) is non-autonomous due to the time-dependence of |ug|? given in Eq. (4.3)
(recall Cyp — up). However, since v < 1, we observe by Eq. (4.1) that |ug(t)| evolves on an
asymptotically slow time scale as long as |ug| < ~~1/3. The ODE system (4.7) therefore takes
the form w’ = M (vt) w, where M (~t) is the two-by-two matrix in Eq. (4.7) with entries that
evolve slowly on an O(v) time scale. This suggests a WKB ansatz for w of the form

4.8 w = v(s)e )/ s = ~t.
(4.8) (s)

Substituting Eq. (4.8) into Eq. (4.7) and collecting terms at leading order in v, we find that
dr/ds satisfies the stationary eigenvalue problem Mv = (dr/ds) v. We may thus identify dr/ds
with the eigenvalues of M computed with its entries frozen in time. Therefore, w = (w;, w;)”
grows (decays) when the eigenvalue of M with the largest real part lies on the right (left)
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half-plane. Scenarios in which the aforementioned eigenvalue slowly crosses from the left
half-plane into the right half-plane may often lead to the phenomenon of delayed bifurcations
[6, 23]. That is, the bifurcation may not become observable until the slowly varying control
parameter responsible for the eigenvalue crossing is an O(1) distance past the linear stability
threshold. This phenomenon is absent here since, as we will observe below, the eigenvalue
crossing is not slow. As such, we will say that an instability in Eq. (4.7) has been triggered
when the largest eigenvalue acquires zero real part.
The eigenvalue of the matrix in Eq. (4.7) with largest real part is given by

tr [tr2
(49) )\(q) = 5 + I - det,

where

29(luo|” — ¢* D]
v+t

(1 + a)uol* = ¢*D] [(1 — a)|ugl* — ¢*D] ‘

, d det=
an e o

tr =

In the limit of small 7, we see that A(q) is O(|ug|?) and positive when ¢ lies in the interval
(¢2, qi), with ¢% = (1 £ )|ug|?/D. This band of positively growing wavenumbers is what is
responsible for the symmetry breaking mechanism that initiates the formation of vortices. To
the left of this band, R(\(g)) is O(y) and positive, while to the right of this band, R(\(q))
is O(y¢?) and negative. We thus see that the presence of small v > 0 is responsible for
amplification of the low wavenumbers and dissipation of the high wavenumbers. The band of
instability, and its O(|ug|?) positive growth rate, would be present even in the case of v = 0.
However, small ~ still influences pattern formation in Eq. (3.19) through the growth of |ug|?
by shifting the band of instability towards larger wavenumbers. On a finite domain of length
L, in which the shortest admissible wavelength ¢; = 27/L may initially lie to the right of the
band of instability, positive v will cause the band to drift rightwards and eventually trigger
the instability when ¢? = ¢f. This occurs when |up| = O(1). To see why this precludes the
delayed bifurcations, we observe that as soon as Ay acquires positive growth rate, its growth
rate is O(1) positive. Therefore there is no slow crossing of the eigenvalue, and hence no delay.

It is important to note that the larger the L, where L = dL,, the greater the number
of wavelengths of the unstable mode(s) the domain can contain. Relating this back to the
original system (3.1), the farther the rotation frequency  is set above threshold, the more
localized regions form in the weakly nonlinear regime. This may lead to more vortices in the
fully nonlinear regime being pulled into the bulk. The dependence of A(q) on |ug|?, along with
the time evolution of |ug|?, are shown in Figs. 4(a) and 4(b), respectively.

We illustrate the theory using Fig. 3, where the spatially homogeneous state being per-
turbed is |ug| = 1. The domain length is § L, ~ 18.09 so that, by Fig. 4(a), the third (¢ ~ 1.04)
and the fourth (¢ ~ 1.39) modes are the two modes that lie in the band of instability, both hav-
ing similar growth rates. Consistent with the theory, three bumps appear in Fig. 3(b). Four
bumps may also form given the same parameter set and different random initial conditions.

Lastly, we demonstrate how the growth of |ug| due to positive v can intrinsically trigger a
MI. On a domain of length L ~ 18.09, we solve Eq. (3.19) with |ug(0)| = 0.005 and v = 0.005.
The smallest admissible wavenumber in this domain is ¢; = 27/L ~ 0.3473. According to
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Figure 4. (a) The dispersion relation given by Eq. (4.9) for various values of |uo|* (0.25, 1, and 4 from
left to right) as indicated in the legend. As |ug|? increases, the band of unstable wavenumbers broadens, shifts
to the right, and acquires larger growth rates. The height and shape of the bands depend only weakly on v when
v is small. (b) The time evolution of |uo|® given by Eq. (4.3). The parameters are v = 0.01 and Q2 = 1.
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Figure 5. (a) Growth rate of the perturbation at the periphery of the atomic cloud. The thick solid blue
line (using the left axzis) depicts |w(t)| as numerically extracted from the PDE solution of Eq. (3.19) using
the perturbation prescribed by Eq. (4.4). The dashed red line depicts |w(t)| computed from the linearized ODE
(4.7).  The light solid line black depicts |uo(t)| (using the right azis). Both the ODE and PDE dynamics
show that |w(t)| decays initially until |uo(t)| has increased enough so that the smallest admissible wavenumber
acquires positive growth rate. This happens approzimately when |uo(t)| reaches 0.224 (vertical line). While the
ODE dynamics seems to exhibit a cumulative phase error with respect to the PDE dynamics, it does accurately
predict when the instability is triggered. (b) Comparison of R(w) as extracted from the time evolution of the
full two-dimensional system (3.1) (red circles) and that extracted from the same time evolution of the amplitude
equation (3.19) (blue solid) as in (a). The horizontal axis in both figures is of slow time. The parameters are
d =0.04, v = 0.005, 6L, =~ 18.09, and 2 = 1.



Vortex Formation in a Dissipative GPE 17

Eq. (4.9), this wavenumber initially lies to the right of the band of instability. Therefore,
the spatially homogeneous state is initially stable. However, as |ug| increases according to
Eq. (4.3), the band of instability drifts to the right. When |ug| increases to approximately
lug| =~ 0.224, R(A(q1)) becomes positive, and the mode cos(qiy) begins to grow. This is
illustrated in Fig. 5(a), where we initialize u as u(y,0) = |ug(0)[(1 + 2 x 107° cos(q1y)). The
figure depicts with a thick solid blue line the evolution of |w(t)| as numerically extracted from
the PDE solution of Eq. (3.19) using the perturbation prescribed by Eq. (4.4). The dashed
red line depicts the evolution of |w(t)| as computed from the linearized ODE (4.7). The initial
(oscillatory) decay is due to ¢; lying initially to the right of the instability band so that A(q1)
lies in the left half-plane with $(A(q1)) # 0. When |ug(t)| (light solid black line and right
axis) increases to approximately 0.224 (thin vertical line), R(A(q1)) becomes positive real so
that the amplitude of the perturbation begins to increase monotonically, verifying the theory.
While the ODE prediction appears to exhibit a cumulative error in the phase with respect to
the PDE dynamics, it does accurately predict when the dynamically instability is triggered.

We next verify that this intrinsic triggering predicted by the MI analysis is also present in
the full two-dimensional system (3.1). In Fig. 5(b), we compare R(w) as extracted from the
time evolution of the full PDE system (3.1) (red circles) and that extracted from the same
time evolution of the amplitude equation (3.19) (blue solid) as in Fig. 5(a). The parameters
in the full PDE were taken to be 6 = 0.04, v = 0.005, 0L, ~ 18.09, and €23 = 1. We observe
excellent agreement between the two dynamics. As in Fig. 5(a), Fig. 5(b) exhibits a slow
oscillatory decay followed by fast monotonic growth starting near ¢ = 600. Note that the
independent variable in the horizontal axis in both figures is the rescaled slow time T = 6%t,
which has been relabeled ¢ in accordance with the notation change 7' — ¢ in this section.

To extract $(w) from the full PDE data, we first calculate from Eq. (3.7) that for a given
slice x = x,

Y1(20,y)

(4.10) 2B(1y) = C,(Y,T) cos(moy) — C;(Y, T) sin(moy),

where we have defined C,. = R(C), C; = S(C), and Y = 6y and T = 6%t are the slow space and
time variables, respectively. Because of the separation of scales between y and Y in Eq. (4.10),
the quantity 11 (zo,y)/(2B(zp)) to leading order takes the form of a slowly modulated phase-
shifted cosine of frequency my, the envelope of which is given by |C(Y,T)|. Next, we calculate
from Eq. (4.4) with u — C;t — T, and y — Y, that

2
(4.11) %% = 2—16 + R(w) cos ¢Y + O(e).

Here, the evolution of |Co(7T)|? is given analytically by Eq. (4.3). Thus, to compute R(w), we
need only calculate numerically the envelope of the quantity 1 (zo,y)/(2B(zo), which yields
|C|. The value of R(w) may then be extracted by numerically computing the amplitude of
the left-hand side of Eq. (4.11), yielding the curve marked by red circles in Fig. 5(b). This
example shows that the phenomenon, predicted by the MI analysis, of initial decay of a spatial
perturbation followed by growth persists not only in the reduced amplitude equation, but also
in the original two-dimensional PDE system.
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5. Discussion. In the present work, we have revisited the long studied (not only theo-
retically and numerically, but importantly also experimentally) problem of the formation of
vortices in the presence of rotation. We have argued that while a vast literature exists on the
subject, there are still various gaps in our understandings of this process, including among
other things the weakly (and strongly) nonlinear emergence of a single (or a few) vortices
that eventually travel inward, settling towards the center of the domain. In order to shed
light in the weakly nonlinear aspect within this process, we have derived a one-dimensional
effective amplitude equation as a reduction of a dissipative variant of the self-defocusing two-
dimensional GPE with a harmonic trap under rotation. Remarkably, this equation turns out
to be a self-focusing dissipative variant of the GPE. The latter has been shown to undergo
modulational instabilities and symmetry breakings that eventually result in the formation
of solitons that lead to the appearance of the vortices drawn inwards in the original (full)
problem. This is due to two separate symmetry breaking processes. The first, attributed to a
linear (modulational) instability of a vortex-free, homogeneous steady state of the dissipative
GPE as the rotation is increased above a threshold, leads to a large number of “small vor-
tices” nucleating near the edge of the condensate cloud. The second, which we can monitor
numerically, but which is beyond the realm of our weakly nonlinear theory, selects a fraction of
these small vortices and pulls them into the bulk of the condensate. Not only were we able to
derive an effectively one-dimensional equation describing the weakly nonlinear state (its one-
dimensionality hinting at an approximate topological insulation of the system’s boundary),
but we were also able to quantify the modulational instability and illustrate that its temporal
and spatial scales coincide with the emergence of the pattern formation within the full PDE
system. While we could not capture the final highly nonlinear step of this destabilization and
symmetry breaking process analytically, our numerical computations shed considerable light
to it. Nevertheless, the latter would be an extremely intriguing problem for future study.
While the specific pattern selection might be the most difficult step to tackle, it would also be
interesting to perform an analysis along the lines of Ref. [40] to derive a system of equations
of motion for the vortices as they move into the bulk.

Another key problem worth exploring, as indicated in the introduction, is the reconciliation
of the surface dynamical picture put forth by Ref. [5] (see also, e.g., for a recent exposition,
Ref. [10] and our earlier work of Ref. [8]) and the bulk hydrodynamic approach of Ref. [34].
Lastly, it would also be relevant to perform an analysis of vortex formation in the GPE with
an anisotropic potential [24]. In the isotropic case considered here, the initial instability leads
to a uniform formation of small vortices all around the edge of the condensate cloud. In
contrast, in the anisotropic case, this uniformity is expected to be broken. An analysis could
be performed to determine where the first vortices are nucleated, and what the subsequent
vortex selection mechanism is. These problems are currently under study and relevant progress
will be reported in future publications.
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