Catalan and Apéry Numbers in Residue Classes

Moubariz Z. Garaev
Instituto de Matemáticas, Universidad Nacional Autónoma de México
C.P. 58180, Morelia, Michoacán, México
garaev@matmor.unam.mx

Florian Luca
Instituto de Matemáticas, Universidad Nacional Autónoma de México
C.P. 58180, Morelia, Michoacán, México
fluca@matmor.unam.mx

Igor E. Shparlinski
Department of Computing, Macquarie University
Sydney, NSW 2109, Australia
igor@ics.mq.edu.au

January 30, 2005

Abstract
We estimate character sums with Catalan numbers and middle binomial coefficients modulo a prime p. We use this bound to show that the first at most $p^{13/2}(\log p)^6$ elements of each sequence already fall in all residue classes modulo every sufficiently large p, which improves the previously known result requiring $p^{O(p)}$ elements. We also study, using a different technique, similar questions for sequences satisfying polynomial recurrence relations, for example, for Apéry numbers. We show that such sequences form a finite additive basis modulo p for every sufficiently large prime p.
1 Introduction

Let p be an odd prime. In this paper, we study the distribution modulo p of middle binomial coefficients

$$b_n = \binom{2n}{n}, \quad n = 0, 1, \ldots,$$

and Catalan numbers

$$c_n = \frac{1}{n+1} \binom{2n}{n}, \quad n = 0, 1, \ldots,$$

where as usual we define $0! = 1$.

We estimate the number of solutions of certain congruences with middle binomial coefficients and Catalan numbers. In particular, we show that both b_n and c_n take all residue classes modulo a sufficiently large p.

These results are used to estimate, both “individually” and “on average”, character sums

$$S(\chi; H, N) = \sum_{n=L+1}^{L+N} \chi(b_n),$$

$$T(\chi; H, N) = \sum_{n=L+1}^{L+N} \chi(c_n),$$

where χ is a multiplicative character of \mathbb{F}_p.

The method we use is similar to that of [8, 9] to estimate character and exponential sums with $n!$. Accordingly, our bounds look very similar. However, using the Lucas theorem

$$b_n \equiv \prod_{i=0}^{m-1} b_{t_i} \pmod{p},$$

(1)

where $n = t_0 + \ldots + t_{m-1} p^{m-1}$ is the p-ary representation of n, we are able to get some results which are not known for $n!$, and which are not even likely to be true. In particular, it is shown in [1] that for infinitely many primes p, at least $(\log \log p)^{1+o(1)}$ residue classes modulo p are not represented by $n! \pmod{p}$ and it is conjectured in section F11 in [11] that about p/e residue
classes are missing among the values $n! \pmod{p}$. Here, we show that each of the sequences b_n and c_n covers all residue classes modulo p even with $n \leq p^{13/3}(\log p)^6$. This substantially improves the previously known result of [2] where the same statement is shown for integers $n \leq p^m$ with m of order p.

Our proof also implies that for $1 \leq n \leq p^7$, the values of b_n and c_n fall in each nonzero residue class modulo p asymptotically the same number of times, namely $(2^{-7} + o(1)) p^6$ times.

We also study the number of distinct residue classes modulo p of a polynomially recurrence sequence (PR-sequence for short). Recall that a PR-sequence $(u_n)_{n \geq 0}$ is a sequence of integers such that there exist a positive integer ℓ and $\ell + 1$ polynomials $f_i(X) \in \mathbb{Z}[X]$ for $i = 0, \ldots, \ell$, not all zero, such that the recurrence relation

$$\sum_{i=0}^{\ell} f_i(n) u_{n+i} = 0$$

holds for all $n \geq 0$. We also say that $(u_n)_{n \geq 0}$ is a PR-sequence of type (ℓ, d) if it satisfies equation (2) with

$$\max\{\deg f_i : i = 0, \ldots, \ell\} \leq d.$$

We show that if $(u_n)_{n \geq 0}$ a PR-sequence of type (ℓ, d) which is not a linear recurrence sequence for all sufficiently large n, then for any large prime p the number of residue classes modulo p represented by $(u_n)_{n \geq 0}$ exceeds cp^β, where $c > 0$ is a constant depending on the sequence and $\beta > 0$ is a constant depending only on ℓ and d.

We say that $(u_n)_{n \geq 0}$ has the Lucas property if for every prime p,

$$u_n \equiv \prod_{i=0}^{m-1} u_{t_i} \pmod{p},$$

where

$$n = t_0 + \ldots + t_{m-1} p^{m-1}, \quad 0 \leq t_0, \ldots, t_{m-1} \leq p - 1,$$

is the p-ary representation of n.

If $(u_n)_{n \geq 0}$ is a PR-sequence (which does not eventually become a linear recurrence sequence) which has the Lucas property, then we combine the
above bound on the value set of \((u_n)_{n \geq 0}\) modulo \(p\) with the ingenious result of [3] to study a variant of the Waring problem modulo \(p\) for this sequence. We also show that these residue classes modulo \(p\) represented by \((u_n)_{n \geq 0}\) are in some sense "densely" distributed.

In particular, we apply our results to study power sums of binomial coefficients

\[
b_{\nu,n} = \sum_{k=0}^{n} \binom{n}{k} \nu, \quad n = 0, 1, \ldots ,
\]

where \(\nu \geq 2\) is a fixed positive integer, as well as to the Apéry numbers

\[
a_n = \sum_{k=0}^{n} \binom{n}{k}^2 \binom{n+k}{k}^2, \quad n = 0, 1, \ldots ,
\]

in residue classes modulo \(p\). Note that \(b_{n,n} = b_n\), so in a sense the study of the numbers \(b_{n,n}\) modulo \(p\) may be seen as an extension of the study of the numbers \(b_n\) modulo \(p\). We recall that both \((a_n)_{n \geq 0}\) and power sums of binomial coefficients \((b_{n,n})_{n \geq 0}\) have the Lucas property. Indeed, for the case of the Apéry sequence this is shown in [10]. For the sequence of binomial coefficients \((b_{n,n})_{n \geq 0}\) this can easily be verified by using a more general form of (1), namely

\[
\binom{n}{k} \equiv \prod_{i=0}^{m-1} \binom{t_i}{s_i} \pmod{p}, \quad \text{(4)}
\]

where \(n = t_0 + \ldots + t_{m-1}p^{m-1}\) and \(k = s_0 + \ldots + s_{m-1}p^{m-1}\) are the \(p\)-ary representations of \(n\) and \(k\) (here, we assume that \(m\) is large enough so that the above representations hold; in particular, one of \(t_{m-1}\) or \(s_{m-1}\) may be zero). It can also be derived from the more general Theorem 3 of [15].

Furthermore, \((a_n)_{n \geq 0}\) satisfies the recurrence

\[
a_n n^3 - a_{n-1}(34n^3 - 51n^2 + 27n - 5) + a_{n-2}(n-1)^3 = 0, \quad \text{(5)}
\]

for every \(n = 2, 3, \ldots ,\) with the initial values \(a_0 = 1, a_1 = 5\). It is known that for a fixed \(\nu\) the sequence \((b_{n,n})_{n \geq 0}\) satisfies a recurrence of the form (2) with \(\ell = \lfloor (\nu + 1)/2 \rfloor\) (see [6, 17]). Unfortunately, no upper bound \(d\) for the degrees of the polynomials \(f_i(X)\) for \(i = 0, \ldots , \ell\) has ever been worked out specifically, although it may be possible to deduce it by a closer examination of the proofs in [6, 17].
Our results apply also to the case when the sequence $b_{\nu,n}$ is replaced by

$$\tilde{b}_{\nu,n} = \sum_{k=-n}^{n} (-1)^k \binom{2n}{n+k}^\nu,$$

again for a fixed $\nu \geq 2$, as this sequence is both PR by the results from [14], and Lucas by the results from [15].

Throughout the paper, the implied constants in symbols ‘O’, ‘\ll’ and ‘\gg’ may occasionally, where obvious, depend on some integer parameters m, r, s and ν and also on the particular sequence under consideration and are absolute otherwise. We recall that $U \ll V$, $V \gg U$ and $U = O(V)$ are all equivalent to the inequality $|U| \leq cV$ with some constant $c > 0$.

Acknowledgements. During the preparation of this paper, F. L. was supported in part by grants SEP-CONACYT 37259-E and 37260-E, and I. S. was supported in part by ARC grant DP0211459.

2 Catalan Numbers

2.1 Bounds of Character Sums

Let \mathcal{X} denote the set of multiplicative characters of the multiplicative group \mathbb{F}_p^* and let $\mathcal{X}^* = \mathcal{X}\setminus\{\chi_0\}$ be the set of nonprincipal characters.

We start with estimating individual sums. It is clear that $b_n c_n \not\equiv 0 \pmod{p}$ for $0 \leq n < p/2$, so we start with estimating character sums over this interval.

Theorem 1. Let H and N be integers with $0 \leq H < H + N < p/2$. Then the following bound holds

$$\max_{\chi \in \mathcal{X}^*} \{|S(\chi; H, N)|, |T(\chi; H, N)|\} \ll N^{3/4} p^{1/8} (\log p)^{1/4}.$$

Proof. For any integer $k \geq 0$ we have

$$S(\chi; H, N) = \sum_{n=H+1}^{H+N} \chi(b_{n+k}) + O(k).$$
Therefore, for any integer $K \geq 0$,

$$S(\chi, H, N) = \frac{1}{K}W + O(K), \quad (6)$$

where

$$W = \sum_{H+1}^{K-1} \sum_{n=H+1}^{H+N} \chi(b_{n+k}) = \sum_{n=H+1}^{H+N} \sum_{k=1}^{K} \chi(b_n \prod_{i=1}^{k} \frac{2n+2i-1}{n+i})$$

and

$$W = \sum_{n=H+1}^{H+N} \chi(b_n) \sum_{k=0}^{K-1} \chi\left(\prod_{i=1}^{k} \frac{2n+2i-1}{n+i}\right). \quad (7)$$

We recall that $|z|^2 = z \bar{z}$ for any complex number z, and that $\bar{\chi}(a) = \chi(a^{-1})$ holds for every integer $a \not\equiv 0 \pmod{p}$, where $\bar{\chi}$ is the conjugate character of χ. Therefore, applying the Cauchy inequality, we derive

$$|W|^2 \leq N \sum_{n=H+1}^{H+N} \chi\left(\prod_{i=1}^{k} \frac{2n+2i-1}{n+i}\right)^2$$

$$= N \sum_{k,m=0}^{K-1} \sum_{n=H+1}^{H+N} \chi(\Psi_{k,m}(n)),$$

where

$$\Psi_{k,m}(X) = \prod_{i=1}^{k} \frac{2X+2i-1}{X+i} \prod_{j=1}^{m} \frac{X+j}{2X+2j-1}. \quad (8)$$

Clearly, if $K < p$ then, unless $k = m$, the rational function $\Psi_{k,m}(X)$, has at least one single root or pole, and thus is not a power of any other rational function modulo p.

For the $O(K)$ choices of $0 \leq k = m \leq K - 1$, we estimate the sum over n trivially as N.

For the other $O(K^2)$ choices of $0 \leq k, m \leq K - 1$, using the Weil bound given in Example 12 of Appendix 5 of [18] (see also Theorem 3 of Chapter 6 in [12], or Theorem 5.41 and the comments to Chapter 5 of [13]), we see that, because $\chi \in \mathcal{X}^*$,

$$\sum_{n=0}^{p-1} \chi(\Psi_{k,m}(n)) e(n) = O(Kp^{1/2}).$$
where \(e(z) = \exp(2\pi iz/p) \) and \(\iota = \sqrt{-1} \). Therefore, by the standard reduction of incomplete sums to complete ones (see [5]), we deduce
\[
\sum_{n=H}^{H+N} \chi(\Psi_{k,m}(n)) = O(Kp^{1/2} \log p).
\]
Putting everything together, we get
\[
|W|^2 \ll N \left(KN + K^3 p^{1/2} \log p \right).
\]
Therefore, by (6), we derive
\[
S(\chi, H, N) \ll NK^{-1/2} + K^{1/2} N^{1/2} p^{1/4} (\log p)^{1/2} + K.
\]
Taking \(K = \left\lfloor N^{1/2} p^{-1/4} (\log p)^{-1/2} \right\rfloor \), we obtain the desired bound for the sums \(S(\chi, H, N) \).

The sums \(T(\chi, H, N) \) can be estimated completely analogously. \(\square \)

We remark that it trivially follows from (7) that
\[
|W|^2 \leq N \sum_{n=0}^{p-1} \left| \sum_{k=0}^{K-1} \chi \left(\prod_{i=1}^{k} \frac{2n + 2i - 1}{n + i} \right) \right|^2.
\]
Hence, we apply the Weil bound for complete sums which leads us to the estimate
\[
|W|^2 \ll N \left(Kp + K^3 p^{1/2} \right).
\]
Taking \(K = \left\lfloor N^{1/2} p^{-1/4} \right\rfloor \), we derive
\[
\max_{\chi \in \chi'} \{|S(\chi; H, N)|, |T(\chi; H, N)|\} \ll p^{7/8},
\]
which is a little better than the bound of Theorem 1 when \(N \) is of order close to \(p \).

We also need some estimates “on average”.

Theorem 2. Let \(H \) and \(N \) be integers with \(0 \leq H < H + N < p/2 \). For any integer \(\nu \geq 1 \) the following bound holds
\[
\max \left\{ \sum_{\chi \in \chi'} |S(\chi, H, N)|^{2\nu}, \sum_{\chi \in \chi'} |T(\chi, H, N)|^{2\nu} \right\} \ll pN^{2\nu - 1 + 2^{-\nu}}.
\]
Proof. We recall the identity
\[
\sum_{\chi \in \mathcal{X}} \chi(u) = \begin{cases}
0, & \text{if } u \not\equiv 1 \pmod{p}, \\
-1, & \text{if } u \equiv 1 \pmod{p}.
\end{cases}
\] (10)

We remark that, by (10), we have
\[
\sum_{\chi \in \mathcal{X}} |S(\chi, H, N)|^{2\nu} = (p-1)I_\nu(H, N),
\]
where \(I_\nu(H, N)\) is the number of solutions to the congruence
\[
\prod_{i=1}^{\nu} b_{n_i} \equiv \prod_{i=\nu+1}^{2\nu} b_{n_i} \pmod{p}, \quad H + 1 \leq n_1, \ldots, n_{2\nu} \leq H + N.
\]

We prove by induction on \(\nu\) that
\[
I_\nu(H, N) \ll N^{2\nu-2} + 2^{-\nu}.
\]
The implied constant above depends on \(\nu\). If \(\nu = 1\), then arguing as in the proof of Theorem 1, we derive that for any integer \(K \geq 1\)
\[
|S(\chi, H, N)|^2 \ll K^{-2} N \sum_{k,m=0}^{K-1} \sum_{n=H+1}^{H+N} \chi(\Psi_{k,m}(n)) + K^2,
\]
where \(\Psi_{k,m}(X)\) is given by (8). Therefore,
\[
\sum_{\chi \in \mathcal{X}} |S(\chi, H, N)|^2
\ll K^{-2} N \sum_{k,m=0}^{K-1} \sum_{n=H+1}^{H+N} \chi(\Psi_{k,m}(n)) + pK^2.
\]

Then, from (10), we see that the sum over \(\chi\) vanishes, unless
\[
\Psi_{k,m}(n) \equiv 1 \pmod{p},
\]
in which case it equals \(p - 1\). For the \(K\) pairs \((k, m)\) with \(k = m\) there are \(N\) possible solutions to (11), while for the other \(O(K^2)\) pairs there are \(O(K)\) solutions to (11). Thus,
\[
\sum_{\chi \in \mathcal{X}} |S(\chi, H, N)|^2 \ll K^{-2} N (K^3 + KN) p + pK^2
\]
\[
= (NK + N^2 K^{-1} + K^2) p.
\]
Taking $K = \lceil N^{1/2} \rceil$, we deduce

$$I_\nu(H, N) = \frac{1}{p-1} \sum_{\chi \in \mathcal{X}} |S(\chi, H, N)|^2 \ll N^{3/2}.$$

Assume now that $\nu \geq 2$ and that

$$I_{\nu-1}(H, N) \ll pN^{2\nu-3+2^{-\nu+1}}.$$

We fix some $K < N$ and note that by the Cauchy inequality we have

$$\left| \sum_{n=H+1}^{H+N} \chi((b_n)) \right|^2 \leq K \sum_{k=1}^{K} \sum_{H+(k-1)N/K < m \leq H+kN/K} \chi((b_n))^2.$$

Therefore,

$$\sum_{\chi \in \mathcal{X}} |S(\chi, H, N)|^{2\nu} \leq K \sum_{k=1}^{K} \sum_{H+(k-1)N/K < m \leq H+kN/K} \chi((b_n))^2 \times \left| \sum_{n=H+1}^{H+N} \chi(b_n) \right|^{2\nu-2} = K \tilde{I}_\nu(K, H, N),$$

where $\tilde{I}_\nu(K, H, N)$ is the number of solutions to the congruence

$$b_{m_1} b_{n_1} \equiv b_{m_2} b_{n_2} \quad (\text{mod } p),$$

with $H + 1 \leq n_1, \ldots, n_{2\nu-2} \leq H + N$, and $H + (k-1)N/K < m_1, m_2 \leq H + kN/K$ for some $k = 1, \ldots, K$. For each of the N pairs (m_1, m_2) with $m_1 = m_2$ there are exactly $I_{\nu-1}(H, N)$ solutions. We also see that if $n_1, \ldots, n_{2\nu-2}$ are given then for each fixed value of $r = m_1 - m_2$ there are no more than $|r|$ solutions in m_1, m_2 (because at least one of m_1 or m_2 satisfies a nontrivial
polynomial congruence of degree $|r|$. Certainly, $r = O(N/H)$. Putting everything together and using the induction assumption, we obtain
\[\tilde{I}_\nu(K, H, N) \ll NI_{\nu-1}(H, N) + (N/K)^2 N^{2\nu-2} = N^{2\nu-2+2^{-\nu+1}} + N^{2\nu} K^{-2}. \]
Therefore $I_\nu(H, N) \ll K N^{2\nu-2+2^{-\nu+1}} + N^{2\nu} K^{-1}$. Choosing $K = \left\lceil N^{1-2^{-\nu}} \right\rceil$, we obtain the desired bound for the sums $S(\chi, H, N)$.

The sums $T(\chi, H, N)$ can be estimated completely analogously. \quad \Box

2.2 Distribution in Residue Classes

Theorem 3. For all sufficiently large primes p and every integer λ there exist positive integers $r, s \leq p^{13/2}(\log p)^6$ such that $b_r \equiv c_s \equiv \lambda \pmod{p}$.

Proof. If $\lambda \equiv 0 \pmod{p}$, we simply take $r = s = (p + 1)/2$.

We now assume that $\lambda \not\equiv 0 \pmod{p}$.

We put $N = \left\lfloor p^{1/2}(\log p)^6 \right\rfloor$ and consider the set \mathcal{N} of positive integers n whose p-ary representation is of the form
\[n = n_0 + \ldots + n_6 p^6, \quad 0 \leq n_0, \ldots, n_5 \leq \frac{p - 1}{2}, \quad 0 \leq n_6 \leq N. \quad (12) \]

Let $Q(N, \lambda)$ be the number of solutions to the congruence
\[b_n \equiv \lambda \pmod{p} \quad n \in \mathcal{N}. \]

By (10), we have
\[Q(N, \lambda) = \frac{1}{p - 1} \sum_{n \in \mathcal{N}} \sum_{\chi \in \mathcal{X}} \chi(\lambda^{-1} b_n) = \frac{1}{p - 1} \sum_{\chi \in \mathcal{X}} \chi(\lambda^{-1} n) \sum_{n \in \mathcal{N}} \chi(b_n). \]

Separating the term
\[\# \mathcal{N} = \frac{(N + 1)(p + 1)^5}{2^6}, \]

corresponding to the principal character χ_0, we obtain
\[\left| Q(N, \lambda) - \frac{N(p - 1)^5}{2^6} \right| \leq \frac{1}{p - 1} \sum_{\chi \in \mathcal{X}^*} \left| \sum_{n \in \mathcal{N}} \chi(b_n) \right|. \]
We now see that, by (1),
\[
\sum_{n \in \mathcal{N}} \chi(b_n) = (S(\chi; 0, (p - 1)/2) + 1)^6 (S(\chi; 0, N) + 1)
\]
(since \(\chi(b_0) = \chi(1) = 1\)).

Hence, applying Theorem 1, and then Theorem 2 with \(\nu = 1\), we obtain
\[
\frac{1}{p - 1} \left| \sum_{\chi \in \chi^*} \sum_{n \in \mathcal{N}} \chi(b_n) \right| \\
\leq \frac{1}{p - 1} \sum_{\chi \in \chi^*} \left(|S(\chi; 0, (p - 1)/2)| + 1 \right)^6 \left(|S(\chi; 0, N)| + 1 \right)
\ll \frac{1}{p - 1} N^{3/4} p^{1/8} (\log p)^{1/4} \left(p^{7/8} (\log p)^{1/4} \right)^4 \times \sum_{\chi \in \chi^*} \left(|S(\chi; 0, (p - 1)/2)|^2 + 1 \right)
\ll \frac{1}{p - 1} N^{3/4} p^{1/8} (\log p)^{1/4} \left(p^{7/8} (\log p)^{1/4} \right)^4 p^{5/2}
= N^{3/4} p^{41/8} (\log p)^{5/4}.
\]

Therefore,
\[
Q(N, \lambda) = \frac{(N + 1)(p + 1)^5}{2^6} + O \left(N^{3/4} p^{41/8} (\log p)^{5/4} \right)
= \frac{(N + 1)(p + 1)^5}{2^6} \left(1 + O \left(N^{-1/4} p^{1/8} (\log p)^{5/4} \right) \right). \tag{13}
\]

Recalling the choice of \(N\), we see that \(Q(N, \lambda) > 0\) for sufficiently large \(p\). Therefore \(b_n \equiv \lambda \pmod{p}\) for some positive integer \(r \leq p^6 N \leq p^{13/2} (\log p)^6\).

Similar arguments also show that \(c_n \equiv \lambda \pmod{p}\) for some positive integer \(s \leq N \leq p^{13/2} (\log p)^6\). \(\square\)

Since \(b_n \not\equiv 0 \pmod{p}\) if and only if the \(p\)-ary digits of \(n\) are all less than \(p/2\), we see from (13) that for every \(\lambda \not\equiv 0 \pmod{p}\) the number of solutions of each of the congruences
\[
b_n \equiv \lambda \pmod{p} \quad \text{and} \quad c_n \equiv \lambda \pmod{p},
\]
for \(0 \leq n \leq p^7 - 1\) is \(2^{-7} p^6 \left(1 + O \left(p^{-1/8} (\log p)^{5/4} \right) \right)\). In fact, using (9), this can be slightly improved to \(2^{-7} p^6 \left(1 + O \left(p^{-1/8} \right) \right)\).
3 PR-Sequences

3.1 The Set of Residues

We start with the following property of PR-sequences.

Lemma 4. Let $(u_n^{(j)})_{n \geq 0}$ be PR-sequences of integers of type (ℓ_j, d), with $\ell_j \leq \ell$ for $j = 1, \ldots, m$. Let

$$v_n = \sum_{j=1}^{m} \lambda_j u_n^{(j)}, \quad n = 0, 1, \ldots,$$

where λ_j are arbitrary integers. Then $(v_n)_{n \geq 0}$ is a PR-sequence of integers of type $(2m\ell, 2dm\ell)$.

Proof. Assume that the sequences $(u_n^{(j)})_{n \geq 0}$ satisfy the recurrences

$$\sum_{i=0}^{\ell_j} f_i^{(j)}(n) u_n^{(j)} = 0,$$

with $f_i^{(j)}(X) \in \mathbb{Z}[X]$ for $i = 0, \ldots, \ell_j$, and where for each $j = 1, \ldots, m$ not all polynomials $f_i^{(j)}(X)$, $i = 0, \ldots, \ell_j$, are zero. Furthermore, we assume that $\ell_j \leq \ell$ for $j = 0, \ldots, m$, and that the degrees of all the polynomials $f_i^{(j)}$ are at most d.

Without loss of generality, we may assume that $\lambda_j \neq 0$ and that $f_0^{(j)}(X)$ is not the zero polynomial for $j = 1, \ldots, m$.

It is enough to that for $t = 2m\ell$ there exist $t + 1$ polynomials $F_i(X) \in \mathbb{Z}[X]$, not all zero and of degrees at most $D = 2dm\ell$, such that

$$\sum_{i=0}^{t} F_i(n)v_{n+t-i} = 0, \quad n = 0, 1, \ldots.$$

By replacing the sequence $(u_n^{(j)})_{n \geq 0}$ by the sequence $(\lambda_j u_n^{(j)})_{n \geq 1}$, we may assume that $\lambda_j = 1$ for all $j = 1, \ldots, m$. We now show that for each $h \geq 0$, we have a relation of the form

$$u_{n+h}^{(j)} = \sum_{i=0}^{\ell_j} g_{n,j,h}(n) u_{n+i}^{(j)},$$

12
where \(g_{i,j,h}(X) \) are rational functions which are ratios of two polynomials, each one of them of degree at most \(\max\{0, (h-\ell_j+1)d\} \). Indeed, if \(h \leq \ell_j - 1 \), we set \(g_{i,j,h}(X) = 1 \) if \(i = j \) and we set \(g_{i,j,h}(X) = 0 \) otherwise. Then relations (15) are fulfilled. If \(h = \ell_j \), we simply set \(g_{i,j,\ell_j}(X) = -f_{\ell_j-i}(X)/f_0(X) \) and relation (15) is then a consequence of the recurrence (14). We now proceed by induction on \(h \). Assuming that (15) holds for \(h \), then

\[
\begin{align*}
\sum_{i=0}^{\ell_j-1} g_{i,j,h}(n+1)u^{(j)}_{n+1+i} \\
\sum_{i=0}^{\ell_j-2} g_{i,j,h}(n+1)u^{(j)}_{n+1+i} + g_{\ell_j-1,j,h}(n+1)u^{(j)}_{n+\ell_j} \\
g_{\ell_j-1,j,h}(n+1)g_{0,j,\ell_j}(n)u^{(j)}_{n} \\
+ \sum_{i=1}^{\ell_j-1} (g_{i-1,j,h}(n+1) + g_{\ell_j-1,j,h}(n+1)g_{i,j,\ell_j}(n)) u^{(j)}_{n+i},
\end{align*}
\]

and so (15) holds for \(h+1 \) if we set

\[
g_{0,j,h+1}(X) = g_{\ell_j-1,j,h}(X+1)g_{0,j,\ell_j}(X),
\]

and

\[
g_{i,j,h+1}(X) = g_{i-1,j,h}(X+1) + g_{\ell_j-1,j,h}(X+1)g_{i,j,\ell_j}(X), \quad i = 1, \ldots, \ell_j - 1.
\]

The assertion about the degrees is now obvious.

Equipped with the representation (15), it follows that if \(F_i(X) \in \mathbb{Z}[X] \) for \(i = 0, \ldots, t \) are any polynomials, then

\[
\sum_{i=0}^{n} F_i(n)v_{n+t-i} = \sum_{h=0}^{t} v_{n+h}h_{t-h}(n)
\]

\[
= \sum_{j=1}^{m} \sum_{i=0}^{\ell_j-1} \left(\sum_{h=0}^{t} g_{i,j,h}(n)F_{t-h}(n) \right) u^{(j)}_{n+i},
\]

In order for the above expression to be zero, it suffices that

\[
\sum_{h=0}^{t} g_{i,j,h}(X)F_{t-h}(X) = 0 \quad (16)
\]
holds identically over \(\mathbb{Z}[X] \), for all \(j = 1, \ldots, m \) and \(i = 0, \ldots, k_j - 1 \).

Assume that \(F_i(X) \in \mathbb{Z}[X] \), \(i = 0, \ldots, t \) are polynomials of degree at most \(D \). Then the left hand side of (16) is a polynomial of degree at most \(td + D \). Thus (16) leads to a homogeneous system of

\[
(td + D + 1) \sum_{j=1}^{m} \ell_j \leq (td + D + 1) m \ell
\]

linear equations in \(t(D + 1) \) variables. This system has a nontrivial solution provided that

\[
(t + 1)(D + 1) \geq (td + D + 1) m \ell.
\]

Recalling that \(t = 2m \ell \) we see that \(D = td = 2dm \ell \) satisfies this inequality, which completes the proof.

Recall that \((u_n)_{n \geq 0}\) is a linear recurrence sequence if and only if \((u_n)_{n \geq 0}\) is a \(PR \)-sequence having a recurrence whose coefficients are constant polynomials (not all zero). We say that \((u_n)_{n \geq 0}\) is a proper \(PR \)-sequence if it is a \(PR \)-sequence and there is no \(n_0 \) such that \((u_n)_{n \geq n_0}\) is a linear recurrence sequence.

Theorem 5. Let \((u_n)_{n \geq 0}\) be a proper \(PR \)-sequence of integers of type \((\ell, d)\). For a prime number \(p \) we put

\[
V(p) = \{ u_n \pmod{p} : n = 0, 1, \ldots \}.
\]

Then the estimate \#\(V(p)\) \(\gg p^\beta \) holds, where

\[
\beta = \frac{1}{2d \ell(\ell + 1)^2}.
\]

Proof. Write

\[
\sum_{i=0}^{\ell} f_i(n)u_{n+i-1} = \sum_{j=0}^{D} L_j(u_n, \ldots, u_{n+\ell}) n^j,
\]

where \(L_j(X_0, \ldots, X_\ell) \) are linear forms with integer coefficients. Since at least one of the polynomials \(f_i(X) \) is nonzero, it follows that there exists \(j_0 \) such that \(L_{j_0} \) is not the zero form. We write \(v_n = L_{j_0}(u_n, \ldots, u_{n+\ell}) \) and apply Lemma 4 to deduce that there exists a recurrence

\[
\sum_{i=1}^{\ell} g_i(X)v_{n+i-1} = 0, \quad n = 0, 1, \ldots,
\]

(17)
where \(g_i(X) \in \mathbb{Z}[X] \) are polynomials for \(i = 0, \ldots, t \leq 2\ell(\ell + 1) \) of degrees not exceeding \(D = 2d\ell(\ell + 1) \). We assume, without loss of generality, that \(g_0(X)g_t(X) \), is not the zero polynomial. Let \(n_0 \) the largest positive integer root of \(g_0(X)g_t(X) \) (if this polynomial does not have positive integer roots we take \(n_0 = 0 \)), and let \(\delta \) be such that the inequality \(n < \delta y^{1/D} \) implies that \(|g_t(n)| < y \) holds for all \(y \geq n_0 + 1 \). Put \(I = \mathbb{Z} \cap [n_0 + 1, \delta p^{1/D} - t] \), and assume that \(p \) is a large enough prime so that \(I \) is not empty.

For each \(n \in I \), the recurrence (2) gives a relation for \(n \) of the type

\[
 f_0(n)w_0 + \ldots + f_t(n)w_t \equiv 0 \pmod{p},
\]

(18)

where the vector \((w_0, \ldots, w_t) \equiv (u_{n+\ell}, \ldots, u_n) \pmod{p}\) is an element of \(V(p)^{t+1} \), so it can take at most \(\#V(p)^{t+1} \) values.

Whenever \((w_0, \ldots, w_t)\) is such that the above relation (18) is a nontrivial polynomial relation modulo \(p \) for \(n \), the number of values of \(n \) which satisfy (18) is at most \(D \). Hence, there are at most \(D\#V(p)^{t+1} \) values of \(n \in I \) for which the above polynomial relation (18) is nontrivial.

If the relation (18) is trivial, then the polynomial

\[
 \sum_{j=0}^{D} L_j(w_0, \ldots, w_t)X^j \in \mathbb{Z}[X]
\]

is identically zero modulo \(p \). In particular,

\[
 L_{j_0}(u_{n}, \ldots, u_{n+\ell}) \equiv 0 \pmod{p}.
\]

(19)

Assume that (19) holds for \(t \) consecutive values of \(n \in I \). Let those values of \(n \) be \(m+1, \ldots, m+t \). Evaluating the formula (17) in \(n = m \) and reducing modulo \(p \), we get

\[
 g_t(m)v_m \equiv 0 \pmod{p}.
\]

Since \(m \in I \), it follows that \(|g_t(m)| < p \) and \(g_t(m) \neq 0 \). Hence, the above congruence implies that \(v_m \equiv 0 \pmod{p} \). Continuing in this way, we see that \(v_i \equiv 0 \pmod{p} \), for all integers \(n_0 < i \leq m \). In particular, assuming that \(p \) is large enough, we see that in this case \(v_i = 0 \) for \(i = n_0 + 1, \ldots, n_0 + t - 1 \). However, this implies that \(v_i = 0 \) for all \(i > n_0 \), which means that \((u_n)_{n\geq n_0+1}\) is a linear recurrence sequence, contradicting our assumption. Thus, the congruence (19) cannot hold for \(t \) consecutive values of \(n \in I \). This shows
that one out of every \(t \) elements in \(\mathcal{I} \) has the property that its associated congruence (18) is not trivial. In turn, this shows that

\[
D \# \mathcal{V}(p)^{\ell+1} \geq \left\lfloor \frac{\# \mathcal{I}}{t} \right\rfloor \gg p^{1/D},
\]
giving the claimed result.

\[\square\]

Remark 6. In some instances, one may deduce a better inequality. For instance, assume that \((u_n)_{n \geq 0}\) satisfies the recurrence (2) where the polynomials \(f_0(X), \ldots, f_\ell(X)\) are linearly independent over \(\mathbb{Q}\). Here, we no longer assume that \((u_n)_{n \geq 0}\) is a proper \(\mathbf{PR}\)-sequence. It is then clear that they remain linearly independent over the finite field with \(p\) elements \(\mathbb{Z}_p\) if \(p\) is sufficiently large. Furthermore, in this case the relation (18) cannot be trivial. The above argument now easily yields a stronger and more general bound

\[
\# \mathcal{V}(N; p) \gg p^{1/(\ell+1)}
\]

where

\[
\mathcal{V}(N; p) = \{u_n \pmod{p} : n = 0, \ldots, N - 1\}.
\]

Using recurrence (5) and observing that the three polynomials \(f_0(X) = X^3, f_1(X) = 34X^3 - 51X^2 + 27X - 5, f_2(X) = (X - 1)^3\) are linearly independent over \(\mathbb{Q}\), one uses the argument of Remark 6 to derive the inequality

\[
\# \mathcal{V}(p, N) \geq \left(\frac{N - 2}{3}\right)^{1/3}
\]

for the case of the Apéry numbers.

In order to be able to deal with the sequences \((b_{v,n})_{n \geq 1}\) and \((\tilde{b}_{v,n})_{n \geq 0}\), it suffices to show that they are not linear recurrence sequences from some point on. Note that we need that \(\nu \geq 2\), otherwise \(b_{1,n} = 2^n\) and \(\tilde{b}_{1,n} = 0\). When \(\nu = 2\), we have \(b_{2,n} = b_n\), thus Remark 6 applies again (in any case for this sequence, stronger results are obtained in Section 2). Assume now that \(\nu \geq 3\).

Since

\[
\binom{n}{k} \leq \left(\frac{n}{\lfloor n/2\rfloor}\right) \sim \frac{2^n}{n^{1/2}}, \quad k = 0, \ldots, n,
\]

it follows easily that

\[
\frac{2^{\nu n}}{n^{\nu/2}} \ll b_{\nu}(n) \ll \frac{2^{\nu n}}{n^{\nu/2-1}}.
\]

16
Furthermore,
\[
\tilde{b}_{\nu,n} \sim \frac{(2\cos(\pi/2\nu))^{2\nu+\nu-1}}{\sqrt{2}^\nu 2^{\nu-2} (\pi n)^{(\nu-1)/2}}
\]

for \(\nu \geq 2 \) (see [4]).

Now the fact that \((b_{\nu,n})_{n\geq1}\) and \((\tilde{b}_{\nu,n})_{n\geq0}\) are not linear recurrence sequences from some point on follows immediately from Theorem 2.6 of [7].

3.2 The Waring Problem and Distribution of Residues

As we have remarked, Apéry numbers \((a_n)_{n\geq0}\) as well as sums of powers of binomial coefficients \((b_{\nu,n})_{n\geq1}\) and \((\tilde{b}_{\nu,n})_{n\geq0}\) are proper \textbf{PR}-sequence which also have the Lucas property. Here we show that all such sequences form a finite additive basis modulo \(p\) for every sufficiently large prime \(p\).

Theorem 7. Let \((u_n)_{n\geq0}\) be a proper \textbf{PR}-sequence of integers of type \((\ell,d)\) with the Lucas property. There exists an absolute constant \(c > 0\) such that for \(m = \lceil (d\ell)^c \rceil\), \(s = \lceil \exp((d\ell)^c) \rceil\), and every sufficiently large prime \(p\), the congruence

\[
u_{n_1} + \ldots + \nu_{n_s} \equiv \lambda \pmod{p}
\]

has a solution for any integer \(\lambda\) in some nonnegative integers \(n_1, \ldots, n_s < p^m\).

Proof. Let \(T\) be a set of the largest possible cardinality of positive integers \(t \leq p\) such that \(u_t\) with \(t \in T\) are pairwise distinct. By Theorem 5, we have \(\#T \gg p^\beta\) where \(\beta = 1/(2d\ell(\ell+1)^2)\). Therefore, by the result of [3], there are some positive constants, \(c_1, c_2, c_3\) such that for any \(m > \lceil \beta^{-1} \rceil\) and \(\gamma = \exp(-c_2\beta^{-c_3})\), the bound

\[
\max_{\gcd(a,p) = 1} \left| \sum_{t_0, \ldots, t_{m-1} \in \mathcal{T}} e(a u_{t_0} \ldots u_{t_{m-1}}) \right| \ll (\#T)^m p^{-\gamma},
\]

holds, where, as before, \(e(z) = \exp(2\pi iz/p)\) and \(i = \sqrt{-1}\).

Denoting by \(\mathcal{N}\) the set of positive integers \(n\) whose \(p\)-ary expansion is of the form \(n = t_0 + \ldots + t_{m-1}p^{m-1}\) with \(t_0, \ldots, t_{m-1} \in T\), we see, by (3), that the previous bound is equivalent to

\[
\max_{\gcd(c,p) = 1} \left| \sum_{n \in \mathcal{N}} e(c u_n) \right| \ll \#\mathcal{N} p^{-\gamma}.
\]
From the identity

\[\sum_{c=0}^{p-1} e(cu) = \begin{cases} 0, & \text{if } u \not\equiv 0 \pmod{p}, \\ p, & \text{if } u \equiv 0 \pmod{p}, \end{cases} \]

we deduce that the number \(Q(\lambda) \) of solutions of the congruence of the theorem with \(n_1, \ldots, n_s \in \mathcal{N} \) can be expressed as

\[
Q(\lambda) = \frac{1}{p} \sum_{c=0}^{p-1} \sum_{n_1, \ldots, n_s \in \mathcal{N}} e(c(u_{n_1} + \ldots + u_{n_s} - \lambda)) = \frac{1}{p} \sum_{c=0}^{p-1} e(-c\lambda) \left(\sum_{n \in \mathcal{N}} e(cu_n) \right)^m.
\]

Separating the term \((\#\mathcal{N})^s p^{-1}\) corresponding to \(c = 0 \) and using (20) for the other terms, we derive

\[
Q(\lambda) = (\#\mathcal{N})^s p^{-1} + O\left((\#\mathcal{N})^s p^{-\gamma s} \right).
\]

Thus, for any \(s > \lfloor \gamma^{-1} \rfloor + 1 \), we see that \(Q(\lambda) > 0 \) for all sufficiently large \(p \). Since \(\beta^{-1} = 2d\ell(\ell + 1)^2 \leq 8d\ell^3 \leq d^4\ell^3 \), we obtain the desired result for an appropriate value of \(c \).

Very similar ideas also lead to the following result:

Theorem 8. Let \((u_n)_{n \geq 0}\) be a proper PR-sequence of integers of type \((\ell, d)\) with the Lucas property. There exists an absolute constant \(c > 0 \) such that for \(m = \lceil (d\ell)^c \rceil \), \(\alpha = \exp(-d\ell^c) \), and every sufficiently large prime \(p \), the congruence

\[u_n \equiv \lambda + \eta \pmod{p} \]

has a solution for every integer \(\lambda \) in some nonnegative integers \(n < p^m \) and \(\eta \leq p^{1-\alpha} \).

Proof. The proof follows from (20) with any \(\alpha < \gamma \) by standard arguments relating exponential sums and the uniformity of distribution properties of sequences (see, for example, Corollary 3.11 of [16]).

We see that both Theorem 7 and Theorem 8 apply to Apéry numbers \((a_n)_{n \geq 0}\) and sums of powers of binomial coefficients \((b_{\nu,n})_{n \geq 1}\) and \((\tilde{b}_{\nu,n})_{n \geq 0}\).
References

