
Efficient Scalar Multiplication
by Isogeny Decompositions

Christophe Doche1, Thomas Icart2, and David R. Kohel3

1 Department of Computing,
Macquarie University, Australia

doche@ics.mq.edu.au
2 Laboratoire d’Informatique de l’École Polytechnique, France
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Abstract. On an elliptic curve, the degree of an isogeny corresponds
essentially to the degrees of the polynomial expressions involved in its
application. The multiplication–by–� map [�] has degree �2, therefore
the complexity to directly evaluate [�](P ) is O(�2). For a small prime
� (= 2, 3) such that the additive binary representation provides no bet-
ter performance, this represents the true cost of application of scalar
multiplication. If an elliptic curve admits an isogeny ϕ of degree � then
the costs of computing ϕ(P ) should in contrast be O(�) field operations.
Since we then have a product expression [�] = ϕ̂ϕ, the existence of an
�-isogeny ϕ on an elliptic curve yields a theoretical improvement from
O(�2) to O(�) field operations for the evaluation of [�](P ) by näıve ap-
plication of the defining polynomials. In this work we investigate actual
improvements for small � of this asymptotic complexity. For this pur-
pose, we describe the general construction of families of curves with a
suitable decomposition [�] = ϕ̂ϕ, and provide explicit examples of such
a family of curves with simple decomposition for [3]. Finally we derive a
new tripling algorithm to find complexity improvements to triplication
on a curve in certain projective coordinate systems, then combine this
new operation to non-adjacent forms for �-adic expansions in order to
obtain an improved strategy for scalar multiplication on elliptic curves.

Keywords: Elliptic curve cryptography, fast arithmetic, efficiently com-
putable isogenies, efficient tripling, �-adic NAFw.

1 Introduction

Given an elliptic curve E/K, together with a point P ∈ E(K) and an inte-
ger k, the efficient computation of the scalar multiple [k]P is central in elliptic
curve cryptography. Many ways to speed up this computation have been actively
researched. For instance, one can cite

• the use of alternative representations for the scalar multiple k (non-adjacent
forms [MO90, CMO97, TYW04], ternary/binary approach [CJLM05], or the
Dual Base Number System [DJM99, CS05]).
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• the improvement of existing operations by use of other systems of coordinates
(projective , weighted projective [CMO98]) and the introduction of new basic
operations like [2]P ± Q, [3]P , [3]P ± Q, [4]P , [4P ] ± Q (see [CJLM05,
DIM05]).

• the use of endomorphisms (first on a singular curve that appeared to be
insecure [MV90], later with Koblitz curves [Kob92, Sol00, Lan05] and GLV
curves [GLV01, CLSQ03]).

See [ACD+05, chaps. 9, 13, and 15] and [HMV03] for a more comprehensive
description of all the techniques involved.

The purpose of this article is to investigate new and more efficient ways to
compute the multiplication–by–� map. Our method relies on the use of isogenies
but is different from the one developped in [BJ03]. Indeed, given an integer � � 2,
it is possible in some cases and for well chosen families of curves to split the map
[�] as the product of two isogenies. A direct computation of [�]P involves the
evaluation of rational polynomials of degree �2. The interest of this approach is
that the isogenies ϕ and ϕ̂ such that [�] = ϕ̂ϕ will be both of degree �. Therefore
it should be possible to obtain more efficient formulas to compute [�] this way.
We investigate this idea for small values of �, especially 2 and 3 and obtain a
more efficient tripling leading to a very fast scalar multiplication algorithm.

2 Splitting Multiplication by �

In this section we describe the definitions and background results for existence
and construction of an �-isogeny ϕ such that [�] = ϕ̂ϕ.

2.1 Subgroup (Schemes) Defined over K

Let E be an elliptic curve over a field K, with defining equation

F (x, y) = y2 + (a1x + a3)y − (x3 + a2x
2 + a4x + a6) = 0.

We give an elementary background on concepts and conditions for torsion sub-
groups to be defined over the base field K.

Definition 2.1. Let N be an integer greater than 1 and let E[N ] be the group
of N -torsion points in K. A torsion subgroup G of E[N ] is said to be defined
over K or to be K-rational if G\{O} is the zero set of a finite set of polynomials
{f1(x, y), . . . , fn(x, y)} in K[x, y]/

(
F (x, y)

)
.

A torsion subgroup can be specified by two polynomials, one of which is the
polynomial ψG(x) whose roots are the x-coordinates of the points P = (x, y)
in G. If N is odd, then this polynomial suffices to define the torsion subgroup.
If N is even, then the full ideal of polynomials which have zeros on G cannot
be specified as a single polynomial in x. As an example, if G = {O, (x0, y0)},
where (x0, y0) is a 2-torsion point, then G is determined as the zero set of the
polynomial x−x0, but both y − y0 and 2y + a1x+ a3 are zero on {(x0, y0)}, but
are not in the ideal (x − x0).
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From the odd case, we see that the condition for a subgroup to be K-rational
is not that the points have coefficients in K, but that the symmetric functions
in these coefficients must lie in K. Since every finite subgroup G of E

(
K

)
is the

kernel of an isogeny ϕG : E → E′, the question of whether the subgroup can be
defined over K, is related to the K-rationality of the isogeny ϕG. The following
classical theorem states that these concepts are equivalent.

Theorem 2.1. A finite subgroup G of E is K-rational if and only if G is the
kernel of an isogeny ψ : E → E′ defined over K.

Since the subgroup E[N ] of E
(
K

)
is the kernel of the scalar multiplication [N ],

which is defined over K, we obtain:

Corollary 2.1. Every torsion subgroup E[N ] is K-rational.

The defining polynomials for the N -torsion subgroups are the division polyno-
mials ψN (x, y), which are computable by explicit recursive formulas.

Corollary 2.2. Let G and H be two finite K-rational subgroups of E. Then
G ∩ H and G + H are K-rational subgroups of E.

Proof 2.1. The intersection property holds immediately since if G and H are
the zero sets of S = {g1, . . . , gr}, and T = {h1, . . . , hs}, respectively, then G∩H
is the zero set of S ∪T . To prove that G+H is K-rational we apply the theorem
to the isogeny ϕH′ ◦ ϕG where H ′ = ϕG(H).
Combining the previous two corollaries we obtain:

Corollary 2.3. Suppose that E admits an isogeny E → E′ with cyclic kernel of
order N . Then E[�] contains a rational subgroup of order � for every � dividing N .

These corollaries permit us to find a product decomposition for any isogeny, or
its defining kernel subgroup, into scalar multiplications [�] (determined by E[�])
and isogenies of prime degree (given by a rational subgroup G of order �), for
primes � dividing the degree of the isogeny. Since efficient algorithms for scalar
multiplication [�] by small primes have been well-investigated, in the next section
we focus on isogenies of prime order � which “split” the isogeny [�] into a product
of isogenies ϕ and ϕ̂.

2.2 Parameterizations of Cyclic �-Torsion Subgroups

The theory of modular curves gives a means of achieving explicit parameteriza-
tions of families of elliptic curves with the structure of an isogeny of degree �. We
describe the general background to this construction to motivate the examples.

It is well-known that the j-invariant of an elliptic curve E over any field K
determines the isomorphism class of that curve over K. Conversely, any value
j �= 0, 123 is the j-invariant of an elliptic curve

Ej : y2 + xy = x3 − 36
j − 123 x − 1

j − 123 ·

The j-invariant can be identified with a generator of the function field K
(
X(1)

)

of the modular curve X(1), classifying elliptic curves up to isomorphism. We
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view the above equation Ej as a family of elliptic curves over the “j-line”
X(1)\{0, 1, ∞} ∼= A

1\{0, 1}.
In order to determine similar models for elliptic curves which admits an

�-isogeny, or equivalently a K-rational cyclic subgroup G of E[�], we use the mod-
ular curves X0(�) covering X(1).

For the values � = 2, 3, 5, 7, and 13 the curve X0(�) has genus 0, which means
that there exists a modular function u on X0(�) such that K

(
X0(�)

)
= K(u). The

coveringX0(�) → X(1) is determined by an inclusion of function fields K
(
X(1)

)
→

K
(
X0(�)

)
, which means that we can express j as a rational function in u.

For the above values of �, we may use quotients of the Dedekind η function
on the upper half plane

u(q) =
(

η(τ)
η(�τ)

)r

= q−1
∞∏

n=1

(
1 − qn

1 − qn�

)r

where r = 24/ gcd(12, � − 1) and q = exp(2πiτ), to find a relation with the
q-expansion j(q) for the j-function to solve for the expression for the j-function.
Substituting into the above equations we then twist the curve or make a change
of variables to simplify the resulting equation to obtain the models for which
the �-torsion contains a parameterized rational subgroup of order � (over K(u)
or over K for any particular value of u in K). The models used in the isogeny
decompositions which follow may be derived by this technique, with the kernel
polynomial determined by factorization of the �-division polynomial of this curve.

2.3 Parameterized Models

Applying these ideas, we have built families of curves for which [2] or [3] splits
into 2 isogenies of degree respectively 2 and 3. For instance, an elliptic curve
defined over a field of characteristic different from 2 and 3 with a rational 3-
torsion subgroup can be expressed in the form (up to twists):

E : y2 = x3 + 3u(x + 1)2

with the 3-torsion subgroup defined by x = 0; we note that the curve E does not
necessarily have a point of order 3. The image curve, under a certain 3-isogeny
to be specified below, is defined by an equation:

Et : y2 = x3 − u(3x − 4u + 9)2.

Note that the same thing holds in characteristic 2. In fact, an elliptic curve
with a rational 3-torsion subgroup can be expressed in the form (up to twists):

E : y2 + (x + u)y = x3.

It has a rational 3-torsion subgroup defined by x = 0. The image curve is defined
by an equation:

Et : y2 + (x + u + 1)y = x3 + x2 + (u + 1)(x + u + 1).

Explicit formulas of the curves and isogenies to split [2] in characteristic
greater than 2 and to split [3] in characteristic greater than 3 can be found
in Section 3.
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2.4 On Special Versus Generic Elliptic Curves

Since we propose curves of a particular form, it is relevant to make a distinction
between curves of a special form and generic curves.

A family of elliptic curves is a parameterized equation of different elliptic
curves E/K(u1, . . . , ut) in indeterminates u1, . . . , ut. We say that a family of
elliptic curves is geometrically special if, for (u1, . . . , ut) ∈ K

n
, there exists a

finite set of j-invariants of curves in the family. Otherwise, we say that the
family is geometrically general. Standard examples of families are the family of
elliptic curves y2 = x3 + ax + b, over K(a, b) which is geometrically general,
or the family of Koblitz curves y2 + xy = x3 + ax2 + 1 over F2(a) which are
geometrically special.

Any family of curves obtained by the CM construction are geometrically spe-
cial because there exists only a finite set of j-invariants for each fixed discrim-
inant D. Even if D is allowed to vary, in practice there are only a finite set of
candidates D with |D| bounded by the time to compute a class polynomial for
D. Similarly, any family of supersingular elliptic curves is geometrically special,
since there are only finitely many j-invariants of supersingular elliptic curves.

The curves that we introduce lie in geometrically general families because
their invariants give infinitely many j-invariants j = j(u), and conversely, every
j-invariant arises as j(u) for some u in K.

We say that a family is arithmetically special if the properties of the curves in
the family are in some way special with respect to a random curve over K. This
is more imprecise, but to make it more precise one should speak of an arithmetic
invariant, like group order or discriminant of the endomorphism ring which can
distinguish curves in the family and those outside of it. Every special construc-
tion will be arithmetically special. For instance, Jao et al. [JMV05] observe that
curves produced by CM construction are arithmetically special and distinguished
by properties of the discriminant of their endomorphism rings. By construc-
tion we build curves that are arithmetically special, since they all have a cyclic
�-isogeny. In contrast, a curve over a finite field has a 50% chance of such a ra-
tional �-isogeny, and a curve with such a rational isogeny over a number field is
exceptional. Supersingular elliptic curves are arithmetically special with respect
to existence of rational isogenies: over a finite degree extension L/K, all � + 1
cyclic �-isogenies for all � become simultaneously L-rational.

Despite the fact that our families have arithmetically special �-torsion, by
virtue of the criterion by which they are constructed, for any prime n �= �, the
n-torsion and n-isogenies follow the general behavior, and we have no reason
to expect any special properties of the group orders |E(K)| for curves in our
families, apart from the potential factors of � which arise.

3 Efficiently Applicable Isogenies

Let us investigate at present how the multiplications by [2] and [3] can be effi-
ciently split as a product of 2 isogenies in practice.
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3.1 Elliptic Curves with Degree 2 Isogenies

An elliptic curve defined over a field Fq of characteristic �= 2 with a rational
2-torsion subgroup can be expressed in the form (up to twists):

E : y2 = x3 + ux2 + 16ux

with a 2-torsion point (0, 0). The corresponding isogeny of degree 2 is:

(x1, y1) 
→ (xt, yt) =
(

x1 + u

(
1 +

16
x1

)
, y1

(
1 − 16u

x2
1

))
,

to an image curve defined by an equation:

Et : y2 = x3 − 2ux2 + u(u − 64)x.

The isogeny dual to the first isogeny is given by

(xt, yt) 
→ (x2, y2) =
(

1
22

(
xt − 2u +

u(u − 64)
xt

)
, 1

23 yt

(
1 − u(u − 64)

x2
t

))
·

The composition of these maps gives the multiplication–by–2 map on E.
A general quadratic twist of E can be put in the standard Weierstraß form

by a change of variables (x, y) to (x − λu/3, y):

y2 = x3 + λux2 + 16λ2ux −→ y2 = x3 − λ2 u(u − 48)
3

x + λ3 u2(2u − 144)
27

,

over any field of characteristic different form 2 or 3. Conversely, the elliptic curve
y2 = x3 + ax + b has j-invariant j = 6912a3/(4a3 + 27b2). The corresponding
values for (λ, u) are λ = −9b(u − 48)/

(
au(2u − 144)

)
, where u is a root of the

cubic polynomial (u − 48)3 − j(u − 64).

Effective scalar multiplication by splitting [2]. To take advantage of this
splitting, let us introduce a new system of coordinates. Since they are similar to
López-Dahab coordinates (LD) introduced in characteristic 2, cf. [LD98], let us
call them modified López-Dahab coordinates (LDm). A point (x1, y1) in affine co-
ordinates (A) on the elliptic curve E will be represented by (X1, Y1, Z1, Z

2
1 ) where

x1 = X1/Z1 and y1 = Y1/Z
2
1 . It is a simple exercise to check that (X2, Y2, Z2, Z

2
2)

corresponding to (x2, y2) = [2](x1, y1) is given by

A = X2
1 , B = X2

1 − 16uZ2
1 , Yt = Y1 × B,

X2 = B2, Z2 = 4Y 2
1 , C = X2

1 × uZ2
1 ,

D = Z2
2 , E = u(Z2 − 4C), Y2 = Yt

(
2X2 + E + 256C

)
.

The number of elementary operations needed to obtain (X2, Y2, Z2, Z
2
2 ) is thus

5M + 4S, where M and S respectively denotes the cost of a multiplication and
a squaring in the field Fq. However, if u is chosen so that a multiplication by u
is negligible, the costs for a doubling drop to 3M + 4S. Note that it is sufficient
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to choose u to fit in a word, or to have a low Hamming weight representation
in order to achieve this property. Clearly, the number of suitable values of u for
a given p is extremely large and therefore this assumption has a limited impact
on the rest of the system.

Note also that the fastest system of coordinates for doubling corresponds to
modified Jacobian coordinates J m (see for instance [CMO98]) where a point
(x1, y1) is represented by (X1, Y1, Z1, aZ4

1) with x1 = X1/Z
2
1 and y1 = Y1/Z

3
1 .

Indeed, to perform a double on the curve y2 = x3+ax+b, one needs only 4M+4S.
It is to be noted that choosing a special value for a does not change the overall
complexity, except when a = −3. Note that in that particular case, Bernstein
showed how to perform a doubling in Jacobian coordinates using 3M + 5S. His
method also saves one field reduction [Ber01]. The addition J m + J m = J m

needs 13M + 6S whereas the mixed addition J m + A = J m only 9M + 5S.
Again this complexity is independent of the value of the parameters so that no
advantage can be obtained from a special choice of a curve in modified Jacobian
coordinates.

Now, let us give addition formulas for LDm. We will only address the mixed
coordinates case, since it is the most important in practice. So let (X1, Y1, 1) in
A and (X2, Y2, Z2, Z

2
2 ) in J m be two points on E. Again it is a simple exercise

to check that (X3, Y3, Z3, Z
2
3 ) is given that:

A = Y1 × Z2
2 − Y2, B = X1 × Z2 − X2, C = B × Z2,

Z3 = C2, D = X1 × Z3, E = A2,

F = X2 × B × C, X3 = E − uZ3 − D − F, G = Z2
3 ,

H = A × C, Y3 = H × (D − X3) − Y1 × G.

These computations require 9M + 3S if a multiplication by u is negligible. So,
choosing a special value for u provides an improvement and makes modified
López–Dahab coordinates faster than modified Jacobian coordinates. At present
let us generalize the concept to the multiplication–by–[3] map.

3.2 Elliptic Curves with Degree 3 Isogenies

As mentioned earlier, an elliptic curve defined over a field of characteristic dif-
ferent from 2 and 3 with a rational 3-torsion subgroup can be expressed in the
form (up to twists):

E : y2 = x3 + 3u(x + 1)2

with the 3-torsion subgroup defined by x = 0; we note that the curve E does not
necessarily have a point of order 3. The corresponding isogeny of degree 3 is:

(x1, y1) 
→ (xt, yt) =
(

x1 + 4u + 12u
x1 + 1

x2
1

, y1

(
1 − 12u

x1 + 2
x3

1

))
·

The image curve is defined by an equation:

Et : y2 = x3 − u(3x − 4u + 9)2
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which subsequently has a 3-torsion subgroup defined by x = 0, defining the
kernel of the dual isogeny. This isogeny takes form

(xt, yt) 
→ (x3, y3) =
(

1
32

(
xt − 12u +

12u(4u − 9)
xt

− 4u(4u − 9)2

x2
t

)
,

1
33 yt

(
1 − 12u(4u − 9)

x2
t

+
8u(4u − 9)2

x3
t

))
·

The composition of these maps gives the multiplication–by–3 map on E.
A general quadratic twist of E can be put in the standard Weierstraß form

by a change of variables (x, y) to (x − λu, y):

y2 = x3 + 3λu(x + λ)2 −→ y2 = x3 − 3λ2u(u − 2)x + λ3u(2u2 − 6u + 3).

Conversely, the elliptic curve y2 = x3 +ax+ b has j-invariant j = 6912a3/(4a3 +
27b2). The corresponding values for (λ, u) are determined by λ = −3b(u −
2)/

(
a(2u2 − 6u + 3)

)
, where u is a root of the quartic polynomial 6912u(u −

2)3 − j(4u − 9).

Effective scalar multiplication by splitting [3]. As above, to take advantage
of this splitting, we will use weighted projective coordinates. More precisely let
us represent the affine point P1 = (x1, y1) by (X1, Y1, Z1, Z

2
1 ) where x1 = X1/Z

2
1

and y1 = Y1/Z
3
1 . These coordinates are called new Jacobian and are denoted by

J n. We will also describe doublings and mixed additions for this system. The
term Z2

1 will contribute to make the mixed addition more efficient. First let us
give the formulas to compute [3]P1 = (X3, Y3, Z3, Z

2
3 ):

A = (X1 + 3Z2
1)2, B = uZ2

1 × A, Xt = Y 2
1 + B,

Yt = Y1 × (Y 2
1 − 3B), Zt = X1 × Z1, C = Z2

t ,

D =
(
(4u − 9)C − Xt

)2
, E = −3uC × D, X3 = (Y 2

t + E),

Y3 = Yt(X3 − 4E), Z3 = 3Xt × Zt, Z2
3 .

It is easy to see that 6M + 6S are needed to obtain [3]P1 in J n when u is suitably
chosen so that a multiplication by u is negligible. Otherwise, 8M+6Sare necessary.

Now let us see how a doubling can be efficiently obtained in that system. In
fact, it is sufficient to slightly modify the formulas existing for Jacobian coordi-
nates. We have:

A = Y1 × Z1, Z2 = 2A, B = 4Y 2
1 × X1,

C = B + 6uA2, Z2
2 = 4A2, D = 3X2

1 ,

E = D + 6uZ2
1 × (Z2

1 + X1), X2 = −2B + E2, Y2 = −8Y 4
1 + E × (B − X2).

Thus a doubling in J n requires 4M + 5S as long as we neglect multiplications
by u, otherwise a doubling can be obtained with 6M + 4S.

Finally, let us detail the addition of an affine point (X1, Y1, 1) and a point
(X2, Y2, Z2, Z

2
2 ) in J n. Again, they slightly differ from the ones for the addition

in Jacobian coordinates, see [ACD+05].
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A = X1 × Z2
2 , B = Y1 × Z2

2 × Z2, C = X2 − A,

D = Y2 − B, Z3 = Z2 × C, E = Z2
3 ,

F = C2, G = C × F, H = A × F,

X3 = −G − 3uE − 2H + D2, Y3 = −B × G + D × (H − X3).

In total, one needs 8M+3S to compute an addition. If u is a random element
in the field, then an extra multiplication is required. Note that the extra element
Z2

2 in J n allows to save one squaring in the addition above.

Comparison with other algorithms. Direct tripling formulas have been in-
troduced by Ciet et al. [CJLM05]. The general idea is to avoid computing in-
termediate values for the doubling. This allows to get rid of one inversion at
the cost of more multiplications. Recently, Dimitrov et al. succeeded in totally
avoid using inversions [DIM05]. Usually, no special value for the parameters of
the curve is considered, probably because this has a limited impact anyway on
the complexity of the operations. In our case, important savings can be made
if the parameter u of the curve is specially chosen, as suggested by the next
table comparing the complexities of different operations in different coordinate
systems. Note that we only require that a multiplication by u is trivial so that
a very large scope of values are still available, like a small u or more generally u
with a low Hamming weight expansion.

System This work [DIM05] [CJLM05]

Equation y2 = x3 + 3u(x + 1)2 y2 = x3 + ax + b y2 = x3 + ax + b

Coordinates New Jacobian J n Jacobian J Affine A

Tripling 8M + 6S 10M + 6S I + 7M + 4S

special u or a 6M + 6S 9M + 6S —

Doubling 6M + 4S 4M + 6S I + 2M + 2S

special u or a 4M + 5S 4M + 5S —

a = −3 NA 4M + 4S —

Mixed Addition 9M + 3S 8M + 3S I + 2M + S

special u or a 8M + 3S — —

Note also that there exist formulas to directly compute [2]P ± Q and [3]P ± Q
with respectively I + 9M + 2S and 2I + 9M + 3S; see [CJLM05] for details.

Since we have a very efficient tripling algorithm, it is natural to consider the
expansion of k in base 3 leading to a “triple and add algorithm” as well as other
generalizations, like expansions in non-adjacent form. We discuss this at present.
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4 Non-adjacent Forms for �-Adic Expansions

Given two integers k and � � 2, it is well-known that k can be expressed in
a unique way in base �. For computer applications, � is usually chosen to be 2
or a power of 2. In the context of multiplication and of exponentiation/scalar
multiplication other representations have been considered, for instance the bi-
nary non-adjacent form and width-w non-adjacent form, respectively denoted
by NAF and NAFw, see [ACD+05].

Recently, Takagi et al. [TYW04] have generalized the concept of width-w
non-adjacent form to any radix � and introduced an �-NAFw.

Definition 4.1. Let � and w be two integers greater than 1. Let k be a positive
integer, then a signed-digit expansion of the form

k =
m∑

i=0

ki�
i

where

• there is at most 1 nonzero digit among any w adjacent coefficients
• ki belongs to {0, ±1, ±2, . . . , ±� �w−1

2 �} \ {±r, ±2r, . . . , ±� �w−1−1
2 �r}

• the leftmost nonzero digit is positive

is called a width-w non-adjacent expansion in basis �, �-NAFw for short, and is
denoted by (km . . . k0)�-NAFw .

It can be shown that such an expansion always exists for any positive integer.
In fact, it is trivial to derive an algorithm to compute the �-NAFw generalizing
the one existing for the NAFw.

Algorithm 1. �-NAFw representation

Input: A positive integer k, a radix � � 2 and a parameter w > 1.
Output: The �-NAFw representation (km . . . k0)�-NAFw of k.

1. i ← 0

2. while k > 0 do

3. if k �≡ 0 (mod �) then

4. ki ← k mod �w

5. if ki > �w/2 then ki ← ki − �w

6. k ← k − ki

7. else ki ← 0

8. k ← k/� and i ← i + 1

9. return (km . . . k0)�-NAFw
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Remarks

• The classical NAF corresponds to the choice � = w = 2.
• Takagi et al. [TYW04] proved that this expansion is unique and that it has

the smallest Hamming weight among all signed representations for k having
digits ki’s such that |ki| < �w/2.

It is well-known that the density of the classical NAFw is 1/(w + 1). This result
can be generalized to �-NAFw, as shown in [TYW04]. See also [HT05] for further
results.

Proposition 4.1. The average density of the �-NAFw is equal to
� − 1

(� − 1)w + 1
·

Proof 4.1. For that matter, we compute the average length E(�, w) of running
0’s between two nonzero coefficients. From the definition, it is clear that there are
at least w−1 consecutive zeroes between two nonzero coefficients in the �-NAFw

expansion.
Assuming that k �≡ 0 (mod �) then ki �= 0 and k ← k − ki is now a multi-

ple of �w. Let t = k/�w. There are different possibilities for the integer t which
can take any value. If t is not a multiple of �, there will be exactly w − 1 con-
secutive zeroes until the next nonzero coefficient is found. Now the probability
that t is not a multiple of � is (� − 1)/�. In the same way, there will be ex-
actly w − 2 + i consecutive zeroes until the next nonzero coefficient is found if
and only if t is a multiple of �i−1 but not a multiple of �i. This event occurs
with a probability equal to (� − 1)/�i, namely � − 1 choices (�i−1, 2�i−1, . . . , (� −
1)�i−1) out of �i possible residues. This implies that the average length of running
zeroes is

E(�, w) = w − 2 +
∑

i≥1

i(� − 1)/�i

and a simple computation gives E(�, w) = w − 2 + �/(� − 1). Since the average
density of the �-NAFw is 1/

(
E(�, w) + 1

)
, we obtain the expected result.

5 Experiments

In the following, we count the number of elementary operations needed to per-
form a scalar multiplication on an elliptic curve (with generic or special param-
eters) defined over a finite field Fp of size respectively 160 and 200 bits with
various methods. More precisely we investigate

• the double and add, also known as the binary method and denoted by Bin.
• the �-NAFw for � = 2 and w = 2, 3, 4, and 5.
• the triple and add, also known as the ternary method and denoted by Tern.
• the 3-NAF2.
• the sextuple and add method, denoted by Sext.



202 C. Doche, T. Icart, and D.R. Kohel

Table 1. Complexities with a 160bit size for a random curve

Method #P δ A. B. I/M C. I/M

Bin. — 1/2 2384M 80I + 1552M 10.4 160I + 1136M 7.8

NAF — 1/3 2076M 53I + 1503M 10.8 160I + 947M 7.1

NAF3 2 1/4 1928M 40I + 1480M 11.2 160I + 856M 6.7

NAF4 4 1/5 1837M 32I + 1466M 11.6 160I + 800M 6.5

NAF5 8 1/6 1780M 27I + 1457M 12 160I + 765M 6.3

Tern. — 2/3 2057M 134I + 1321M 5.5 168I + 1164M 5.3

3-NAF2 2 2/5 1749M 80I + 1391M 4.5 141I + 1110M 4.5

3-NAF3 8 2/7 1623M 58I + 1419M 3.5 130I + 1088M 4.1

Sext. — 5/6 1957M 52I + 1557M 7.7 124I + 1220M 5.9

6-NAF2 6 5/11 1683M 28I + 1514M 6.1 124I + 1052M 5.1

Tern./bin. — — 1773M 36I + 1507M 7.4 127I + 1067M 5.6

DBNS — — 1883M 45I + 1519M 8.1 129I + 1113M 6

• the 6-NAF2.
• the ternary/binary approach [CJLM05], denoted by Tern./bin.
• the Dual Base Number System (DBNS) as explained in [DIM05]. Note how-

ever that we did not try to tune the values of bmax and tmax, i.e. the biggest
possible values for the powers of 2 and 3 in the expansion of k. This would
certainly lead to big improvements.

In each case, we give the number #P of precomputations needed to compute
[k]P when combined with a left-to-right approach. The density δ of the obtained
expansion is also given. The different situations under scrutiny are:

A. Curve: y2 = x3 + u(x + 1)3 defined over a finite field of odd characteristic.
Operations:

• tripling map [3] obtained as the composition of 2 isogenies expressed in
new Jacobian coordinates

• doubling and addition in new Jacobian coordinates
B. Curve: y2 = x3 + ax + b defined over a finite field of odd characteristic.

Operations:
• direct tripling formulas explained in [DIM05].
• direct [2]P ± Q and [3]P ± Q explained in [CJLM05] whenever it is

possible.
C. Same curve and same operations as in B. except that the direct tripling

formulas come from [CJLM05].

We assume that the cost of a squaring is 0.8M. This allows us to express the
complexity only in terms of inversions and multiplications. All the complexities
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Table 2. Complexities with a 160bit size for a special curve

Method #P δ A. B. I/M C. I/M

Bin. — 1/2 2112M 80I + 1424M 8.6 160I + 1136M 6.1

NAF — 1/3 1831M 53I + 1332M 9.4 160I + 947M 5.5

NAF3 2 1/4 1696M 40I + 1288M 10.2 160I + 856M 5.2

NAF4 4 1/5 1613M 32I + 1261M 11 160I + 800M 5.1

NAF5 8 1/6 1561M 27I + 1244M 11.7 160I + 765M 5

Tern. — 2/3 1788M 134I + 1287M 3.7 168I + 1164M 3.7

3-NAF2 2 2/5 1507M 80I + 1330M 2.2 141I + 1110M 2.8

3-NAF3 8 2/7 1392M 58I + 1347M 0.8 130I + 1088M 2.3

Sext. — 5/6 1706M 52I + 1479M 4.4 124I + 1220M 3.9

6-NAF2 6 5/11 1457M 28I + 1397M 2.1 124I + 1052M 3.3

Tern./bin. — — 1541M 36I + 1394M 4.1 127I + 1067M 3.7

DBNS — — 1643M 45I + 1415M 5 129I + 1113M 4.1

Table 3. Complexities with a 200bit size for a random curve

Method #P δ A. B. I/M C. I/M

Bin. — 1/2 2980M 100I + 1940M 10.4 200I + 1420M 7.8

NAF — 1/3 2604M 67I + 1881M 10.8 200I + 1189M 7.1

NAF3 2 1/4 2410M 50I + 1850M 11.2 200I + 1070M 6.7

NAF4 4 1/5 2296M 40I + 1832M 11.6 200I + 1000M 6.5

NAF5 8 1/6 2216M 33I + 1819M 12 200I + 951M 6.3

Tern. — 2/3 2570M 168I + 1646M 5.5 210I + 1453M 5.3

3-NAF2 2 2/5 2183M 100I + 1735M 4.5 176I + 1385M 4.5

3-NAF3 8 2/7 2023M 72I + 1771M 3.5 162I + 1357M 4.1

Sext. — 5/6 2424M 64I + 1932M 7.7 154I + 1511M 5.9

6-NAF2 6 5/11 2093M 35I + 1880M 6.1 154I + 1308M 5.1

Tern./bin. — — 2221M 45I + 1887M 7.4 159I + 1337M 5.6

DBNS — — 2378M 58I + 1905M 8.1 162I + 1403M 6

are obtained in a theoretical way except for the ternary/binary and the DBNS
approaches. In these cases, an average over 104 exponents has been computed. In
each case, we provide the ratio between a multiplication and an inversion so that
the complexities of this work and [DIM05] (resp. [CJLM05]) are equal. Thus, if
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Table 4. Complexities with a 200bit size for a special curve

Method #P δ A. B. I/M C. I/M

Bin. — 1/2 2640M 100I + 1780M 8.6 200I + 1420M 6.1

NAF — 1/3 2297M 67I + 1668M 9.4 200I + 1189M 5.5

NAF3 2 1/4 2120M 50I + 1610M 10.2 200I + 1070M 5.2

NAF4 4 1/5 2016M 40I + 1576M 11 200I + 1000M 5.1

NAF5 8 1/6 1943M 33I + 1552M 11.8 200I + 951M 5

Tern. — 2/3 2234M 168I + 1604M 3.7 210I + 1453M 3.7

3-NAF2 2 2/5 1881M 100I + 1659M 2.2 176I + 1385M 2.8

3-NAF3 8 2/7 1735M 72I + 1681M 0.7 162I + 1357M 2.3

Sext. — 5/6 2113M 64I + 1835M 4.4 154I + 1511M 3.9

6-NAF2 6 5/11 1812M 35I + 1736M 2.2 154I + 1308M 3.3

Tern./bin. — — 1933M 45I + 1743M 4.2 159I + 1332M 3.8

DBNS — — 2077M 58I + 1777M 5.1 162I + 1404M 4.2

I/M is bigger than the indicated value, our method will be more efficient. See
Tables 1, 2, 3, and 4 for details.

6 Conclusion

We have described a family of elliptic curve defined over a prime field of large
characteristic for which the multiplication–by–3 map, can be decomposed into
the product of 2 isogenies. Explicit formulas indicate that a tripling can be
done with 8M + 6S, and even 6M + 6S if the parameter of the curve is suitably
chosen. Since 3 plays an major role, we also tested generalizations of the width-w
NAF expansion to deal with �-adic expansions. We then tested our new tripling
algorithm in different situations. When there is no memory constraints, the 3-
NAF2, 6-NAF2, and 3-NAF3 give excellent results for respectively only 2, 6 and
8 precomputed values and outclass their binary counterparts. Also, this system
performs better than those described in [CJLM05] and [DIM05] for most methods
(especially the most efficient ones) under very realistic assumptions concerning
the ratio I/M (typically I/M is between 4 and 10). For that range of ratio, if we
precompute and store two values, the 3-NAF2 combined with our method on a
special curve will give an improvement of 9 to 30% over [DIM05] for both sizes
160 and 200bit.

Of course, it would be desirable to extend this work and different directions
are of interest. Indeed, the same study should be carried out in characteristic 2
and bigger values of � should be investigated, the first candidate being 5. Also,
the Dual Base Number System (DBNS) when combined with this new tripling
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method should give very good results with appropriate settings that need to be
found. Also, designing direct formulas for [2]P ±Q and [3]P ±Q in new Jacobian
coordinates would lead to further improvements.
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[MO90] F. Morain and J. Olivos, Speeding up the computations on an elliptic
curve using addition-subtraction chains, Inform. Theory Appl. 24 (1990),
531–543.

[MV90] A. J. Menezes and S. A. Vanstone, The implementation of elliptic curve
cryptosystems, Advances in Cryptology – Auscrypt 1990, Lecture Notes
in Comput. Sci., vol. 453, Springer-Verlag, Berlin, 1990, pp. 2–13.

[Sol00] J. A. Solinas, Efficient arithmetic on Koblitz curves, Des. Codes Cryp-
togr. 19 (2000), 195–249.

[TYW04] T. Takagi, S.-M. Yen, and B.-C. Wu, Radix-r non-adjacent form, Infor-
mation Security Conference – ISC 2004, Lecture Notes in Comput. Sci.,
vol. 3225, Springer-Verlag, Berlin, 2004, pp. 99–110.


	Introduction
	Splitting Multiplication by $\ell$
	Subgroup (Schemes) Defined over $K$
	Parameterizations of Cyclic$\ell$-Torsion Subgroups
	Parameterized Models
	On Special Versus Generic Elliptic Curves

	Efficiently Applicable Isogenies
	Elliptic Curves with Degree 2 Isogenies
	Elliptic Curves with Degree 3 Isogenies

	Non-adjacent Forms for $\ell$-Adic Expansions
	Experiments
	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


