Skip to Content

Department of Engineering

Dr David W. Inglis

Senior Lecturer

E6B-127, Department of Engineering
Macquarie University, NSW 2109
office: +61 2 9850 9144
mobile: +61 4 2487 9227


PhD in Electrical Engineering, Princeton University 2007
B.Sc. in Engineering Physics, University of Alberta, Canada 2001


ELEC260 Introduction to Mechatronics
ELEC466 Advanced Mechatronics


Microfluidics for cell separation
  • High throughput bioparticle sorting
  • Blood cell, stem cell and plasma separation devices
  • Microbial and fungal separations/enrichments
  • Rare cells in complex mixtures
Microfluidic Fundamentals
  • Simulations of flow in complex devices
  • Effects of deformable particles and devices
  • Deterministic lateral displacement physics
  • Nanofluidics for protein concentration and separation
Fluorescene in Biology
  • Autofluorescene profiling of stem cells
  • Novel fluorescent particles


ARC Centre of Excellence for Nanoscale BioPhotonics
MQ Biophotonics
MQ Photonics


Anisotropic permeability in deterministic lateral displacement arrays, Rohan Vernekar, Timm Kruger, Kevin Loutherback, Keith Morton, and D. W. Inglis, Lab on a Chip, 17 (2017), DOI: 10.1039/C7LC00785J full text

Maximizing particle concentration in deterministic lateral displacement arrays, S. L. Feng, A. M. Skelley, A. G. Anwer, G. Liu, and D. W. Inglis, Biomicrofluidics, 11 (2017), 024121. full text

A mobility shift assay for DNA detection using nanochannel gradient electrophoresis, M. A. Startsev, M. Ostrowski, E. M. Goldys, and D. W. Inglis, Electrophoresis, 38 (2017), 335-341. full text

Quantitative non-invasive cell characterisation and discrimination based on multispectral autofluorescence features, M. E. Gosnell, A. G. Anwer, S. B. Mahbub, S. M. Perinchery, D. W. Inglis, P. P. Adhikary, J. A. Jazayeri, M. A. Cahill, S. Saad, C. A. Pollock, M. L. Sutton-McDowall, J. G. Thompson, and E. M. Goldys, Scientific Reports, 6 (2016), 23453, DOI: 10.1038/srep23453. full text

Characterization of the Interaction between Heterodimeric αvβ6 Integrin and Urokinase Plasminogen Activator Receptor (uPAR) Using Functional Proteomics, S. B. Ahn, A. Mohamedali, S. Anand, H. R. Cheruku, D. Birch, G. Sowmya, D. Cantor, S. Ranganathan, D. W. Inglis, R. Frank, M. Agrez, E. C. Nice, and M. S. Baker, Journal of Proteome Research, 13 (2014), 5956-5964. full text

Isoelectric Focusing in a Silica Nanofluidic Channel: Effects of Electromigration and Electroosmosis, WL. Hsu, D. W. Inglis, M. A. Startsev, E. M. Goldys, M. R. Davidson, D. J. E. Harvie, Analytical Chemistry, 86 (2014), 8711-8718. full text

Concentration gradient focusing and separation in a silica nanofluidic channel with a non-uniform electroosmotic flow, WL. Hsu, D. J. E. Harvie, M. R. Davidson, H. Jeong, E. M. Goldys and D. W. Inglis, Lab on a Chip, 14(2014), 3539-3549. full text

Stationary Chemical Gradients for Concentration Gradient-Based Separation and Focusing in Nanofluidic Channels, WL. Hsu, D. W. Inglis, H. Jeong, D. Dunstan, M. R. Davidson, E. M. Goldys, D. J. Harvie, Langmuir, 30(18) (2014), 5337-5348. full text

Manufacturing and wetting low-cost microfluidic cell separation devices, R. S. Pawell, D. W. Inglis, T. J. Barber and R. A. Taylor, Biomicrofluidics, 7 (2013), 056501. full text

Nanochannel pH Gradient Electrofocusing of Proteins, M. A. Startsev, D. W. Inglis, M. S. Baker and E. M. Goldys, Analytical Chemistry, 85/15 (2013), 7133-7138. full text

A Scalable Approach for High Throughput Branch Flow Filtration, D. W. Inglis and N. Herman, Lab on a Chip, 13 (2013), 1724-1731. full text

Visible 532 nm laser irradiation of human adipose tissue-derived stem cells: effect on proliferation rates, mitochondria membrane potential and autofluorescence, A. G. Anwer, M. E. Gosnell, S. M. Perinchery, D. W. Inglis and E. M. Goldys Lasers in Surgery and Medicine, 44 (2012), 769-778. full text

Simultaneous Concentration and Separation of Proteins in a Nanochannel, D. W. Inglis, E. M. Goldys and N. P. Calander Angewendte Chemie Int. Ed., 50/33 (2011), 7546-7550. full text

Scaling deterministic lateral displacement arrays for high throughput and dilution-free enrichment of leukocytes, D. W. Inglis, M. Lord and R. E. Nordon J. Micromech. Microeng, 21 (2011), 054024. full text

A method for reducing pressure-induced deformation in silicone microfluidics, D. W. Inglis Biomicrofluidics, 4 (2010), 026504. full text

Highly accurate deterministic lateral displacement device and its application to purification of fungal spores, D. W. Inglis, N. Herman and G. Vesey. Biomicrofluidics, 4 (2010), 024109. full text

Five-Nanometer Diamond with Luminescent Nitrogen-Vacancy Defect Centers, B. R. Smith, D. Inglis, et al. Small, 5 (2009), 1649-1653.

Efficient microfluidic particle separation arrays, D. W. Inglis. Applied Physics Letters, 94 (2009), 013510. full text

Crossing microfluidic streamlines to lyse, label and wash cells, K. J. Morton, K. Loutherback, D. W. Inglis, et al. Lab on a Chip, 8 (2008), 1448-1453. full text

Hydrodynamic Metamaterials: Microfabricated arrays to steer, refract, and focus streams of biomaterials, K. J. Morton, K. Loutherback, D. W. Inglis, et al. PNAS, 105, May 27, (2008), 7434-7438. full text

Microfluidic Device for Label-Free Measurement of Platelet Activation, D. W. Inglis, et al. Lab on a Chip, 8 (2008), 925-931. full text

Determining Blood Cell Size by Microfluidic Hydrodynamics, D. W. Inglis, et al. Journal of Immunological Methods, 329 (2008), 151-156. full text

Deterministic Hydrodynamics: Taking Blood Apart, J. A. Davis, D. W. Inglis, et al. PNAS, 103, October 3, (2006), 14779-14784. full text

Critical Particle Size for Fractionation by Deterministic Lateral Displacement, David W. Inglis, J. A. Davis, R. H. Austin, J. C. Sturm. Lab on a Chip, 6 (2006), 655-658. full text

Microfluidic High Gradient Magnetic Cell Separation, David W. Inglis, R. Riehn, J. C. Sturm, R. H. Austin. Journal of Applied Physics 99 (2006) 08K101. full text

Continuous Microfluidic Immunomagnetic Cell Separation, David W. Inglis, R. Riehn, R. H. Austin, J. C. Sturm. Applied Physics Letters, 85, Number 21 (2004), 5093-5095. full text

News and Events

Successful ARC Discovery Projects: 1) to work on an optofluidic device for sorting ultrabright nanodiamonds with Dr Thomas Volz (MQ Physics), and 2) to work on blood fractionation with Dr Majid Warkiani (UNSW Engineering)

Actively seeking PhD students for these two projects.