Skip to Content

School of Engineering

Dr David W. Inglis

Associate Professor
founding member of Biomedical Microdevices Group (bmmd)

9WW-321, School of Engineering
Macquarie University, NSW 2109
office: +61 2 9850 9144
mobile: +61 4 2487 9227


PhD in Electrical Engineering, Princeton University 2007
B.Sc. in Engineering Physics, University of Alberta, Canada 2001


MTRN2060 Introduction to Mechatronics
MTRN4066 Advanced Mechatronics


Microfluidics for cell separation
  • High throughput bioparticle sorting
  • Blood cell, stem cell and plasma separation devices
  • Microbial and fungal separations/enrichments
  • Rare cells in complex mixtures
Microfluidic Fundamentals
  • Simulations of flow in complex devices
  • Device Fabrication
  • Deterministic lateral displacement physics
  • Nanofluidics for protein concentration and separation
Fluorescene in Biology
  • Autofluorescene profiling of stem cells
  • Novel fluorescent particles


ARC Centre of Excellence for Nanoscale BioPhotonics
MQ Photonics
Diamond Science and Technology


A Review of Capillary Pressure Control Valves in Microfluidics, S. Wang, X. Zhang, C. Ma, S. Yan, D. Inglis and S. Feng Biosensors, 11 (2021), 405 full text

Sidewall profiles in thick resist with direct image lithography, D. W. Inglis, J. White, and V. Sreenivasan J. Micromech. Microeng., 31(#) (2021), 107001 full text

Microfluidic Obstacle Arrays Induce Large Reversible Shape Change in Red Blood Cells, D. W. Inglis, R. E. Nordon, J. P. Beech, and G. Rosengarten Micromachines, 12(7) (2021), 783 full text

Hydrodynamic particle focusing enhanced by femtosecond laser deep grooving at low Reynolds numbers, Zhang, Tianlong; Namoto, Misuzu; Okano, Kazunori; Akita, Eri; Teranishi, Norihiro; Tang, Tao; Anggraini, Dian; Hao, Yansheng; Tanaka, Yo; Inglis, David; Scientific Reports, 11(1) (2021), 1652 full text

Deterministic Lateral Displacement - Challenges and Perspectives, A. Hochstetter, R. Vernekar, R.H. Austin, H. Becker, J.P. Beech, D.A. Fedosov, G. Gompper, SC. Kim, J.T. Smith, G. Stolovitzky, J.O Tegenfeldt, B.H. Wunsch, K.K. Zeming, T. Krüger, D.W. Inglis ACS Nano, 14(9) (2020), 10784-10795 full text

Contribution of usage to endoscope working channel damage and bacterial contamination, L.C.S. Santos, F. Parvin, A. Huizer-Pajkos, J. Wang, D.W. Inglis, D. Andrade, H.Hu, K. Vickery, Journal of Hospital Infection, 105 (2020), 176-182 full text

Targeting of externalized ?B-crystallin on irradiated endothelial cells with pro-thrombotic vascular targeting agents: Potential applications for brain arteriovenous malformations, S. Subramanian, Z. Zhao, F. Faqihi, G.E. Grau, V. Combes, D.W. Inglis, V. Moutrie, M.A. Stoodley, L.S. McRobb, Thrombosis Research, 189 (2020), 119-127 full text

Characterization of optofluidic devices for the sorting of sub-micron particles, J. White, C. Laplane, R. P. Roberts, L. J. Brown, T. Volz, and D. W. Inglis, Applied Optics, 59 (2020), 271-276 full text

Focusing of Sub-micrometer Particles in Microfluidic Devices, T. Zhang, Z. Y. Hong, S. Tang, W. Li, D. Inglis, Y. Hosokawa, Y. Yaxiaer, M. Li Lab on a Chip, 20 (2020), 35-53 full text

The fluidic resistance of an array of obstacles and a method for improving boundaries in Deterministic Lateral Displacement arrays, D. Inglis, R. Vernekar, T. Krüger S. Feng, Microfluidics and Nanofluidics, 24 (2020), 18 full text, matlab function and stand-alone executable

Droplets for Sampling and Transport of Chemical Signals in Biosensing: A Review, S. Feng, E. Shirani and D. W. Inglis, Biosensors, 9(2) (2019), 80 full text

A Nanoparticle-Based Affinity Sensor that Identifies and Selects Highly Cytokine-Secreting CellsG. Liu, C. Bursill,S.P. Cartland, A.G. Anwer, L.M. Parker, K. Zhang, S. Feng, M. He, D.W. Inglis, M.M. Kavurma, M.R. Hutchinson, E.M. Goldys, iScience, 20 (2019), 137-147

Microfabricated needle for hydrogen peroxide detection, S. Feng, S. Clement, Y. Zhu, E.M. Goldys, D.W. Inglis, RSC Advances, 9 (2019), 18176-18181 full text

3D printed mould-based Graphite/PDMS sensor for low-force applications, A. Naga, S. Feng, S.C. Mukhopadhyaya, J.Kosel, D.Inglis, Sensors and Actuators A: Physical, 280 (2018), 525-534

Comparing fusion bonding methods for glass substrates, T. Mayer, A. N. Marianov and D. W. Inglis Materials Research Express, 5 (2018), 085201. full text

Stable thrombus formation on irradiated microvascular endothelial cellsunder pulsatile flow: Pre-testing annexin V-thrombin conjugate fortreatment of brain arteriovenous malformations, S. Subramanian, S.O. Ugoya, Z. Zhao, L.S. McRobb, G.E. Grau, V. Combes, D.W. Inglis, A.J. Gauden, V.S. Lee, V. Moutrie, E.D. Santos, M.A. Stoodley, Thrombosis Research, 167 (2018), 104-112

Deterministic Lateral Displacement: The Next-Generation CAR T-Cell Processing?, R. Campos-González, A. M. Skelley, K. Gandhi, D. W. Inglis, J. C. Sturm, C. I. Civin, and T. Ward, SLAS Technology, 27 (2017), full text

Microfluidic Droplet Extraction by Hydrophilic Membrane, S. Feng, M. M. Nguyen, and D. W. Inglis, Micromachines, 8(11) (2017), 331 full text

A Microfluidic Needle for Sampling and Delivery of Chemical Signals by Segmented Flows, S. Feng, G. Liu, L. Jiang, Y. Zhu, E. M. Goldys, and D. W. Inglis, Applied Physics Letters, 111 (2017), 183702 full text

Anisotropic permeability in deterministic lateral displacement arrays, Rohan Vernekar, Timm Krüger, Kevin Loutherback, Keith Morton, and D. W. Inglis, Lab on a Chip, 17 (2017), 3318-3330 full text

Maximizing particle concentration in deterministic lateral displacement arrays, S. Feng, A. M. Skelley, A. G. Anwer, G. Liu, and D. W. Inglis, Biomicrofluidics, 11 (2017), 024121. full text

A mobility shift assay for DNA detection using nanochannel gradient electrophoresis, M. A. Startsev, M. Ostrowski, E. M. Goldys, and D. W. Inglis, Electrophoresis, 38 (2017), 335-341. full text

Quantitative non-invasive cell characterisation and discrimination based on multispectral autofluorescence features, M. E. Gosnell, A. G. Anwer, S. B. Mahbub, S. M. Perinchery, D. W. Inglis, P. P. Adhikary, J. A. Jazayeri, M. A. Cahill, S. Saad, C. A. Pollock, M. L. Sutton-McDowall, J. G. Thompson, and E. M. Goldys, Scientific Reports, 6 (2016), 23453, DOI: 10.1038/srep23453. full text

Characterization of the Interaction between Heterodimeric αvβ6 Integrin and Urokinase Plasminogen Activator Receptor (uPAR) Using Functional Proteomics, S. B. Ahn, A. Mohamedali, S. Anand, H. R. Cheruku, D. Birch, G. Sowmya, D. Cantor, S. Ranganathan, D. W. Inglis, R. Frank, M. Agrez, E. C. Nice, and M. S. Baker, Journal of Proteome Research, 13 (2014), 5956-5964. full text

Isoelectric Focusing in a Silica Nanofluidic Channel: Effects of Electromigration and Electroosmosis, WL. Hsu, D. W. Inglis, M. A. Startsev, E. M. Goldys, M. R. Davidson, D. J. E. Harvie, Analytical Chemistry, 86 (2014), 8711-8718. full text

Concentration gradient focusing and separation in a silica nanofluidic channel with a non-uniform electroosmotic flow, WL. Hsu, D. J. E. Harvie, M. R. Davidson, H. Jeong, E. M. Goldys and D. W. Inglis, Lab on a Chip, 14(2014), 3539-3549. full text

Stationary Chemical Gradients for Concentration Gradient-Based Separation and Focusing in Nanofluidic Channels, WL. Hsu, D. W. Inglis, H. Jeong, D. Dunstan, M. R. Davidson, E. M. Goldys, D. J. Harvie, Langmuir, 30(18) (2014), 5337-5348. full text

Manufacturing and wetting low-cost microfluidic cell separation devices, R. S. Pawell, D. W. Inglis, T. J. Barber and R. A. Taylor, Biomicrofluidics, 7 (2013), 056501. full text

Nanochannel pH Gradient Electrofocusing of Proteins, M. A. Startsev, D. W. Inglis, M. S. Baker and E. M. Goldys, Analytical Chemistry, 85/15 (2013), 7133-7138. full text

A Scalable Approach for High Throughput Branch Flow Filtration, D. W. Inglis and N. Herman, Lab on a Chip, 13 (2013), 1724-1731. full text

Visible 532 nm laser irradiation of human adipose tissue-derived stem cells: effect on proliferation rates, mitochondria membrane potential and autofluorescence, A. G. Anwer, M. E. Gosnell, S. M. Perinchery, D. W. Inglis and E. M. Goldys Lasers in Surgery and Medicine, 44 (2012), 769-778. full text

Simultaneous Concentration and Separation of Proteins in a Nanochannel, D. W. Inglis, E. M. Goldys and N. P. Calander Angewendte Chemie Int. Ed., 50/33 (2011), 7546-7550. full text

Scaling deterministic lateral displacement arrays for high throughput and dilution-free enrichment of leukocytes, D. W. Inglis, M. Lord and R. E. Nordon J. Micromech. Microeng, 21 (2011), 054024. full text

A method for reducing pressure-induced deformation in silicone microfluidics, D. W. Inglis Biomicrofluidics, 4 (2010), 026504. full text

Highly accurate deterministic lateral displacement device and its application to purification of fungal spores, D. W. Inglis, N. Herman and G. Vesey. Biomicrofluidics, 4 (2010), 024109. full text

Five-Nanometer Diamond with Luminescent Nitrogen-Vacancy Defect Centers, B. R. Smith, D. Inglis, et al. Small, 5 (2009), 1649-1653.

Efficient microfluidic particle separation arrays, D. W. Inglis. Applied Physics Letters, 94 (2009), 013510. full text

Crossing microfluidic streamlines to lyse, label and wash cells, K. J. Morton, K. Loutherback, D. W. Inglis, et al. Lab on a Chip, 8 (2008), 1448-1453. full text

Hydrodynamic Metamaterials: Microfabricated arrays to steer, refract, and focus streams of biomaterials, K. J. Morton, K. Loutherback, D. W. Inglis, et al. PNAS, 105, May 27, (2008), 7434-7438. full text

Microfluidic Device for Label-Free Measurement of Platelet Activation, D. W. Inglis, et al. Lab on a Chip, 8 (2008), 925-931. full text

Determining Blood Cell Size by Microfluidic Hydrodynamics, D. W. Inglis, et al. Journal of Immunological Methods, 329 (2008), 151-156. full text

Microfluidic Devices for Cell Separation, D. W. Inglis, Princeton University PhD Thesis, September 2007. full text

Deterministic Hydrodynamics: Taking Blood Apart, J. A. Davis, D. W. Inglis, et al. PNAS, 103, October 3, (2006), 14779-14784. full text

Critical Particle Size for Fractionation by Deterministic Lateral Displacement, David W. Inglis, J. A. Davis, R. H. Austin, J. C. Sturm. Lab on a Chip, 6 (2006), 655-658. full text source data

Microfluidic High Gradient Magnetic Cell Separation, David W. Inglis, R. Riehn, J. C. Sturm, R. H. Austin. Journal of Applied Physics 99 (2006) 08K101. full text

Continuous Microfluidic Immunomagnetic Cell Separation, David W. Inglis, R. Riehn, R. H. Austin, J. C. Sturm. Applied Physics Letters, 85, Number 21 (2004), 5093-5095. full text

News and Events

Seeking domestic PhD applicants for work on microfluidic cooling of electronics. PhD Scholarship top-up of $5.5k per year.