School of Engineering
Dr David W. Inglis
Associate Professorfounding member of Biomedical Microdevices Group (bmmd)
9WW-321, School of Engineering
Macquarie University, NSW 2109
office: +61 2 9850 9144
mobile: +61 4 2487 9227
david.inglis@mq.edu.au
EDUCATION
PhD in Electrical Engineering, Princeton University 2007B.Sc. in Engineering Physics, University of Alberta, Canada 2001
TEACHING
MTRN2060 Introduction to MechatronicsMTRN4066 Advanced Mechatronics
RESEARCH
Microfluidics for cell separation
- High throughput bioparticle sorting
- Blood cell, stem cell and plasma separation devices
- Microbial and fungal separations/enrichments
- Rare cells in complex mixtures
Microfluidic Fundamentals
- Simulations of flow in complex devices
- Device Fabrication
- Deterministic lateral displacement physics
Nanofluidics
- Nanofluidics for protein concentration and separation
Fluorescene in Biology
- Autofluorescene profiling of stem cells
- Novel fluorescent particles
RESEARCH CENTRE AFFILIATIONS
ARC Centre of Excellence for Nanoscale BioPhotonics MQ Photonics Diamond Science and TechnologyPUBLICATIONS
• Effect of process parameters on separation efficiency in a deterministic lateral displacement device, B Aghajanloo, D W Inglis, F Ejeian, A F Tehrani, M H N Esfahani, M Saghafian, G Canavese, S L Marasso J. Chromatography A, 1678 (2022), full text
• Shape-based separation of drug-treated Escherichia coli using viscoelastic microfluidics, T Zhang, H Liu, K Okano, T Tang, K Inoue, Y Yamazaki, H Kamikubo, A K Cain, Y Tanaka, D W Inglis, Y Hosokawa, Y Yaxiaer, M Li Lab on a Chip, 22 (2022), 2801-2809 full text
• A Review of Capillary Pressure Control Valves in Microfluidics, S. Wang, X. Zhang, C. Ma, S. Yan, D. Inglis and S. Feng Biosensors, 11 (2021), 405 full text
• Sidewall profiles in thick resist with direct image lithography, D. W. Inglis, J. White, and V. Sreenivasan J. Micromech. Microeng., 31(#) (2021), 107001 full text
• Microfluidic Obstacle Arrays Induce Large Reversible Shape Change in Red Blood Cells, D. W. Inglis, R. E. Nordon, J. P. Beech, and G. Rosengarten Micromachines, 12(7) (2021), 783 full text
• Hydrodynamic particle focusing enhanced by femtosecond laser deep grooving at low Reynolds numbers, Zhang, Tianlong; Namoto, Misuzu; Okano, Kazunori; Akita, Eri; Teranishi, Norihiro; Tang, Tao; Anggraini, Dian; Hao, Yansheng; Tanaka, Yo; Inglis, David; Scientific Reports, 11(1) (2021), 1652 full text
• Deterministic Lateral Displacement - Challenges and Perspectives, A. Hochstetter, R. Vernekar, R.H. Austin, H. Becker, J.P. Beech, D.A. Fedosov, G. Gompper, SC. Kim, J.T. Smith, G. Stolovitzky, J.O Tegenfeldt, B.H. Wunsch, K.K. Zeming, T. Krüger, D.W. Inglis ACS Nano, 14(9) (2020), 10784-10795 full text
• Contribution of usage to endoscope working channel damage and bacterial contamination, L.C.S. Santos, F. Parvin, A. Huizer-Pajkos, J. Wang, D.W. Inglis, D. Andrade, H.Hu, K. Vickery, Journal of Hospital Infection, 105 (2020), 176-182 full text
• Targeting of externalized ?B-crystallin on irradiated endothelial cells with pro-thrombotic vascular targeting agents: Potential applications for brain arteriovenous malformations, S. Subramanian, Z. Zhao, F. Faqihi, G.E. Grau, V. Combes, D.W. Inglis, V. Moutrie, M.A. Stoodley, L.S. McRobb, Thrombosis Research, 189 (2020), 119-127 full text
• Characterization of optofluidic devices for the sorting of sub-micron particles, J. White, C. Laplane, R. P. Roberts, L. J. Brown, T. Volz, and D. W. Inglis, Applied Optics, 59 (2020), 271-276 full text
• Focusing of Sub-micrometer Particles in Microfluidic Devices, T. Zhang, Z. Y. Hong, S. Tang, W. Li, D. Inglis, Y. Hosokawa, Y. Yaxiaer, M. Li Lab on a Chip, 20 (2020), 35-53 full text
• The fluidic resistance of an array of obstacles and a method for improving boundaries in Deterministic Lateral Displacement arrays, D. Inglis, R. Vernekar, T. Krüger S. Feng, Microfluidics and Nanofluidics, 24 (2020), 18 full text, matlab function and stand-alone executable
• Droplets for Sampling and Transport of Chemical Signals in Biosensing: A Review, S. Feng, E. Shirani and D. W. Inglis, Biosensors, 9(2) (2019), 80 full text
• A Nanoparticle-Based Affinity Sensor that Identifies and Selects Highly Cytokine-Secreting CellsG. Liu, C. Bursill,S.P. Cartland, A.G. Anwer, L.M. Parker, K. Zhang, S. Feng, M. He, D.W. Inglis, M.M. Kavurma, M.R. Hutchinson, E.M. Goldys, iScience, 20 (2019), 137-147
• Microfabricated needle for hydrogen peroxide detection, S. Feng, S. Clement, Y. Zhu, E.M. Goldys, D.W. Inglis, RSC Advances, 9 (2019), 18176-18181 full text
• 3D printed mould-based Graphite/PDMS sensor for low-force applications, A. Naga, S. Feng, S.C. Mukhopadhyaya, J.Kosel, D.Inglis, Sensors and Actuators A: Physical, 280 (2018), 525-534
• Comparing fusion bonding methods for glass substrates, T. Mayer, A. N. Marianov and D. W. Inglis Materials Research Express, 5 (2018), 085201. doi.org/10.1088/2053-1591/aad166 full text
• Stable thrombus formation on irradiated microvascular endothelial cellsunder pulsatile flow: Pre-testing annexin V-thrombin conjugate fortreatment of brain arteriovenous malformations, S. Subramanian, S.O. Ugoya, Z. Zhao, L.S. McRobb, G.E. Grau, V. Combes, D.W. Inglis, A.J. Gauden, V.S. Lee, V. Moutrie, E.D. Santos, M.A. Stoodley, Thrombosis Research, 167 (2018), 104-112
• Deterministic Lateral Displacement: The Next-Generation CAR T-Cell Processing?, R. Campos-González, A. M. Skelley, K. Gandhi, D. W. Inglis, J. C. Sturm, C. I. Civin, and T. Ward, SLAS Technology, 27 (2017), doi.org/10.1177/2472630317751214 full text
• Microfluidic Droplet Extraction by Hydrophilic Membrane, S. Feng, M. M. Nguyen, and D. W. Inglis, Micromachines, 8(11) (2017), 331 full text
• A Microfluidic Needle for Sampling and Delivery of Chemical Signals by Segmented Flows, S. Feng, G. Liu, L. Jiang, Y. Zhu, E. M. Goldys, and D. W. Inglis, Applied Physics Letters, 111 (2017), 183702 full text
• Anisotropic permeability in deterministic lateral displacement arrays, Rohan Vernekar, Timm Krüger, Kevin Loutherback, Keith Morton, and D. W. Inglis, Lab on a Chip, 17 (2017), 3318-3330 full text
• Maximizing particle concentration in deterministic lateral displacement arrays, S. Feng, A. M. Skelley, A. G. Anwer, G. Liu, and D. W. Inglis, Biomicrofluidics, 11 (2017), 024121. full text
• A mobility shift assay for DNA detection using nanochannel gradient electrophoresis, M. A. Startsev, M. Ostrowski, E. M. Goldys, and D. W. Inglis, Electrophoresis, 38 (2017), 335-341. full text
• Quantitative non-invasive cell characterisation and discrimination based on multispectral autofluorescence features, M. E. Gosnell, A. G. Anwer, S. B. Mahbub, S. M. Perinchery, D. W. Inglis, P. P. Adhikary, J. A. Jazayeri, M. A. Cahill, S. Saad, C. A. Pollock, M. L. Sutton-McDowall, J. G. Thompson, and E. M. Goldys, Scientific Reports, 6 (2016), 23453, DOI: 10.1038/srep23453. full text
• Characterization of the Interaction between Heterodimeric αvβ6 Integrin and Urokinase Plasminogen Activator Receptor (uPAR) Using Functional Proteomics, S. B. Ahn, A. Mohamedali, S. Anand, H. R. Cheruku, D. Birch, G. Sowmya, D. Cantor, S. Ranganathan, D. W. Inglis, R. Frank, M. Agrez, E. C. Nice, and M. S. Baker, Journal of Proteome Research, 13 (2014), 5956-5964. full text
• Isoelectric Focusing in a Silica Nanofluidic Channel: Effects of Electromigration and Electroosmosis, WL. Hsu, D. W. Inglis, M. A. Startsev, E. M. Goldys, M. R. Davidson, D. J. E. Harvie, Analytical Chemistry, 86 (2014), 8711-8718. full text
• Concentration gradient focusing and separation in a silica nanofluidic channel with a non-uniform electroosmotic flow, WL. Hsu, D. J. E. Harvie, M. R. Davidson, H. Jeong, E. M. Goldys and D. W. Inglis, Lab on a Chip, 14(2014), 3539-3549. full text
• Stationary Chemical Gradients for Concentration Gradient-Based Separation and Focusing in Nanofluidic Channels, WL. Hsu, D. W. Inglis, H. Jeong, D. Dunstan, M. R. Davidson, E. M. Goldys, D. J. Harvie, Langmuir, 30(18) (2014), 5337-5348. full text
• Manufacturing and wetting low-cost microfluidic cell separation devices, R. S. Pawell, D. W. Inglis, T. J. Barber and R. A. Taylor, Biomicrofluidics, 7 (2013), 056501. full text
• Nanochannel pH Gradient Electrofocusing of Proteins, M. A. Startsev, D. W. Inglis, M. S. Baker and E. M. Goldys, Analytical Chemistry, 85/15 (2013), 7133-7138. full text
• A Scalable Approach for High Throughput Branch Flow Filtration, D. W. Inglis and N. Herman, Lab on a Chip, 13 (2013), 1724-1731. full text
• Visible 532 nm laser irradiation of human adipose tissue-derived stem cells: effect on proliferation rates, mitochondria membrane potential and autofluorescence, A. G. Anwer, M. E. Gosnell, S. M. Perinchery, D. W. Inglis and E. M. Goldys Lasers in Surgery and Medicine, 44 (2012), 769-778. full text
• Simultaneous Concentration and Separation of Proteins in a Nanochannel, D. W. Inglis, E. M. Goldys and N. P. Calander Angewendte Chemie Int. Ed., 50/33 (2011), 7546-7550. full text
• Scaling deterministic lateral displacement arrays for high throughput and dilution-free enrichment of leukocytes, D. W. Inglis, M. Lord and R. E. Nordon J. Micromech. Microeng, 21 (2011), 054024. full text
• A method for reducing pressure-induced deformation in silicone microfluidics, D. W. Inglis Biomicrofluidics, 4 (2010), 026504. full text
• Highly accurate deterministic lateral displacement device and its application to purification of fungal spores, D. W. Inglis, N. Herman and G. Vesey. Biomicrofluidics, 4 (2010), 024109. full text
• Five-Nanometer Diamond with Luminescent Nitrogen-Vacancy Defect Centers, B. R. Smith, D. Inglis, et al. Small, 5 (2009), 1649-1653.
• Efficient microfluidic particle separation arrays, D. W. Inglis. Applied Physics Letters, 94 (2009), 013510. full text
• Crossing microfluidic streamlines to lyse, label and wash cells, K. J. Morton, K. Loutherback, D. W. Inglis, et al. Lab on a Chip, 8 (2008), 1448-1453. full text
• Hydrodynamic Metamaterials: Microfabricated arrays to steer, refract, and focus streams of biomaterials, K. J. Morton, K. Loutherback, D. W. Inglis, et al. PNAS, 105, May 27, (2008), 7434-7438. full text
•Microfluidic Device for Label-Free Measurement of Platelet Activation, D. W. Inglis, et al. Lab on a Chip, 8 (2008), 925-931. full text
• Determining Blood Cell Size by Microfluidic Hydrodynamics, D. W. Inglis, et al. Journal of Immunological Methods, 329 (2008), 151-156. full text
• Microfluidic Devices for Cell Separation, D. W. Inglis, Princeton University PhD Thesis, September 2007. full text
• Deterministic Hydrodynamics: Taking Blood Apart, J. A. Davis, D. W. Inglis, et al. PNAS, 103, October 3, (2006), 14779-14784. full text
• Critical Particle Size for Fractionation by Deterministic Lateral Displacement, David W. Inglis, J. A. Davis, R. H. Austin, J. C. Sturm. Lab on a Chip, 6 (2006), 655-658. full text source data
• Microfluidic High Gradient Magnetic Cell Separation, David W. Inglis, R. Riehn, J. C. Sturm, R. H. Austin. Journal of Applied Physics 99 (2006) 08K101. full text
• Continuous Microfluidic Immunomagnetic Cell Separation, David W. Inglis, R. Riehn, R. H. Austin, J. C. Sturm. Applied Physics Letters, 85, Number 21 (2004), 5093-5095. full text