Graph-Based Question Answering

Diego Mollá-Aliod
30 August 2004

Outline

• Question Answering and AnswerFinder
• Conceptual Graphs
• Graph Comparison

Architecture of AnswerFinder

On-line
 Question
 Question image
 Expected answer type
 Filtering
 Scoring
 Exact Answer

Off-line
 Documents
 Indexing
 Document Image
 Answer(s)

Grammatical Relations

dependent
arg_mod
arg
aux
conj

mod
arg_mod
arg
aux
comp

ncmod
xmod
cmod
detmod
subj_or_dobj

subj
ncsubj
xsubj
csubj
dobj
obj2
obj
xcomp
ccomp
Grammatical Relations

- A man named Richard Sears has been playing a joke on shoppers.
 (detmod _ man a)
 (subj name man _) (dobj name richard_sears _)
 (detmod _ joke a) (subj play man _) (aux _ play have)
 (aux _ play be)
 (ncmod shopper play on) (dobj play joke _)

- Who played a joke on shoppers?
 (subj play who _) (dobj play joke _)
 (ncmod shopper play on) (detmod _ joke a)

Minimal Logical Forms

- Called Minimal Logical forms because they encode the minimum information required for AE
- Flat expressions that use reification

- Example: cp will quickly copy files
 holds(e4), object(cp,o1,[x1]), object(s_command,o2,[x1]),
 evt(s_copy,e4,[x1,x6]), object(s_file,o3,[x6]), prop(quickly,p3,[e4]).

- Example: the man that came ate bananas and apples with a fork
 holds(e1), object(s_man,o2,[x2]), evt(s_come,e4,[x2]), evt(s_eat,e5,[x7]),
 x6@<x7, x8@<x7, object(s_banana,o6,[x6]), object(s_apple,o8,[x8]),
 prop(with,p9,[e5,x11]), object(s_fork,o11,[x11]).

Outline

- Question Answering and AnswerFinder
- Conceptual Graphs
- Graph Comparison
Conceptual Graphs

- Concept Node [Cat:Tom], [Mat]
 - Entities, attributes, or events (actions)
 - Concept nodes have two attributes:
 - Type (e.g. Cat)
 - Referent (e.g. Tom)
- Relation Node (On)
 - The kind of relationship between two concept nodes

Quantification

- Every cat is on a mat

Thematic Roles

- John is going to Boston by Bus

N-Ary Relations

- A person is between a rock and a hard place
Nested Conceptual Graphs

- Tom believes that Mary wants to marry a sailor

How does it Compare with AnswerFinder?

- John is going to Boston by bus

How does it Compare with AnswerFinder?

- A person is between a rock and a hard place

How does it Compare with AnswerFinder?

- Tom believes that Mary wants to marry a sailor
Outline

- Question Answering and AnswerFinder
- Conceptual Graphs
- Graph Comparison

Comparison of Conceptual Graphs

- Two steps:
 1. Find an overlap
 - Use domain knowledge: thesauri and isa hierarchies
 2. Compute the similarity in function of the overlap

Comparison of Conceptual Graphs

Overlap – The Intuition

Dice Coefficient

\[S_{D_1, D_2} = \frac{2n(D_1 \cap D_2)}{n(D_1) + n(D_2)} \]

- \(n(D_i) \) = number of terms in \(D_i \)
- \(n(D_i \cap D_j) \) = number of terms that \(D_i \) and \(D_j \) have in common
Applying the Dice Coefficient

- **Conceptual Similarity**
 - \(n(G) \) is the number of concept nodes of graph \(G \)

 \[S_c = \frac{2n(G_c)}{n(G_1) + n(G_2)} \]

- **Relational Similarity**
 - \(m(G) \) is the number of relations of graph \(G \)
 - \(m_{G_1}(G_2) \) is the number of relations in the immediate neighbourhood of \(G_1 \) in \(G_2 \), where \(G_1 \) is a subgraph of \(G_2 \)

 \[S_r = \frac{2m(G_c)}{m_{G_1}(G_2) + m_{G_2}(G_2)} \]

Calculation of Relational Similarity

![Diagram of graphs](image)

\(m_{G_1}(G_2) = 6 \)

\(m_{G_2}(G_2) = 3 \)

\(2 \times m(G_c) = 4 \)

\[s_r = \frac{4}{6 + 3} \]

Generalisation of a Conceptual Graph

- **Unrestrict rule:**
 - Replace the type label of a concept with a supertype
 or
 - Replace an individual referent with a generic one

- **Detach rule:**
 - Split a node into two with the same type and referent
 and
 - Distribute the relations of the original node between the two resulting nodes

Projection

- \(\nu \) is a generalisation of \(u \) \((u \leq \nu) \)
- we can define a projection \(\pi: \nu \rightarrow u \)

![Diagram of projection](image)

\(\nu: \)

- cat \(\rightarrow \) agent \(\rightarrow \) chase \(\rightarrow \) paw \(\rightarrow \) animal

\(u: \)

- cat. jerry \(\rightarrow \) agent \(\rightarrow \) chase \(\rightarrow \) pink \(\rightarrow \) mouse \(\rightarrow \) brown

Fig. 2. Projection mapping \(\pi: \nu \rightarrow u \) (the highlighted area is the projection of \(\nu \) in \(u \)).
Overlap with Graph Generalisations

- \(v \) is a common generalisation of \(u_1 \) and \(u_2 \) iff \(u_1 \leq v \) and \(u_2 \leq v \)
- A set of common generalisations of \(u_1 \) and \(u_2 \) is compatible iff they have projection maps such that the corresponding projections in \(G \), \(u_1 \) and \(u_2 \), do not intersect
- A compatible set of common generalisations \(\{g_1, \ldots, g_n\} \) of \(u_1 \) and \(u_2 \) is maximal iff we cannot add a new common generalisation \(g \leq g_i \) such that \(\{g, \ldots, g_n\} \) is compatible
- A set of common generalisations of \(u_1 \) and \(u_2 \) is an overlap iff it is compatible and maximal

Finding an Overlap

- There may be several overlaps
- Finding an overlap is NP-complete
- Still, workable for small graphs

One Overlap

Another Overlap
Conceptual Similarity

\[
S_c = 2 \times \frac{\sum_{c \in G_1} \text{weight}(c) \times \beta(\pi_{G_1} c, \pi_{G_2} c)}{\sum_{c \in G_1} \text{weight}(c) + \sum_{c \in G_2} \text{weight}(c)}
\]

\[
\text{weight}(c) = \begin{cases} W_e & \text{if } c \text{ represents an entity} \\ W_r & \text{if } c \text{ represents an action} \\ W_a & \text{if } c \text{ represents an attribute} \end{cases}
\]

\[
\beta(\pi_{G_1} c, \pi_{G_2} c) = \begin{cases} 1 & \text{if } \text{type}(\pi_{G_1} c) = \text{type}(\pi_{G_2} c) \text{ and } \text{referent}(\pi_{G_1} c) = \text{referent}(\pi_{G_2} c) \\ \frac{\text{depth}(c)}{\text{depth}(c_1) + \text{depth}(c_2)} & \text{if } \text{type}(\pi_{G_1} c) = \text{type}(\pi_{G_2} c) \text{ and } \text{referent}(\pi_{G_1} c) \neq \text{referent}(\pi_{G_2} c) \\ \frac{2d}{d_{c_1} + d_{c_2}} & \text{if } \text{type}(\pi_{G_1} c) \neq \text{type}(\pi_{G_2} c) \end{cases}
\]

Relational Similarity

\[
S_r = 2 \times \frac{\sum_{r \in N_{G_1}(G_1)} \text{weight}_{G_1}(r)}{\text{weight}_{G_1}(G_1) + \sum_{r \in N_{G_2}(G_2)} \text{weight}_{G_2}(r)}
\]

\[
N_{G}(G) = \bigcup_{r \in G} (r) \text{, where } N_{G}(G) = \{ r | r \text{ is connected to } c \text{ in } G \}
\]

\[
\text{weight}_{G_1}(r) = \frac{\sum_{c \in N_{G_1}(G_1)} \text{weight}(c)}{|N_{G_1}(G_1)|}, \text{ where } N_{G}(G) = \{ c | c \text{ is connected to } r \text{ in } G \}
\]

The Similarity Measure

\[
s = s_c \times (a + b \times s_r)
\]

- The coefficients \(a \) and \(b \) reflect user-specified balance
- \(0 < a, b < 1 \) and \(a + b = 1 \)

Example

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Overlap</th>
<th>(s_c)</th>
<th>(s_r)</th>
<th>(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a = 0.1, b = 0.9)</td>
<td>(n_x = w_r = w_y = 1)</td>
<td>[candidate] \rightarrow [ag] \rightarrow [criticize] \rightarrow [pn] \rightarrow [candidate]</td>
<td>0.86</td>
<td>1</td>
</tr>
<tr>
<td>(a = 0.9, b = 0.1)</td>
<td>(n_x = w_r = w_y = 1)</td>
<td>[candidate] \rightarrow [Bush] \rightarrow [criticize] \rightarrow [candidate]</td>
<td>1.00</td>
<td>0</td>
</tr>
<tr>
<td>(a = 0.5, b = 0.5)</td>
<td>(n_x = w_r = w_y = 1)</td>
<td>[candidate] \rightarrow [ag] \rightarrow [criticize] \rightarrow [pn] \rightarrow [candidate]</td>
<td>0.84</td>
<td>1</td>
</tr>
<tr>
<td>(a = 0.5, b = 0.5)</td>
<td>(n_x = w_r = w_y = 1)</td>
<td>[candidate] \rightarrow [Bush] \rightarrow [criticize] \rightarrow [candidate]</td>
<td>1.00</td>
<td>0</td>
</tr>
</tbody>
</table>
Example with AnswerFinder

The Similarity

- $W_E = W_V = W_A = 1$:
 \[
 S_e = \frac{2 \times \left(\frac{2 \times 1}{2 + 2} + 1 + 1 \right)}{6 + 4} = 0.7
 \]
 \[
 S_v = \frac{2 \times \left(\frac{2}{2} + \frac{2}{2} + \frac{2}{2} + \frac{2}{2} \right)}{1} = 0.857
 \]
 - $a = b = 0.5$:
 \[
 S = 0.7 \times (0.5 + 0.5 \times 0.857) = 0.65
 \]
 - $a = 0.9, b = 0.1$:
 \[
 S = 0.7 \times (0.9 + 0.1 \times 0.857) = 0.69
 \]
 - $a = 0.1, b = 0.9$:
 \[
 S = 0.7 \times (0.1 + 0.9 \times 0.857) = 0.61
 \]