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Abstract

In the AGM paradigm of belief change the background logic
is taken to be a supra-classical logic satisfying compactness
among other properties. Compactness requires that any con-
clusion drawn from a set of propositions X is implied by a
finite subset of X. There are a number of interesting logics
such as Computational Tree Logic (CTL, a temporal logic)
which do not possess the compactness property, but are im-
portant from the belief change point of view. In this paper we
explore AGM style belief contraction in non-compact logics
as a starting point, with the expectation that the resulting ac-
count will facilitate development of corresponding accounts
of belief revision. We show that, when the background lo-
gic does not satisfy compactness, as long as the language in
question is closed under classical negation and disjunction,
AGM style belief contraction functions (with appropriate ad-
justments) can be constructed. We provide such a constructive
account of belief contraction that is characterised exactly by
the eight AGM postulates of belief contraction. The primary
difference between the classical AGM construction of belief
contraction functions and the one presented here is that while
the former employs remainders of the belief being removed,
we use its complements.

Keywords: AGM Theory, Belief Contraction, Compactness.

1 Introduction

Knowledge management involves keeping an agent’s body
of knowledge up to date in light of new information deemed
acceptable by an agent. There are two main approaches
to model how a rational agent responds to new informa-
tion. One, called belief revision, is based on the seminal
work (Alchourrén, Girdenfors, and Makinson 1985) fur-
ther developed in many works such as (Gédrdenfors 1988;
Hansson 1999; Rott 2001). The other, called belief update,
is founded on (Katsuno and Mendelzon 1991). The differ-
ence between these two approaches is often motivated by
the (debatable) claim that belief revision is appropriate when
the new information indicates correction (or addition) to the
existing knowledge, whereas belief update is more appropri-
ate when the new information indicates the domain in ques-
tion has changed — in the former the “world” is considered
static, and in the latter it is dynamic. In both the approaches,
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three forms of belief change operations are taken for gran-
ted — one for adding the new information without worrying
about whether or not the resulted beliefs are jointly consist-
ent; one for removing an existing belief; and one for incor-
porating the new information with the caveat that the result-
ing beliefs will be jointly consistent. The assumed behaviour
of these operations (captured by corresponding rationality
postulates) are in some form or other driven by the desider-
atum that the change involved should be minimised since no
belief should be gained or lost without a reason. The latter
two of the operations — for belief removal and for consistent
accommodation of new information — are inter-translatable
via the Levi Identity and the Harper Identity, and both of
them involve some extra-logical choice mechanism such as
epistemic entrenchment as a tie breaker. This extra-logical
mechanism is employed to provide an explicit construction
of the relevant belief change operator whose behaviour is
“described” by the rationality postulates. Our work in this
paper is confined to belief removal in a “static world”, typ-
ically called belief contraction, as opposed to belief erasure
which is the phrase used to name belief removal in a “dy-
namic world”. We assume that the results obtained can shed
light on, and can be easily extended to, belief revision.

Much of the research carried out in the field of belief
change assumes that the beliefs of an agent are represented
as sentences of a non-modal, propositional language, and the
background logic used is the classical propositional logic. In
particular, the background logic is represented as a Tarskian
consequence operator satisfying, among other things, Com-
pactness, that is any consequence of a set of sentences X
is a consequence of a finite subset X’ of X. The issue of
belief change has also been examined by many using a non-
classical logic as the background logic, such as (Restall and
Slaney 1995) and (Wassermann 2011).

In these approaches knowledge of an agent is expressed
in the object language associated with a background lo-
gic, whereas the belief change itself is carried out using
some “extra-logical” operations such as contraction and re-
vision. In contrast, efforts have been made to represent belief
change dynamics in the object-language itself. A substantive
approach toward this end is that of Dynamic Doxastic Lo-
gic, DDL in short, (Leitgeb and Segerberg 2007) which is a
modal logic in which belief change operators are expressed
in the object-language via modal operators. The semantics



of DDL is given in terms of hypertheories in(Segerberg
1995). In this tradition, Cantwell (2000) proposed to rep-
resent contraction functions through hypertheories in DDL.
Cantwell also considers extensions of DDL towards certain
non-compact modal logics. A different approach to capture
belief change via modal operators is presented in (Bonanno
2009) which uses temporal logics to represent the belief dy-
namics in a temporal framework and temporal operators to
represent the interaction among an agent’s beliefs over time.
What all these works have in common is that they repres-
ent the belief dynamics of an agent in the object-language
of a modal logic, while an agent’s knowledge is still repres-
ented in classical logics. Unlike these works, we represent
the knowledge of an agent in non-classical logics, while the
belief dynamics operators are kept as extra-logical features
in the spirit of the AGM approach.

In this paper we examine belief contraction without as-
suming any specific non-classical logic as the background
logic, but only relaxing a requirement on the background
logic — in particular, we no longer assume that the back-
ground logic satisfies compactness. For convenience we call
such logics Non-compact Logics. What lends significance
to this endeavour is that a number of interesting logics that
play important roles in computing sciences including Ar-
tificial Intelligence do not satisfy compactness. These in-
clude logics such as temporal logics, e.g., Computation Tree
Logic (CTL) and Linear Temporal Logic (LTL) (Clarke,
Grumberg, and Peled 2001), that are widely used both in
formal specification and verification of systems as well as
in Planning. Branched temporal logics (Gabbay, Hodkinson,
and Reynolds 1994) such as CTL allow explicit representa-
tion of and reasoning about incomplete information about
temporal events.

There are a few natural paths one might take when explor-
ing belief contraction with non-compact logics:

1. Suppose we construct a belief contraction function ana-
logous to the way it is constructed in the AGM tradition,
such as Partial Meet Contraction, Transitively Relational
Partial Meet Contraction or Safe Contraction, assuming
a non-compact logic as the background logic. Will the
standard AGM postulates of contraction still be appropri-
ate? If not, what alternative postulates will characterise
such belief contraction functions?

2. Suppose we agree upon a set of belief contraction postu-
lates that are arguably rational in the context of a back-
ground logic that is non-compact. Can we construct a be-
lief contraction function that satisfy some, or all, of those
postulates? If so, how?

3. Since AGM Contraction Postulates have survived the test
of time, we may, for a start, assume that they are appro-
priate even if the background logic is non-compact. What
other assumptions must we make about the background
logic? Can we construct a belief contraction function that
will satisfy them, and if so, how?

Our chosen path is the last one which has been paved
to an extent by Flouris (2006) who showed that the exist-
ence of a contraction function that satisfies the first six of

the AGM contraction postulates (called the basic contrac-
tion postulates)! does not require the background logic to
satisfy all the AGM assumptions. He calls such background
logics AGM-Compliant.

In (Ribeiro et al. 2013) the authors have identified some
sufficient conditions for a logic to be AGM-Compliant and
examined if the Partial Meet Contraction, which is charac-
terised by the basic AGM postulates of contraction when
the background logic satisfies the AGM assumptions such as
compactness, is also so characterised in the presence of these
sufficiency conditions alone. To the best of our knowledge,
the existing efforts to apply belief revision in non-classical
logics either presuppose compactness and rely on Partial
Meet functions, or drop some of AGM postulates and pro-
pose a different class of contraction functions. In this paper,
on the other hand, we identify the features of a background
non-compact logic (and its associated language) that will
guarantee its AGM-Compliance, and construct belief con-
traction functions that, apart from satisfying the basic AGM
postulates of contraction as required by AGM-Compliance,
satisfy the two Supplementary AGM Postulates of contrac-
tion as well. Specifically, we require that the language sup-
porting such non-compact logics be closed under classical
negation and disjunction.

We introduce in Section 2 some preliminary concepts and
the notation used in this paper. Then in Section 3 we review
the AGM theory of belief change, in particular belief con-
traction, discuss the notion of AGM-Compliance, and prove
AGM-Compliance for the class of logics closed under clas-
sical negation and disjunction. In the subsequent two sec-
tions, Section 4 and 5 we provide constructions of two be-
lief contraction functions that are respectively characterised
by the basic AGM contraction postulates and the full set of
AGM contraction postulates. Finally, in the concluding sec-
tion, we provide a brief discussion of some interesting issues
that will be taken up in our future work. Only occasionally
we have sketched the outline of the proofs in the text of this
paper; the proofs will be provided as part of a planned ex-
tended work.

2 Notation and Technical Background

Given a set A, the power set of A will be denoted as 24 We
use the terms formula and sentence interchangeably. We will
use upper case Roman letters (A, B, ...) to denote sets, and
lower case Greek letter (o, 3, ..., ®,1,...) will be used to
denote formulas. We will reserve the upper case letter K
for a special kind of sets called belief sets, and the Greek
lower case letter v to denote a kind of function called selec-
tion function. The upper case letter I is reserved to denote
a collection of sets. Propositional symbols will be denoted
by lower case Roman letters (p, q, 1, ...). The letter M will
denote a model. Moreover we will use the symbol C for sub-
set, whereas C will denote proper subset. The maximal ele-
ments of a set A with respect to a binary relation < is given
by max<(A) ={a € A|-3be A, a <b}.

We consider a logic as a pair (L, C'n), where L is a lan-
guage and C'n: 2 — 27 is a logical consequence operator

"Please see Section 3 for the list of AGM contraction postulates.



that maps a set of formulas to the set of all its inferred for-
mulas. For readability, for any formula ¢, the set Cn({p})
will often simply be written as C'n(y). We will often pre-
tend that the consequence operation C'n itself represents a
logic when no confusion is imminent. We limit ourselves to
logics that are Tarskian, that is, logics whose consequence
operator satisfies the following three properties:

1. (Monotonicity): A C B iff Cn(A) C Cn(B);
2. (Idempotence): Cn(A) = Cn(Cn(A)); and
3. (Inclusion): A C Cn(A).

Apart from being Tarskian, the consequence operation
is often granted some other properties in the AGM belief
change literature, and they are often dubbed AGM Assump-
tions.

o (deduction): ¢ € Cn(A U {¢}) iff » — ¢ € Cn(A);

o (supraclassicality): if ¢ is a logical consequence of A in
classical propositional logic, then ¢ € C'n(A);

e (compactness): if ¢ € Cn(A) then there is a finite subset
A’ of A such that p € Cn(A").

We will say that a logic (L, C'n) is closed under classical
negation iff the language L is closed under the negation op-
erator, for each formula p € L, Cn(p)NCn(—p) = Cn(0),
and Cn({p, ~¢}) = L. In other words, the negation is inter-
preted classically. Analogously, the logic is closed under the
disjunction if the language is closed under such a connective
and it is also classically interpreted, that is, if ¢ € Cn(X)
then o V ¢ € Cn(X), forevery ¢p € Land X C L. A
set of formulas K closed under consequence relation, i.e.
K = Cn(K), is called a theory.

One of the inconveniences of dealing with non-compact
logics is that it is not possible to define a finite proof sys-
tem for these logics. We exploit the semantics of the logical
consequence operator C'n as a remedial measure. Given a
logic (L, Cn) and a set of structures Z, an interpretation or
a model is an element of Z that gives meaning to the formu-
las of L; 7 is called an interpretation domain of that logic,
whereas each subset of 7 is called an interpretation set. A
satisfaction relation |= binds each pair in Z x L to a truth
value T (true) or F' (false), meaning that a formula is re-
spectively true or false in that model. For instance, an inter-
pretation domain for the Propositional Logic is the power set
of the propositional symbols of the language.

In Tarskian logics, the consequence operator can be se-
mantically defined as: a formula ¢ € Cn(X) iff every
model that satisfies all formulas in X also satisfies ¢. Let
7 be an interpretation domain of a logic (L, Cn), and M a
model in Z. The set of all formulas of L satisfied by M is
the theory Th(M) = {¢ € L | M [ ¢}. Generalizing,
given a set of models A, Th(A) = {¢ | VM € A, M = ¢}
is the theory of the formulas satisfied by all models in A.
Moreover, given a theory X C L, the set of models that sat-
isfy all formulas in X is [X] = {M € I |Vp € X, M E
©}. For simplicity, given a set of formulas X and a model
M, we will write M = X to mean that M satisfies every
formulas in X . Furthermore, we will call a theory 1" a com-
plete theory if and only if, for every sentence ¢, either ¢ € T’
or ¢ € T, and use T7, to denote all such complete theories.

Unlike in Propositional Logic, in non-classical logics, e.g.
modal logics, two different models, say M and M’, may
satisfy exactly the same set of formulas, that is, Th(M) =
Th(M’). We say that such models are semantically equival-
ent, and call a set closed under such equivalence Completed
Interpretation Sets (CIS):

Definition 1. A set of interpretations A is a Completed In-
terpretation Set (CIS) if and only if A is closed under se-
mantic equivalence.

This notion will prove useful to demonstrate AGM-
Compliance of Tarskian Logics closed under classical nega-
tion and disjunction.

3 AGM Contraction and AGM-Compliance

All the beliefs of an agent as a whole is represented as
a set of sentences K, called a belief set (or theory), that
is assumed to be closed under logical consequence: K =
Cn(K). For notational convenience we take K + ¢ to mean
Cn(KUCn(p)), for any belief set K and sentence . In the
AGM paradigm of belief contraction, as well as other forms
of AGM belief change (Alchourrén, Géardenfors, and Makin-
son 1985), the background logic Cn is assumed to satisfy
a set of properties called AGM assumptions, namely, it is
Tarskian, supra-classical, compact, closed under all boolean
connectives (conjunction, disjunction, implication and neg-
ation), and satisfies deduction. Let K be the collection of all
belief sets. Then any function f : K x L — K is a belief
change operation. The full set of AGM rationality conditions
for belief contraction are given below. For any theory K,
sentences ¢ and 1, and belief contraction function — :

(K1) K—-—p=Cn(K—¢) (closure)

(K2) K—-pCK (inclusion)

(K3) IfpdK,thenK—p=K (vacuity)

(K4) TIfp & Cn(D),thenp & K — ¢  (success)

(K5) KC(K-—¢)+y (recovery)

(K6) IfCn(p)=Cn(¢),then K —p =K —1
(extensionality)

(K7T) (K=¢)N(K —¢) CK—(pAV)

(K8) IfpgK—(pA)then K — (pA1h) S K — ¢

Postulates (K1)-(K6) are the basic AGM postulates for
contraction, and the last two constitute the supplementary
postulates. Discussion of and rationale behind these pos-
tulates can be found in (Gérdenfors 1988; Nayak 1994),
among others. We will call any belief change operation that
satisfies postulates (K1)-(K6) an AGM rational belief con-
traction. Any AGM rational belief contraction that also sat-
isfies the supplementary postulates (K7)-(K8) will be said to
be fully AGM rational.

The postulates (K1)-(K8) prescribe a good set of beha-
viours for a contraction function, but do not tell us where to
find such a function. There are different available construc-
tions of (fully) AGM-rational belief contraction functions.
One of them uses as tool what is called a remainder set:

“This is actually called the belief expansion operator that is used
to add beliefs without consideration of whether or not the result is
consistent.



Definition 2. A remainder set K 1 ¢ of sentence p with
respect to a belief set K is the set of maximal subsets of K
that do not entail @. That is, K L ¢ = {K' C K | ¢ ¢
Cn(K'"), andif K! C K" C K, then ¢ € Cn(K")}.

The members of K L ¢ are called the remainders of ¢
with respect to a belief set K, each of which may be seen
as the result of removing a logically minimal amount of in-
formation from K in order to remove ¢. Since generally
K 1 ¢ will have multiple members, a choice needs to be
made as to which remainders to use for constructing a be-
lief contraction function. This is done through the use of an
extra-logical selection mechanism called a selection func-
tion.

Definition 3. A selection function v maps a remainder set
K 1 @ to a set of remainders in it such that

_JOEXCK Ly ifKLo#0
V(KJ‘SO)_{ {K} otherwise.

Since no remainder in K | ¢ entails ¢, it follows that
the beliefs common to the remainders chosen by v will not
entail ¢. Indeed it can be shown that each remainder is a the-
ory, as is the intersection of any set of remainders. Hence a
contraction function —., called the partial meet contraction
function, can be constructed thus:

Definition 4. Given a theory K, a sentence ¢ and a se-
lection function -y, the operation —., defined K —., ¢ =
N~ (K L ) is called a partial meet contraction function.

The selection function v represents the epistemic choices
made by an agent. However, it could be quite arbitrary, and
hence we might wish to rationalise it by assuming that this
choice behaviour reveals some underlying hidden preference
of the agent. If we take that preference to be a transitive pref-
erence relation < over members of the remainder set, and
the selection function < always selects the best (modulo
<) elements in K L ¢, then the contraction function —,_ is
called a transitively relational partial meet contraction func-
tion. The following representation result is used to justify the
AGM postulates for contraction as well as the construction
of contraction functions via selection from remainder sets
(Alchourrén, Girdenfors, and Makinson 1985).

Theorem 1. Let f be a belief change function.

1. The function f is an AGM rational contraction function if
and only if it is a partial meet contraction function.

2. Furthermore, f is a fully AGM rational contraction func-
tion if and only if it is a transitively relational partial meet
contraction function.

Belief contraction in the AGM framework, as presented
above, makes strong assumptions about the background lo-
gic Cn. However, it is not clear if, when we relax such as-
sumptions, we can still construct remainders, let alone con-
struct contraction functions that are (fully) AGM rational.
A logic Cn is said to be AGM-Compliant if and only if,
with C'n as the background logic, it is possible to define
a contraction operation that satisfies all the six contraction
AGM postulates. Flouris (2006) has shown that the existence

of AGM-rational contraction functions does not depend on
the background logic Cn satisfying the AGM assumptions.
Rather it depends on what he calls its decomposability prop-
erty. Decomposability in turn is defined in terms of relative
complement.

Definition 5. Let (L,Cn), and A, K € 2L be such that
K = Cn(K) and Cn(0) C Cn(A) C K. The complement
of A relative to K, denoted K~ (A), is the collection of all
sets K' such that Cn(K') C Cn(K) and Cn(K' U A) =
On(K).

To illustrate, let us take the theory K = Cn({p, q}) over
the set of atomic symbols {p, ¢}, and A = {p}. Clearly,
Cn(0) c Cn(A) C K. Ifwelet K’ = {p — q} C Cn(K),
then Cn(K’ U A) = K. Thus, K' is in a complement of A
relative to K. Other sets such as {¢} and {p < ¢} are also
in K~ (A).

Definition 6. A logic (L,Cn) is decomposable iff
K= (A) # 0, for every A, K € 2L such that K = Cn(K)
and Cn(0) C Cn(A) C K.

Decomposability has a straightforward relation with
AGM-compliance:

Theorem 2. (Flouris 2006) A logic {(L,Cn) is decompos-
able iff it is AGM-Compliant.

The rest of this section is devoted to show that the class of
Tarskian logics closed under classical negation and disjunc-
tion are AGM-Compliant (Theorem 4). Towards this end we
first need to establish some preliminary results. From now
on, unless stated otherwise, any logic we mention is assumed
to be a Tarskian Logic closed under classical negation and

disjunction. We recall the functions [] and Th() introduced
in Section 2. The proof of the following result is straightfor-
ward.

Observation 1. Let A be an interpretation set. Then,
Th(A)= (| Th(M).
MeA

A related immediate result is that any theory obtained
from a model is a complete theory due to the presence of
the classical negation.

Observation 2. The theory Th(M) corresponding to a
model M is a complete theory.

As in the classical case, we show that the more models a
CIS has, the smaller is its theory.

Proposition 1. [f K’ C K, then [K] C [K'], for all theor-
ies K and K'.

Proposition 2 (whose proof is analogous to the classical
case) and Corollary 1 are of immediate assistance for the
subsequent Proposition 3.

Proposition 2. Let I' be a set of distinct complete theories
and B a consistent complete theory which is not in I'. Then,

(BNAOT) cOr.

Corollary 1. Let A and B be two CISs. If M ¢ A, then
(D1) Th(AU {M}) C Th(A) and Th(A U {M}) C
Th(M); and



(D2) if M € B, then Th(AU B) C Th(A) and Th(A U
B) C Th(B).

The following proposition assures that no two different
theories have the same CIS. An immediate result of this is
that there is a bijection between the realm of theories and the
class of CISs (see Theorem 3 below).

Proposition 3. An interpretation set A is a CIS iff A = [K]
for some theory K.

We are now ready to define a function that maps each the-
ory to a CIS. An important aspect of such a function is that
it maps each theory K exactly to the only completed inter-
pretation set from which K follows. We shall show that this
function is a bijection which will be used to demonstrate that
logics closed under classical negation are AGM-Compliant.

Theorem 3. Let T be the the set of all theories from a lo-
gic (L,Cn), and L¢ the class of all complete interpretation
sets of that logic. Then the function T : T — ZL¢, defined
7(K) = [K], is a bijection.

As 7 is a bijection, we have 7=1(Y) = Th(Y), where Y’
is a complete interpretation set. Proposition 4 and 5 and Co-
rollary 2, whose proofs are quite straightforward, are useful
to prove Theorem 4.

Proposition 4. Let A and B be two CISs. If A C B then
Th(B) C Th(A).

Proposition 5. Let K and K' be two theories. Then,
Th([K]N[K']) = Cn(K UK").

Corollary 2. Let A and B be two sets of formulas, then
Cn(AUB) =Cn(AUCn(B)).

Now we have all the ingredients to show the last result in
this section:

Theorem 4. Every Tarskian logic closed under classical
negation and disjunction is AGM-Compliant.

4 Construction: AGM Basic Rationality

In the previous section we showed that Tarskian Logics
closed under classical negation and disjunction are AGM-
Compliant. Question arising: which class of contraction
functions is characterized by the AGM postulates in such
logics? Unfortunately, we can no longer rely on partial meet
contraction functions for this purpose since, as pointed out
in (Ribeiro et al. 2013), partial meet functions do not satisfy
the AGM postulates in some non-compact logics. We need
to devise a new class of functions.

In this section, we construct a new contraction function
which satisfies the postulates (K1) to (K6). Recall that T},
denotes the set of all consistent complete theories of a lo-
gic (L,Cn), and an agent’s belief set K is closed under
the consequence operation Cn. In the AGM approach the
partial meet contraction depends on remainder sets whose
existence is guaranteed by the compactness property of the
background logic. But since we do not have the compact-
ness property to fall back upon, the contraction function we
define will depend on a selection of complete consistent the-
ories which will be intersected with the belief set K. Ac-
cordingly we assume a Choice Function ¢ : L — 27 that

maps each formula ¢ of L to a set of complete theories 6 (),
subject to the following conditions:

1. §(p) # 0;
2. if o & Cn(D), then6(p) C{S €Ty | v & S};
3. for any formulas ¢ and %, if ¢ = 1) then 6(p) = 5(¢).

The purpose of the choice function § is to pick the best
complete theories that do not entail a non-tautological for-
mula ¢ (condition 2). Condition 1 dictates that for any for-
mula, at least one complete theory has to be selected. The
last condition assures that the choice mechanism used is not
syntax-sensitive. The main difference between this choice
function and the selection function used in the construction
of the partial meet contraction is that while the latter picks
remainders for a given theory (belief set) and formula pair,
the former picks complete theories for a given formula, and
the role of the theory is postponed to the construction stage
of the contracted set. In this sense, our approach better cor-
responds to the semantic counterpart of the AGM partial
meet contraction function: [K — ¢] = [K] U & ([-¢])
where ¢’ is an appropriate choice function that picks models
from an input set.

Definition 7. Let K be a theory, ¢ a formula, and § a
choice function. An operation —s is an Exhaustive Contrac-
tion Function (ECF) iff

1. K —59p=KnN[d(p), if both:
(i) Cn(0) € K N Cn(p) = Cn(y) and
(i) either = & Cn(0) or L € K;

2. K —5 ¢ = K, otherwise.

Let us look at the constraints imposed on the ECF by
the above definition. A formula ¢ may only be retracted
from a belief set K when: (1) K is not simply a set of
tautological formulas, (2) ¢ itself is not a tautology and
(3) ¢ is in K. These constrains are jointly expressed as
Cn(0) € KNCn(y) = Cn(p). Besides, if K is consistent,
 also needs to be consistent (otherwise ¢ is not a belief and
hence its removal is vacuous).

For illustration purposes, let us contract a formula from a
theory expressed in a non-compact logic, namely, the Linear
Temporal Logic (Clarke, Grumberg, and Peled 2001). For
simplicity, we will consider only two temporal operators of
that logic: G and X. The former means Globally (always)
in the future, and X means in the “neXt” time instant. We
will keep the disjunction and negation of that logic which
are interpreted classically. For our purpose, it will suffice
to note two properties regarding these two operators. First,
Cn({Gp,p, Xp,X?p,..., X"p,...} C Cn(Gp). In other
words, G)p implies that p is true in the current time instant
and in all next future instants. As the disjunction and neg-
ation are interpreted classically, we note that formulas such
as =X p V Gp and ——p also belong to Cn(Gp). The second
point we need to note is that Cn({p, Xp, ..., X"p,...}) =
Cn(Gp). For more details of this logic and its semantics,
readers may consult (Clarke, Grumberg, and Peled 2001).

Example 1. Consider the theory K = Cn(Gp) and we wish
to contract X p from it. Let our choice function be 6, where:

1. 6:(Xp) = Cn({p,~Xp, Xp — Gp,~X?p,...});



2. Else, if 5, () = Ty, then Cn(+)) = Cn(0);
3. Else, (51(2/1) = {S e Ty, | v & S}

If v is a tautology, we just let §1(v) = Tr. The first con-
straint above concerns the complete theories chosen to con-
tract the formula Xp. As this is the only formula we are
interested to retract, for all other non-tautological formulas
1) we let 6, choose all the complete theories that do not im-
ply  (third constraint). So, K —s; Xp = K N 61(Xp) =
Cn({p, Xp — Gp,X*p — Gp,... }).

It is easy to notice that —g, satisfies (K1) to (K4). The
extensionality postulate (K6) follows from condition 3 of the
definition of a choice function. For Recovery (K5), it suffices
to note that Xp — Gp is in both §(Xp) and K, whereby,
(K —s5, Xp)+Xp=K.

Having seen how the contraction function ECF works in
practice, let us see how well behaved it is.

Proposition 6. [f a non-tautological formula ¢ belongs to a
theory K then Cn(0) C K N Cn(p) = Cn(yp), and either
 is consistent or K is inconsistent.

Lemma 1. [Cn(KUK')] = [Cn(K)|N[Cn(K")], for all
theories K and K'.

Lemma2. Cn(KNK') = Th([K]U[K']), for all theories
Kand K'.

An immediate consequence of Lemma 2 is that the inter-
section of a set of theories corresponds to the union of the
CIS of the theories being intersected:

Corollary 3. [ X] = Uy cx[Y] for all sets of theories
X.

This leads us to show that ECF is quite well behaved — it
satisfies the six basic AGM contraction postulates:

Theorem 5. Every ECF satisfies (K1) to (K6).

The above result, Theorem 5, establishes half of our first
representation result. The following two results, Proposi-
tion 7 and Lemma 3, are useful to prove the other half of
this representation result (Theorem 6).

Proposition 7. Let — be a function that satisfies (K1) to
(K6). Then, K — ¢ # K iff Cn(0) € K N Cn(p) =
Cn(p), and either —p & Cn(0) or L € K.

Lemma 3. For any theory K there is a set of complete the-
ories X such that K = () X.

Theorem 6. If a contraction function — satisfies the six ba-
sic contraction postulates, then there exists ECF — such that
for any theory K and formula o, K — ¢ = K—.

Theorems 5 and 6 together show that ECF is indeed very
well behaved, and constitute our first representation result.

5 Construction: AGM Full Rationality

In this section we introduce a class of contraction functions
that satisfy all eight AGM contraction postulates, the Blade
Contraction. The main idea is to constrain the class of ECFs
in a way that the choice function employed by each such
ECF can be represented by a binary relation which respects
two conditions, to be named Maximal Cut and Mirroring.

Figure 1: Mirroring. A is preferred to C, hence to D.

Given a theory K and a formula ¢, a way to contract K by
 is to intersect &' with some consistent complete theories
that do not imply . In a logic closed under classical neg-
ation, these consistent complete theories entail —¢. A con-
sistent complete theory that does not imply a formula ¢ will
be called a complement of ¢, and the class of all comple-
ments of ¢ is given by the setw(p) = {S € T | ¢ € S}.
We highlight that, due to the classical negation, w(p A1) =
w(¢p) U w(eh). Also note that, since the logic is closed un-
der classical negation, w(y) is empty if and only if ¢ is a
tautology,

The basic idea is that the agent’s choice function § does
not behave arbitrarily; its behaviour is “rationalised” by the
agent’s preference: the agent’s preference is revealed by its
choice behaviour. We represent this preference as a binary
relation < over complements of . The two constraints we
impose on < are:

(Maximal Cut) for every non-tautological formula ¢ €
L, w(y) has a maximal element w.r.t. <.

(Mirroring) if S; £ S and Sy £ Sy; then for any S’ €
Tr,if 51 < S’ then Sy < S’

The first condition on <, maximal cut, is similar to the
Limit Assumption of (Lewis 1976) and the Finite Stoppered-
ness of (Géardenfors and Makinson 1994). It guarantees that
for every formula ¢, an agent chooses at least one comple-
ment theory of ¢. The purpose of the Maximal cut is to en-
sure that every formula to be dropped will be successfully
relinquished, that is, the theory being contracted will be in-
tersected by complements of (.

The second condition, Mirroring, is similar to the mod-
ular relation defined in (Meyer, Labuschagne, and Heidema
2000) which was based on modular partial orders of (Gins-
berg 1986) and (Lehmann and Magidor 1992). Though the
concept of modular relation is confined to be a partial order,
we impose no such restriction. The intuition behind mirror-
ing is that if an agent has no preference between two theor-
ies A and B, then those that are preferable to A should also
be preferable to B and vice versa. For instance, when drop-
ping a formula ¢ an agent may choose among the four com-
plements of ¢: A, B, C and D. It prefers A to C' and B to
D, that is, its preference relation is {(C, A), (D, B)} which
is depicted in Figure 1 by solid arrows. So, it will choose
both A and B to contract ¢. However, there is no preference
between C' and D. According to mirroring, all theories that
are preferable to C' are also preferable to D (and vice versa).
Thus, the pairs (C, B) and (D, A) also need to be present in
the relation (depicted by dashed arrows in Figure 1).

The rest of this section will proceed as follow. First, we
introduce a relational choice function whose elements are
picked according to a binary relation that satisfies maximal



cut and show that contraction functions defined via such re-
lational choice functions satisfy the postulate 7. Then we
show that if the binary relation in question also satisfies mir-
roring, then the contraction functions defined via it satisfies
both the postulates K7 and K 8.

From now on, unless otherwise specified, we consider
only relations that satisfy maximal cut. We call a binary
relation that satisfis maximal cut contra-headed. First, we
explain the idea of relational choice functions. Let § be a
choice function and ¢ a formula. Moreover, let < be a bin-
ary relation over the class of all complete theories. Recall
that, given a set of complete theories A, max(A) is the set
of all maximal theories in A w.r.t. <. The choice function
d(y) is restricted to pick only from the complement theor-
ies of ¢, that is, 0(¢) C w(y). Thus, we will say that ¢ is
relational if there is a binary relation < over the set of all
complete theories such that the elements picked by §(¢) co-
incide with the maximal elements of w(p) ordered by <,
that is, 0(¢) = maz < (w(p)). We note that 6(¢) has to pick
some complements of ¢, for every non-tautological formula
. In the case that § is relational, it follows that there is a
maximal element in w(y) w.r.t. the corresponding binary re-
lation <; that is, < respects the maximal cut property, and
so is contra-headed. A relational choice function whose cor-
responding binary relation is contra-headed will be called an
annulment. We will use p instead of ¢ to denote annulment
functions.

Definition 8. Let < be a contra-headed relation over Tr,.
An annulment is a function 1 : L — 27 such that

_ if C' # Cn(0);
p<(p) = { Toanf:éo;é(%pg Ty ;the?v(vfge "0

Note that, for the tautologies, an annulment is free to
chose any element, since tautologies do not have any com-
plement. As expected an annulment is indeed a choice func-
tion.

Lemma 4. Every annulment is a choice function.

Now we proceed to define a new contraction function that
we call the Blade Contraction Function (BCF). The idea is
similar to an ECF, we simply restrict the choice function to
be an annulment function. This will ensure that every BCF
satisfies the postulate (K7).

Definition 9. Let p be an annulment w.r.1. a contra-headed
relation <. A Blade Contraction Function (BCF) — - is con-
structed from < as follows:

1. K—<p = KN\ p<(p), if both
(i) Cn(0) € K NCn(p) = Cn(p), and
(ii) either —p & Cn(0) or L € K;

2. K—-.p = K, otherwise.

Notice that the definitions of BCF and ECF are quite sim-
ilar, the only difference is that a BCF involves an annulment,
and an ECF involves a choice function. It trivially follows
from Definition 9 and Lemma 4 that:

Corollary 4. Every Blade Contraction Function is an Ex-
haustive Contraction Function.

A= Cn(=p,q) —— B = Cn(-p,—q)

<
‘ =
\\

C =Cn(p,q) —— D = Cn(p,q)

Figure 2: A depiction of Example?2.

Example 2. Let K = Cn(p, q) be a propositional theory,
and < the binary relation depicted by solid arrows in Fig-
ure 2. Moreover, let p« be the respective annulment func-
tion. The complements of p, q and p N\ q are respectively
w(p) ={A,B}, w(q) = {B,D}and w(pNq) = {A, B, D}.
According to < which is contra-headed: 11.(p) = {A},
p<(q) = {B,D} and to p<(p A q) = {A, D}. Thus we
have:

K—p = KN u(p) = Cn(q)
K—<q =KnN(\p<(q) = Cn(~qV p)
K—cpng =Knp<prq) =CnlpVa)

A blade contraction behaves similarly to an ECF, the dif-
ference is that the choice function picks the complements of
a formula ¢ according to a binary relation. The binary rela-
tion guarantees that a BCF satisfies postulate K7.

Theorem 7. Every BCF satisfy (K7).

Though blade contractions satisfy postulate K7, maximal
cut alone is not enough to satisfy postulate K'8. This can be
seen on the blade function of the Example 2. First, from the
example we have that K—_q = Cn(—q V p) and K—_p A
q = Cn(pV q). Now, notice that ¢ ¢ K—_p A q and that
Cn(pV q) € Cn(—qV p) which implies that K—_p A q £
K~ _q. This means that —_ does not satisfy postulate K8.

To capture K8 it will suffice to consider contra-headed
relations that also satisfy mirroring. Lemma 8 will help ex-
plain how postulates K7 and K8 dictate the way comple-
ments of a conjunction ¢ A 1 are chosen in an ECF. To un-
derstand why mirroring is related to postulate K8, we will
need the condition C2 of that lemma.

According to condition C2 of Lemma 8, if some comple-
ment A of a formula ¢ is chosen to contract a conjunction
© A 1), then all theories chosen to contract ¢ must also be
picked to contract the conjunction ¢ A 1. Another way of
reading this is: if a complement K’ of ¢ is not chosen in the
contraction of ¢, the complements of ¢ that were not chosen
for the contraction of this formula are not chosen in the con-
traction of ¢ A 1. In terms of a relation, this is equivalent to
say that if a complement is not maximal in w(¢p) then it is
also not maximal in w(p A ).

To see how mirroring guarantees condition C2, let us first
look at the contraction function of Example 2. Let ;1 be the
annulment function of that example. We see that though the
theory Cn(—pAq) belongs both to u (p) and u<(pAgq), the
theory Cn(p A —q) is notin p<(p A q). So, let us see what
modifications are necessary in order to turn < into a relation
that satisfies C2. First, we notice that the only reason why
< does not satisfy mirroring is because though Cn(p, —q)
and Cn(—p A —q) are not comparable, Cn(p, —q) is not



less preferable than Cn(—p, ¢). Note that this is the same
reason why p. does not satisfy C2: though Cn(p, —¢q) and
Cn(—p A —q) are chosen to contract g, only Cn(—p A —q)
was chosen to contract p A g. As Cn(p A —q) is already less
preferable than Cn(—pAq), the theory Cn(pA—q) cannot be
chosen to contract p A g. So, an option to make it satisfy C2
is to make Cn(p A —q) also less preferable then Cn(—pAq).
This new relation <; is depicted in Figure 2 as arrows. So
we have that,

K%<1p =KnCn(-pAq) = Cn(q)
K—ciq =K N\p<(q) =Cn(—gq V p)
K—_ipNqg =KnCn(-pAq) =Cnlq)

It is easy to see that the — . satisfies C2 and also K8.

Now we proceed to prove that every Blade Contraction
function whose annulment respects mirroring satisfies pos-
tulate (K8). This claim is proven as Theorem 8 which brings
us to Lemma 5 and Lemma 6.

Lemma 5. Let A and B be two sets ordered by a contra-
headed relation < that satisfies mirroring. If some maximal
element of A is also a maximal element of A U B, then
mazx<(A) C mar<(AUB).

Lemma 6. Let pi be an annulment. Every complete theory
S in pu<(o A ) is such that either S € u-(p) or S €

p< ().

Theorem 8. Let — be a BCF w.rt. an annulment p<. If <
satisfies mirroring, then — satisfies (K8).

So, from Theorem 7 and Theorem 8, we conclude that
every BCF satisfies (K7) and (K8).

The next step is to prove that every contraction function
that satisfies all eight AGM contraction postulates is a BCF.
First we recall that every function that satisfies the six ba-
sic AGM postulates is an ECF (Theorem 6), whereby every
function that satisfy the eight AGM postulates is also an
ECF. Now, it will be sufficient to show that for every ECF =5
that satisfies (K7) and (K8), the choice function ¢ is in fact
an annulment, that is, 6 () = maz < (w(p)) for some binary
relation <. This is a bit tricky. Note that we are considering
only contra-headed binary relations. From here onwards, un-
less stated otherwise, any choice function mentioned is taken
to concern an ECF that satisfies all eight AGM postulates.
We will need to show how to construct a contra-headed re-
lation for a choice function.

We start from a basic idea. Given a choice function ¢, and
a formula ¢ we will need a relation <, such that the max-
imal elements of w(¢) ordered via <, coincide with (),
that is, () = max<,(w(yp)). This is easy, and it suffices
to make <,= {(4, B) € w(y) xw(p) | A ¢ d(p) and B €
()}

The tricky bit is to construct the general relation for the
whole class of complete theories, because simply compiling
every <, together as arelation < = |J <, will not satisfy

peL
mirroring. To notice that, let us take an example. Let us take
a choice function 6, such that for a formula ¢, it chooses a
complete theory A among the set of complete theories A, B
and C', whereas for a formula 1) it chooses the theory D over

Figure 3: Three relations: <., <y and <gaq.

the set of complete theories D, ' and F. Moreover, for the
conjunction ¢ A1) it chooses only D. Summarizing, we have

6(90) = {A} C w(<p) = {A’B’C}
6(v) ={D} cw()={D,E, I}
§(pAY)={D} Cw(pAy)={AB,C,D,E F}

The relations <., <y and <, are illustrated in Figure 3.
The relation <,y consists of all solid arrows in the figure,
whereas the relations <., <, are depicted by the arrows
inside its respective spheres. It is easy to see that <,y is
a contra-headed relation for §. This relation, however, does
not satisfy mirroring: observe that B £ FE and ' £ B,
however £ < D and B £ D violating mirroring. Hence
more is needed. This example suggests that if we relate all
the non maximal elements of <, to the maximal elements of
<y, that is, add the pairs (B, D) and (C, D), the resulting
relation does satisfy mirroring. This operation that relates
the non-maximal elements of a relation <, to the maximal
ones of another relation <y, will be called a triangulation.

Definition 10 (Triangulation). Let d be a choice function,
and 1 be two formulas. The triangulation of ¢ and ) w.rt.
0 is the relation V(p, ) = {(4,B) € w(p) x w(®)) | A €
w(p) \ (6(p) Uw(¥)), and B € 6(1))}.

For instance, the triangulation for ¢ and v, in the example
of Figure 3, is 6(¢, ¢) = {(B, D), (C, D)} which is depic-
ted by dashed arrows in that same figure.

Our intention is to show that every ECF that satisfies (K7)
and (K8) is a blade contraction. Hence we need to show that
there exists a binary relation < satisfying mirroring such that
0(v) = maz(w(y)), that s, J is an annulment. Employing
triangulation, we can construct such a relation that we will
call the shadow of §. Theorem 9 shows that every choice
function from an ECF for (K7) and (K8) is an annulment,
and Theorem 10 shows that the shadow of § satisfies mirror-
ing.

Definition 11. Let § be a choice function. Then the shadow
of d is a relation < C Ty, x Ty, such that (A, B) is in < iff,
for some formulas @ and :

cither (4, 8) € (|J <, )

w€eL
or (A,B) € V(p,¢) UV(Y,p).

Lemmas 7, 8, 9 and Corollary 5 below are of assistance
to prove Theorem 9. Lemma 8 correlates how a choice func-



tion § behaves in the presence of the two supplementary pos-
tulates. Given two formulas ¢ and %, according to (K7),
in order to contract the conjunction of the formulas ¢ and
1), the function § can choose only from the complete the-
ories picked to individually contract ¢ and 4, that is, from
d(¢) U 6(1). For the postulate (K8), if some complete the-
ory picked to contract ¢ A 1 was also picked to contract
, then all complete theories chosen to contract ¢ must also
be picked to contract the conjunction ¢ A t. One immediate
consequence of these two conditions, as shown in Corollary
5, is that if a complete theory is chosen either to contract ¢
or to contract v, then the set of complete theories picked to
contract the conjunction ¢ A is precisely the complete the-
ories chosen to contract both ¢ together with those picked
to contract v, that is, the set d(¢) U d(1)). Lemma 9 exhibits
a similar property of Corollary 5 but in terms of the shadow
relation of 4. It states that the maximal elements of <, and
<y are also maximal elements of <., when at least one
theory from the intersection of §(¢) N &(¢)) is chosen. This
is because the elements chosen by each §(y) are preserved
as maximal elements of the shadow of §.

Lemma 7. Let K be a theory, and A and B be two sets of
complete theories. f K N(V1A C KN[)B, then B C A.
Lemma 8. Let —5 be an ECF, then

(C1) If — satisfies (K7), then §(p A ) C 6(p) US(¢);

(C2) If —5 satisfies (K8), then 6(¢) C 6(¢ A 1), given

there is some theory S of 6() in §(¢ A ).

Corollary 5. Let —;5 be an ECF that satisfies (KT) and
(KB).1f, () N 6(¢p) # O then 6(0 A ) = 0(¢p) U 6().
Proposition 8. Let —;5 be an ECFE, and ¢ and v two formu-
las. IfC ¢ (), C € 6(¢) and C € 5(p A), then —5 does
not satisfy (K7) or (K8).

Lemma 9. Given an ECF —s satisfying (K7) and (K8),
and formulas ¢ and 1, if 6(¢) N 6(¢) # O then <,
U <¢g<<’o/\w

Theorem 9. If an ECF - satisfies (K7) and (K8), then the
choice function ¢ is an annulment.

So far, we have shown that every function that satisfies all
the eight postulates is an ECF whose choice function is an
annulment, that is, a Blade Contraction function. The only
other thing we need to finish off the representation result is
to show that the shadow of such a choice function respects
mirroring.

Theorem 10. Let —s be an ECF that satisfies (K7) and (K8).
Then, the shadow < of § satisfies mirroring.

From Theorem 7 and Theorem 8, together with The-
orem 10, the desired representation theorem between the
eight AGM contraction postulates and the Blade Contrac-
tion function class easily follows:

Theorem 11. Every contraction function that satisfies all
the eight postulates is equivalent to a BCF.

6 Conclusion and Future Works
We argued that it is important to develop accounts of be-
lief contraction when the background logic does not guar-
antee the compactness property, with the expectation that it

would facilitate a corresponding account of belief revision.
While it was known that satisfaction of the six basic AGM
contraction postulates did not necessitate the background lo-
gic to satisfy the AGM assumptions such as compactness,
not much research was done as to the necessary features
of the background logic. We showed in Section 3 that as
long as the background logic is Tarskian, and the associated
language is closed under classical negation and disjunction,
the existence of contraction functions that satisfy the basic
AGM contraction postulates is guaranteed. Then we showed
in the following section how such a contraction function can
be constructed. This construction is analogous to the partial
meet contraction in the sense that it uses a selection func-
tion over some complete theories that may be taken to be
analogues of the remainders used in the AGM tradition. Fi-
nally in Section 5 we showed how the selection function in
question can be rationalised so that the resulting contraction
function will be fully AGM rational.

There are interesting related issues worth exploring:

1. In the classical framework, when the contraction function
is fully AGM rational, the corresponding revision func-
tion defined via the Levi Identity is also appropriately
AGM rational. However we have not examined if such
nice behaviour of the revision function is assured in our
case when the logic is more general.

2. Belief change has a close connection with non-monotonic
logics such as cumulative logics developed and explored
in (Girdenfors and Makinson 1994). In such accounts,
the non-monotonicity of the cumulative logic is taken to
piggy-back on a classical logic satisfying compactness
among others. For instance, in the Right Weakening prop-
erty, namely: if - 8 — vy and a |~ [ then a |~ 7, the
logic represented by - is taken to be classical. Our work
will facilitate exploration of such non-monotonic logics
when I is more general and non-compact.

3. In order to rationalise the choice function via a prefer-
ence relation so that the contraction function based on it
will be fully AGM rational, we imposed two properties
on that relation that are similar to the Limit assumption
of (Lewis 1976) and the modularity imposed by (Meyer,
Labuschagne, and Heidema 2000). It will be worth while
to explore the connection between such works and ours
and discover deeper interconnections.

4. Finally, we believe research into belief update when the
background logic is more general could be productive.

These are issues we plan to take up in our future work.
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