DERIVATORS: DOING HOMOTOPY THEORY WITH
2-CATEGORY THEORY

MIKE SHULMAN

(Notes for talks given at the Workshop on Applications of Category Theory held at
Macquarie University, Sydney, from 2-5 July 2013.)

Overview:

1. From 2-category theory to derivators. The goal here is to motivate the defini-
tion of derivators starting from 2-category theory and homotopy theory. Some
homotopy theory will have to be swept under the rug in terms of constructing
examples; the goal is for the definition to seem natural, or at least not unnatural.

2. The calculus of homotopy Kan extensions. The basic tools we use to work with
limits and colimits in derivators. I'm hoping to get through this by the end of
the morning, but we’ll see.

3. Applications: why homotopy limits can be better than ordinary ones. Stable
derivators and descent.

References:

e http://ncatlab.org/nlab/show/derivator — has lots of links, including to
the original work of Grothendieck, Heller, and Franke.

e http://arxiv.org/abs/1112.3840 (Moritz Groth) and http://arxiv.org/
abs/1306.2072 (Moritz Groth, Kate Ponto, and Mike Shulman) — these more
or less match the approach I will take.

1. HOMOTOPY THEORY AND HOMOTOPY CATEGORIES

One of the characteristics of homotopy theory is that we are interested in cate-
gories where we consider objects to be “the same” even if they are not isomorphic.
Usually this notion of sameness is generated by some non-isomorphisms that exhibit
their domain and codomain as “the same”. For example:

(i) Topological spaces and homotopy equivalences

(ii) Topological spaces and weak homotopy equivalence
(iii) Chain complexes and chain homotopy equivalences
(iv) Chain complexes and quasi-isomorphisms

(v) Categories and equivalence functors

Generally, we call morphisms like this weak equivalences.

1.1. Homotopy limits. The problem is that standard categorical constructions,
like limits and colimits, do not respect this weaker notion of sameness. This is not
usually a problem with products and coproducts: you can check for instance that
a product or coproduct of homotopy equivalences is again such. But it becomes a
problem for pullbacks and pushouts.


http://ncatlab.org/nlab/show/derivator
http://arxiv.org/abs/1112.3840
http://arxiv.org/abs/1306.2072
http://arxiv.org/abs/1306.2072
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e A disc D? is homotopy equivalent to a point *. But the pushout of the left
diagram is a 2-sphere, while the pushout of the right diagram is a point, and
these are not homotopy equivalent.

St — D2 R —
D? *

We can solve this by constructing things called homotopy limits and colimits.

Definition 1.1. The homotopy pushout of a span of spaces

A2

)

is the space
(BuCu@Ax0,1)))/(f(a) ~ (a,0) and g(a) ~ (a,1)
Definition 1.2. The homotopy pullback of a cospan of spaces
C

» |

BT)D

is the space
{(b,c, 5) ’ be B,ceC,6:[0,1] = D,6(0) = f(b),8(1) = g(c)}

This works, but it sets us back to the world before category theory! We have
to manipulate explicit constructions, rather than characterizing things by universal
properties.

1.2. Homotopy categories. One thing you might try naively is to force the weak
equivalences to become isomorphisms.

Definition 1.4. If ¥ is a category with a collection # of “weak equivalences”,
its homotopy category €[# ~!] is the universal category with a map from ¢
in which the weak equivalences become isomorphisms. In other words, we have a
functor v : € — €[# '] such that for any category 2, the functor

Cat(€[# 1), 2) = Cat(¥, 2)
is an isomorphism onto the full subcategory of functors that send # to isomor-
phisms in Z.
Explicitly, the morphisms in ¢’ [# ~1] can be described as zigzags
XX X+ X35> ...< X, Y

where the backwards-pointing arrows are in # (representing the formal inverses of
those arrows). We then have to quotient these zigzags by some equivalence relation.
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One problem with this is that the hom-sets of ¢’[# ~!] may no longer be small
even if those of € are. There are ways to deal with this, generally along the following
lines:

Proposition 1.5. If € = Top and # is the homotopy equivalences, then € [# ~!]
s isomorphic to the category with objects from € and

G (X,Y) = Top(X,Y)/ ~

Proof. Claim F : € — 2 inverts # iff it identifies homotopic maps. “If” is obvious;
for “only if”, a homotopy f ~¢g: X — Y is a diagram

Both maps 49,41 : X — X x [0, 1] are split monos with a common retraction r (the
projection) and homotopy equivalences. Thus, if F' inverts them, it also identifies
them, since F(ig) and F(i1) are both inverse to F(r). Henc F(f) = F(Hip) =
F(Hiy) = F(g). 0

In fancier examples, we have to first restrict to a subcategory (e.g. CW-complexes,
chain complexes of projectives or injectives) before quotienting by homotopy.
Unfortunately, the homotopy category does not solve the problem of homotopy
limits: homotopy limits are not (in general) limits in the homotopy category! It is
usually true of products and coproducts, which generally require very little “homo-
topification”. But consider the homotopy pullback P of (1.3), which comes with a
homotopy commutative square
P
q\\/
B

This is, in particular, a commutative square in the homotopy category, and indeed
any other homotopy commutative square

Q

p
—

O«——

g
— .
f

) QELENYG

1|

BT)D

yields a map X — P defined by © — (h(x), k(z), H(x)) which makes the appro-
priate diagrams commute. However, this map is not in general unique, because we
had to choose a particular homotopy H in order to define it, while a commutative
square in the homotopy category does not come equipped with such an H.

Exercise: find an explicit counterexample. It’s probably easiest to work with
Cat (in fact, groupoids suffice) rather than spaces.
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1.3. Abstract homotopy theory. There are a number of abstract frameworks
for homotopy theory:

(1) Quillen model categories and related ideas. These are a collection of tools that
make it easier to work with things like homotopy limits concretely, as above.
But it still doesn’t make them “categorical”.

(2) (00,1)-categories. In Cat with equivalences of categories, the obvious solution
is to consider it as a 2-category rather than a 1-category, with 2-dimensional
limits. Similarly, we can make spaces into an oco-category, with homotopies and
higher homotopies and oco-limits. Here homotopy limits have true universal
properties, but the notion of “co-category” is quite technically complicated, as
is the definition of the appropriate universal property.

(3) Triangulated categories and their ilk. Here we consider the homotopy category
equipped with the structure of certain “weak” limit-notions that have existence
but not uniqueness.

(4) Homotopy type theory. This is an “internal language” for certain model cate-
gories and (o0, 1)-categories. Come to my talk at CT.

(5) Derivators. Here we equip the homotopy category with more data, which
enables us to characterize homotopy limits by actual, ordinary (not higher-
categorical), universal properties.

Each has advantages and disadvantages, and tells part of the story of homotopy
theory. Some things can be done equally well with any of them, others are easier in
one or the other. Today I'll talk about derivators, which have a lot of advantages:
they don’t require very much machinery, and they are quite powerful and flexible.
I will point out as we go how they connect to the other frameworks.

2. PREDERIVATORS

Suppose we were raised steeped in 2-category theory, as Richard described a
couple days ago, and someone told us for the first time about homotopy theory.
What would we think of?

One thing we would hopefully notice quickly is that the homotopy category is
a 2-colimit: a coinverter. Given % with weak equivalences #, let # denote the
full subcategory of 42 whose objects are #'. Then we have a 2-cell

dom

of which €' [# ~1] is the coinverter.

Now suppose our friend tells us that homotopy categories are bad. That is, they
lose too much information: they don’t let us characterize the limit-constructions
we want. We know that in general, a way to get “good” colimits is to freely adjoin
them, that is, to apply the Yoneda embedding and take colimits in the presheaf
category. Thus, we might consider doing this for coinverters.

Just to be a little bit careful about size, let Cat be the 2-category of small
categories, and CAT the 2-category of large ones (which is itself even larger). And
while I'm mentioning notation, let 2 = (0 — 1) be the interval category, and 1 the
terminal category (there are too many 1’s in this subject). For the same reason,
T’ll write id for identity maps.
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Our ¢ will be large, but we consider only the restricted Yoneda embedding
y:CAT — [Cat®?,CAT).

That is, given a category 4 we associate to it the 2-functor y(%) : Cat°® — CAT
defined by y(%)(A) = €.

Definition 2.1. A prederivator is a 2-functor Cat°® — CAT. The 2-category
PDER of prederivators has pseudonatural transformations as morphismes.

The prederivator y(%) is called the represented prederivator at €. We like-

wise have y(#'), and we may consider the coinverter of

v(?7) _ | y(®)

As always in a presheaf category, colimits are pointwise. Thus, if we let J#0(%)
denote this coinverter, we have

Ho(€)(4) =€ ()71

In other words, ##0(%)(A) is the homotopy category of the diagram category €4
with the pointwise weak equivalences inverted. We call it the homotopy pred-
erivator of 4. Note that J#0(%)(1) = €[# ~1] is the ordinary homotopy category
of ¥. Functoriality gives us a functor u* : #0o(%)(B) — #0o(%¢)(A) for any
u:A— B. A

It is very important to note that #o(%)(A) is different from (€[# ~'])". We
have a functor from one to the other:

A= Cat(1, A) LD, CAT (Ho(€)(A), #o(€) (1))

yields by exponential transpose

Ho(%)(A) — Ho(€)(1)A.

Indeed, this used only the 2-functoriality of Z°0(€), so it is true for any prederivator
92:

2(A) — 2(1)A.
We call this the underlying diagram functor. It is not an equivalence, but it has
some equivalence-like properties.

Consider the homotopy prederivator of spaces, with the simplest nontrivial case
of A=2.

e The objects of .7#°0(Top)(2) are triples (X,Y, f) of two spaces and a continuous
map between them.

e The objects of 5#0(Top)(1)? are triples (X,Y,[f]) of two spaces and a homo-
topy class of continuous maps between them.

Thus the underlying diagram functor is essentially surjective, since every homotopy
class contains some map.

e The morphisms of J#o(Top)(2) from (X,Y,f) to (X', Y’, f') are obtained
from (strictly) commutative squares by inverting squares that are levelwise
homotopy equivalences.

e The morphisms of 5#0(Top)(1)? are homotopy-commutative squares (without
specified homotopy).
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Of course, not every homotopy-commutative square is strictly commutative, but
the underlying diagram functor here is still full. To see this, suppose

X g] X/

o |

Y —Y'
(]

—~
*
~—

is a homotopy-commutative square, and choose a homotopy H as well as represen-
tatives for g and h. Define Z to be the space

(Yo x0.1) /(1) ~ fl@)).

Define p: Z — Y by p(y) = y and p(z) = f(x). Then p is a homotopy equivalence,
and we have a zigzag

X id X g

f ioJ{
A

Y ¢—

/

X
:
—Y’

H
whose image in %0 (Top)(1) is (*).

However, the underlying diagram functor is not faithful, because we had to choose
a particular homotopy H to construct this lifting, and in general there might be
many such. But it is conservative: any morphism in 5#0(Top)(2) that becomes an
isomorphism in #0(Top)(1)? was already an isomorphism. This is almost obvi-
ous: the isomorphisms in #0(Top)(1)? are homotopy-commutative squares whose
horizontal maps are isomorphisms in .#0(Top)(1), hence homotopy equivalences,
and we chose the weak equivalences pointwise in Top®. However, the morphisms
in #0(Top)(2) are actually zigzags of morphisms in Top®, so something extra is
required (it suffices to know that zigzags of length three, <——<— suffice).

Definition 2.2 (Riehl-Verity). A (weakly) smothering functor is a functor
that is (essentially) surjective on objects, full, and conservative.

Weakly smothering functors have the important property that they reflect the
relation of isomorphism between objects.

The category 2 is, in fact, a little misleading here: not every category A has
the property that #o(Top)(A) — #0o(Top)(1)* is essentially surjective and full
(though it is always conservative). What makes 2 special is that it’s freely generated
by a graph: it’s not always true that a homotopy commutative diagram can be
rectified. Consider, for instance, A = BZs, the category with one object that has
one nonidentity involution. Then an object of J#0(%)(1)* is a space with a map
f X — X such that f o f is homotopic to the identity. Choosing any such
homotopy yields two different homotopies from f o f o f to f. If it came from
an object of #0(%)(A) then the homotopy would be the identity, so in particular
these two homotopies would be equal, hence trivially homotopic — and the latter
property is preserved by homotopy equivalence. But there is no way in .##0(%)(1)4
to be sure of that.
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This discussion suggests a useful intuition: we can think of J#0(%)(A) as the
homotopy category of homotopy coherent A-shaped diagrams in 5€0(%), with ho-
motopy coherent natural transformations between them. In a coherent diagram,
not only does every diagram commute up to a specified homotopy, these homotopies
have to be compatible up to higher homotopies, and so on. The non-surjectivity
of the underlying diagram functor from some A then means that we cannot always
choose homotopies coherently.

In fact, there’s a theorem that (in good cases), any homotopy coherent diagram
can be rectified to an equivalent strictly commutative one, so this intuition is valid.
But I’'m not going to explain that theorem, because it takes us more into the realm
of model categories and (00, 1)-categories.

Take-away:

(i) A prederivator 2 comes with an underlying category 2(1), and also a cat-
egory 2(A) that we should think of as consisting of coherent A-shaped dia-
grams, for all A € Cat.

(ii) We have an underlying diagram functor 2(A) — 2(1)#, enabling us to draw
an object of Z(A) as if it were an ordinary diagram, with objects X, € Z(1)
for @ € A and morphisms Xy : X, — X for f:a — bin A.

(iii) In general, a coherent diagram is not determined, even up to isomorphism,
by its underlying diagram.

3. SEMIDERIVATORS

We've changed perspective from the category ¢'[# ~!] to the “presheaf” #0(%).
What is the first thing you should ask about a presheaf?

Well, one of the first things is “is it a sheaf?” Or more generally, “what colim-
its does it preserve?” (or rather, what colimits does it take to limits, since it is
contravariant). Of course, since these are 2-categories, we mean 2-colimits — but
it would be most reasonable to ask only about preserving them up to equivalence
rather than isomorphism.

We've already seen one colimit that #0(%) almost preserves: the category A is
the copower (tensor) of 1 by A, and the comparison map asking whether J#0(%)
preserves this copower is precisely the underlying diagram functor

Ho(C)(A) — Ho(€) (1)1

We’ve seen that this functor is not an equivalence, but when A = 2, it is weakly
smothering. More generally, the copower of B by 2 is also almost preserved, i.e.
the functor

Ho(€)(B x 2) — Ho(€)(B)?

is also weakly smothering.

A kind of colimit which not-too-surprisingly is preserved up to equivalence —
even up to isomorphism, if we are careful enough — is coproducts. A diagram
on a coproduct [[; A; is just a family of diagrams on each A;, and inverting some
morphisms doesn’t really change that. (That’s not a proof, but I'll leave it as an
exercise. )

One more colimit that is preserved is one that you may not think of as a colimit.
First recall that being monic is a limit condition: a morphism X — Y in a category
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| ]

A——B

is monic iff
—_

is a pullback, i.e. any pair of maps X = A which become equal in B must factor
uniquely through A, hence be equal. Thus, if a presheaf preserves colimits, then it
takes epis to monos.

Analogously, in a 2-category, the property of being conservative is a (bi)limit
condition: X — Y is conservative iff X is the limit of X — Y weighted by 2 — I.
(Exercise.) Thus, we can ask whether .7°0(%’) takes conservatives in Cat°® — which
are called liberals in Cat— to conservatives in CAT.

Another exercise: a functor u : A — B is liberal iff every object of B is a retract
of some object of A. In this case, ##0(Top)(B) — ¢0o(Top)(A) is conservative for
the same reasons I omitted above. In particular, if A is the set ob(B) as a discrete
category, then we have

Ho(Top)(B) — H#o(Top)(ob(B)) ~ #0o(Top)(1)°PP).

Thus, if a map X — Y in J#0(Top)(B) is an isomorphism at all objects, i.e. each
X, — Y, is an isomorphism in 2(1), then it is an isomorphism. This property in
fact implies the general statement about liberal functors (exercise), but it is the
one we generally use in practice, so it is the only one we include in the following
definition.

Definition 3.1. A semiderivator is a prederivator 2: Cat°® — CAT with the
following properties.

(Derl) 2: Cat°® — CAT takes coproducts to products. In particular, 2() is the
terminal category.
(Der2) For any A € Cat, the family of functors a*: 2(A) — 2(1), as a ranges
over the objects of A, is jointly conservative (isomorphism-reflecting).
A semiderivator is strong if it satisfies

(Der5) For any A, the induced functor (A x 2) — 9(A)? is full and essentially
surjective, where 2 = (0 — 1) is the category with two objects and one
nonidentity arrow between them.

(Der3) and (Der4) will show up soon. Note that combined with (Der2), axiom
(Derb) implies that the functor in question is weakly smothering. The exact form
of (Der5) is negotiable; for instance, Heller assumed a stronger version in which 2
is replaced by any finite free category.

We add an extra adjective to indicate (Der5) for historical and technical reasons:
(1) it’s what other people have done, (2) without it, the notion is 2-categorically
algebraic, and (3) not all constructions preserve it.

4. DERIVATORS

We moved from categories to prederivators because we were hoping the coinvert-
ers would behave better. So is the prederivator 0(%) actually better than the
plain homotopy category €[# ~!]? For instance, does it “have limits”?

To answer that question, we need to know what it means for a prederivator to
“have limits”. There are a bunch of different ways to define what it means for an
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object of a 2-category to “have limits”, but a particularly simple one is with Kan
extensions, which are easy to define in any 2-category.

Definition 4.1. A right Kan extension of f : A — D along v : A — B in any
2-category K is a morphism ¢ : B — D together with a 2-cell € : fu — f such that
for any g : B — D, composing with € induces a bijection

K(B,D)(g,) = K(A, D)(gu, f).
In other words, every 2-cell gu — f factors uniquely through e:
A

f f
—— D
A

A
u = u ¢ D
Jy ﬂtz
B g y
g9
B

In yet other words, ¢ has the universal property that a right adjoint to (— o u)
would have when evaluated at f. Every f: A — D has such a right Kan extension
exactly when (— o) has a right adjoint.

In Cat, this reduces exactly to the usual notion of Kan extension. Moreover, in
Cat we can identify a limit of f : A — D with its right Kan extension along A — 1.
Thus, we might consider defining completeness of an object D in terms of right
Kan extensions along maps of the form A — 1.

However, it’s well-known that when generalizing definitions from familiar exam-
ples like Set and Cat, we often need to replace the terminal object with an arbitrary
object. For instance, limits in Set can be defined in terms of ordinary elements,
which is to say maps out of 1, but to define limits in an arbitrary category we
need to consider maps out of arbitrary objects as well (“generalized elements”).
Similarly, in Cat we can construct all right Kan extensions out of limits, using the
formula for pointwise Kan extensions: the right Kan extension of f : A — D along
u: A — B can be defined by

L(b) = lim f(a)
(bgu(a))é(b/u)
if this limit exists. Richard said it was a weighted limit, but for Set-enriched
categories this is equivalent to a limit over a comma category.

In an arbitrary 2-category, we can’t just “put together” a morphism ¢ like this, so
instead of just Kan extensions to 1, we should ask for general right Kan extensions
to exist. Similarly, it no longer follows automatically that this formula is valid even
if the limit does exist, so we should impose it — otherwise Kan extensions won’t
behave the way we expect.

Definition 4.2. A right Kan extension in a finitely complete 2-category, as above,
is pointwise if for any v : C' — B, the pasted 2-cell

() —sa-1 D
4~
|

|~
LR
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exhibits /v as a right Kan extension of fq along p.

Note that in Cat, if we take C' = 1 and v = b for some b € B, then the assertion
that fv is a right Kan extension of fq along p says exactly that ¢(b) is the requisite
limit. The assertion that it’s this particular 2-cell says moreover that the universal
properties are compatible.

In conclusion, for “completeness” of an object of a 2-category, we should ask that
some pointwise Kan extensions exist. We can’t ask for all of them — we need some
size restriction. In the case of prederivators, we have an obvious size restriction
to impose: we require A and B to be representables, y(A4) and y(B), for ordinary
small categories A, B € Cat.

Now things simplify a bit, because the Yoneda lemma says that PDER(y(A), 2)
is equivalent to Z(A) for any prederivator &, and so on. Thus, asking for all right
Kan extensions along maps of representables just says that u* : 2(B) — 2(A)
has a right adjoint. We denote this right adjoint by w.. Moreover, if C is also
representable, then the pointwiseness condition reduces to asking that the mate

V Uy — PP UV — Deq UV, — D"

is an isomorphism. The case of non-representable C' should follow from the repre-
sentable one by Yoneda lemma arguments, but we don’t need that, so I won’t go
into it.

We're finally ready for the definition of a derivator!

Definition 4.3. A derivator is a semiderivator 2: Cat°® — CAT which addition-
ally satisfies:

(Der3) Each functor u*: 2(B) — 2(A) has both a left adjoint u and a right
adjoint u,. If B = 1, we sometimes write w; and wu, as colim and lim
respectively.

(Der4) For any functors u: A — C and v: B — C'in Cat, let (u/v) denote their
comma category, with projections p: (u/v) — A and ¢q: (u/v) — B. Then
the canonical mate-transformations

Qp* = qp utuy = @g v u — v

and
UV = DD UV = PugT U U, = Piq”

are isomorphisms. (In fact, either is an isomorphism if the other is.)

Combining (Derl) and (Der3), we see that in a derivator, each category Z(A)
has actual (small) products and coproducts, since

2(A) —» 9 (]_[ A> ~[[24)
X X

has a right and left adjoint. This makes sense since as we observed above, products
and coproducts are usually not a problem homotopically.

I'm not going to prove that any of our examples actually are derivators; the
ways we currently know to do that require some tools from model category theory
or (00, 1)-category theory, which I don’t want to get into. The basic idea is straight-
forward: we use homotopy limit and colimit constructions to build the functors w
and wu,. Let’s just take it as known that for any “well-behaved” ¥ and #/, the
homotopy prederivator s#0(%) is a derivator.
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5. HOMOTOPY EXACTNESS

There are multiple ways to approach actually working with derivators. Indeed,
derivators were reinvented independently several times by Grothendieck, Heller,
and Franke, and each had their own different approach. The approach I prefer
relies heavily on the following notion.

Suppose given any natural transformation in Cat which lives in a square

D A
(5.1) l l
B .

Then by 2-functoriality of &, we have an induced transformation

p

L]

v

*

2(C) —“— 9(4)

v*l ﬂa* lp*

2(B) 2(D).

|

|

*

q

Definition 5.2. The square (5.1) is homotopy exact if the two mate-transforma-
tions

qp* — qp*utur < qg*v*v — v*u,  and
W, — PP UV 5 pgtU U, — piq.
are isomorphisms in any derivator 2.

Thus, (Der4) is exactly the statement that comma squares are homotopy exact.
Interestingly, this turns out to imply that a lot of other squares are also homotopy
exact.

First of all, here’s an example where we don’t even need (Der4)!

Lemma 5.3. Ifu: A — B is a right adjoint, then the square

A
(5.4) l
1

is homotopy exact.

u

—— B

i

|

Proof. If f - u, then the given square has a “horizontal” mate
f
A+——B
1 1

<;
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which is also an isomorphism — indeed, an identity — since it is a natural trans-
formation between functors into 1. Applying a derivator &, we obtain two isomor-
phisms which are again horizontal mates of each other:

P(A) <~ 9(B) 2(4) - 9(B)
[ [
1+——1 1+——1

Thus, the vertical mate of the left-hand square is the “total mate” or “conjugate”
of the right-hand square, hence also an isomorphism. O

A functor u : A — B such that (5.4) is homotopy exact is called homotopy
final. This means that for any X € 2(B), we have colim(u*X) = colim(X):
restricting along a homotopy final functor doesn’t change the colimit of a diagram.

Now it turns out that limits and colimits, i.e. Kan extensions to 1, are often not
the most convenient kinds of Kan extensions to use in a derivator, because they
don’t give us a really good handle on the (co)limiting (co)cone. In general, it’s
better to have an object of 2(2) than a morphism in 2(1) — we can do more with
it — and more generally it’s better to have objects in some Z(A) than morphisms
in some other D(B). (This is the reason why we sometimes need (Der5).) However,
the cocone associated to colim(X) is the unit of the adjunction colim = m - 7*,
which consists of morphisms in Z(A).

To remedy this, let A> denote the category A extended with a new terminal
object oo. Thus, we have a full inclusion ¢ : A < AP, and we have A" (a,0) =
AP (00,00) = * and AP (00,a) = (). Then because oo is terminal in A™, there is a
comma square

B—

— A
¢ |
, >

Hence, for X € 2(A), we have colim(X) = (i1(A))s. Moreover, the diagram
i1(A) contains not only the object colim(X), but also the input diagram X and the
colimiting cocone. To see that it contains X, we observe:

Lemma 5.5. Ifu: A — B is fully faithful, then the following square is homotopy

exact:
A A

AT>B

—

This implies that u*u; = id and u*u, = id; thus whenever we Kan extend along
a fully faithful functor (such as i : A — A®), we don’t change the “sub-diagram”
we started with, we only add new objects to it.

Proof. By (Der2), it suffices to show that the mate id — w*u) becomes an isomor-
phism after restricting along a : 1 — A, for any a € A. (This is a very important
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general technique.) Now by functoriality of mates applied to the squares

(Afa) Z—A—— A

RN
1——A—B,
the composite of the two mates
qp*id* — a*idyid* — a*u*w

is equal to the mate corresponding to the entire pasted rectangle. However, qip* —
a* is an isomorphism since that is a comma square, so it suffices to show that the
pasted rectangle is homotopy exact. But since u is fully faithful, (A/a) = (u/ua),

so this is also a comma square. ([

A particularly important case is pushouts and pullbacks. Let I" be the category
(- + - —); then '™ is the square 0 =2 x 2:

(0,0) —— (0, 1)

L

(1,0) ——(1,1)

We say a square (i.e. an object of Z(0)) is cocartesian if it is in the image of (the
fully faithful functor) (ir);, and dually cartesian if it is in the image of (irop)..

Lemma 5.6 (Pasting lemma). Let M be the category 2 x 3, with three inclusions
101,112, %02 : O — @ that pick out the left and right squares and the outer rectangle,
respectively.

Xoo E— X01 — X02

L]

Xio— X1 — X2

Given X € 2(m) such that the left square (ig1)*X is cocartesian, then the outer
rectangle (i02)* X is cocartesian if and only if the right square (i12)* X is cocartesian.

Proof. Let A be the full subcategory 00-01-01-10 of @, and B the full subcategory
00-01-02-10-11, with inclusions j: B — M and k: A — B.

First of all, I claim that if (i91)*X is cocartesian, then j*X is in the image of
ki. Consider the counit kk*7*X — j*X. When restricted along k*, this becomes
E*kik*j* X =2 k*j* X, since ky is fully faithful. Thus it is an isomorphism at all
objects of B except possibly 11, so by (Der2) it suffices to check it there. However,
when restricted along g1, this is a map between cocartesian squares that becomes
an isomorphism in Z(I"). Thus, since (ir), is fully faithful, this map is also an
isomorphism.

Now I claim that if (ig;)*X is cocartesian, then (ip2)*X being cocartesian and
(i12)*X being cocartesian are both equivalent to X being in the image of j; (and
hence equivalent to each other). As before, the counit jij*X — X is automatically
an isomorphism everywhere except possibly 12, by full-faithfulness of j;. Moreover,
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since X = kk*X, being in the image of j; is equivalent to being in the image of

(Jk)r-
To show that (ig2)* X is cocartesian if X is in the image of (jk);, we show that
the following square is homotopy exact:

r—,4

]

U——m

102

It suffices to check this at 12, and there by pasting with a comma square we get

F— T2, 4 2,4 44

T

1— 00— 1—1—m
11 202 12

But on the right, the right-hand square is a comma square, and the left is homotopy
exact since igs : [' — A is a right adjoint. Homotopy exactness of the right side
also implies the converse: if X is in the image of (jk)i, then (ig2)* X is cocartesian.

For (i12), we make a similar argument using B, which doesn’t even need the
assumption that (ig1)*X is cocartesian. Here the important fact is that i1 : T' — B
is a right adjoint. ([

6. HOMOTOPY EQUIVALENCES

Definition 6.1. A functor f: A — B is a homotopy equivalence if the map

(ma)(ma)” = (mp) fif " (wB)" = (7B)1(7B)*
is an isomorphism in any derivator.

Note first that any homotopy final functor, hence in particular any right adjoint,
is a homotopy equivalence, since then (7g);fif* — (75): is already an isomorphism.
We could now consider the derivator s#0(Cat) in which we invert the homotopy
equivalences. This derivator is “universal” in that it acts on every other derivator:
there’s a map
©:Ho(Cat) x D — P

which T won’t construct in general, but whose component
©: Ho(Cat)(1) x 2(1) — 2(1)

is defined by A ® X = (ma)i(7a)*X, and this makes 2 into a “module” over
Ho(Cat).

This is interesting, but s#0(Cat) may still seem somewhat mysterious. Here’s
the really magical thing about derivators.

Theorem 6.2 (Heller, Cisinski). f: A — B is a homotopy equivalence if and only
if A®1— B®1 is an isomorphism in #0o(Top).

(A ®1 is by definition the homotopy colimit of the constant A-diagram at the
one-point space. It’s called the geometric realization or classifying space of the
category A.)

In fact, more is true!
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Theorem 6.3 (Thomason). #0(Cat) is equivalent to 7#0o(Top,,).

Why should this be? What is “universal” about the homotopy theory of spaces?
One answer is that the homotopy theory of nice spaces is equivalent to that of
oo-groupoids, but that doesn’t completely resolve the mystery, because in defining
derivators we didn’t build in any notion of “co-groupoid”.

7. LOOP SPACES

Consider a pointed object of 2, meaning an object 1 — X of 2(2) whose
domain is a terminal object. We define its loop space to be the pullback:

QX ——1

[

11— X

(We can obtain this by restricting along 1 — 2 and then right Kan extending.) Note
that this is a coherent diagram, hence the square should be regarded as commuting
up to a specified homotopy. This homotopy assigns to every point of 2X a path
from the basepoint of X to itself, as we expect for the loop space. And universality
of this square means that 2X ought to consist precisely of such paths.

Indeed, it’s easy to verify that in topological examples this does what we expect.
In algebraic examples like chain complexes, it essentially shifts down by one step,
since a chain homotopy from the zero map to itself is essentially just a chain map
of degree 1.

Note that here we first see the real power of an honestly homotopy-theoretic
notion of limit: it encompasses classical homotopy-theoretic ideas but lets us use
almost-ordinary methods of category theory to work with them.

We have defined Q2X to be “the” pullback, in other words we have a specified
functor from a subcategory of Z(2) to Z(1). However, in fact, any cartesian square

W——1

(7.2) l l

1— X

induces a canonical isomorphism W = Q.X.

It is very important to note that if we restrict a cartesian square (7.2) along the
automorphism o: [0 — O which swaps (0, 1) and (1,0), we obtain a different carte-
sian square (with the same underlying diagram), and hence a different isomorphism
W = QX. The relationship between the two is the following.

Lemma 7.3. In any derivator, QX is a group object in P(1), and the composite
QX = W = QX of the two isomorphisms arising from a cartesian square (7.2)
and its o-transpose gives the “inversion” morphism of QX.

We generally write this group structure additively, and thus denote this mor-
phism by “—17.

Remark 7.4. This may seem strange, but it is not really a new sort of phenomenon.
Already in ordinary category theory, a universal property is not merely a property
of an object, but of that object equipped with extra data, and changing the data
can give the same object the same universal property in more than one way. For
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instance, a cartesian product A x A comes with two projections 71, m0: AXx A = A
exhibiting it as a product of A and A, whereas switching these two projections
exhibits the same object as a product of A and A in a different way. In that case,
the induced automorphism of A x A is the symmetry, (a,b) — (b, a). In the case of
suspensions, the “universal property data” consists of a cartesian square (7.1), and
transposing the square is analogous to switching the projections.

8. POINTED DERIVATORS

It’s common in algebraic topology to work in the category of pointed spaces,
where everything is equipped with a chosen basepoint. This puts us in the following
situation, which is also the case in algebraic examples:

Definition 8.1. A derivator ¥ is pointed if the category Z(1) has a zero object
(an object which is both initial and terminal).

Since 7% : (1) — Z(A) is both a left and a right adjoint, it preserves zero
objects. Hence, in a pointed derivator each category Z(A) also has a zero object.

Since left Kan extension from X to (0 — X) is fully faithful, and 0 = 1, it
identifies (1) with the category of pointed objects as a subcategory of 2(2). In
other words, every object is pointed in a unique way. Thus, we have a loop space
functor (1) — 2(1), which can be defined by

(i)« (0,0

2(1) L2 9()) 2(0) 2(1).
Now if 2 is pointed, so is Z°P. The loop space functor of Z°P is called the

suspension functor of Z, and can be defined by the composite

(0,0) 4 (1,1)

2(1) 2" Y 9@ 2(1).

Lemma 8.2. There is an adjunction ¥ = €.

Proof. Since ir is fully faithful, (ir), exhibits 2(") as equivalent to the coreflective
subcategory of 2(0) whose objects are the cocartesian squares (the coreflection
being (ir)*). If we write 2(")oo and Z(0)go for the full subcategories of each on
the diagrams X such that Xy ; and X o are zero objects, then both (ir)* and (ir)
preserve these subcategories, and so Z(")op is likewise equivalent to the coreflective
subcategory of cocartesian squares in 2(0)gg. Moreover, (0,0).: 2(1) — 2(")oo
is an equivalence.

A dual argument using Z(1)go shows that 2(1) is also equivalent to the reflective
subcategory of cartesian squares in 2(0)po. Thus, we have a composite adjunction
2(1) 2 2(0)g0 = 2(1), which is easily verified to be £ 4 Q. O

In a pointed derivator we have notions of fiber and cofiber sequence. In general,
the fiber of a map into a pointed object should be the pullback of a cospan ¥ —
X < 1. In the pointed case, we can obtain this functorially: the fiber functor
fib: 2(2) — 2(2) is the composite

0,—)*

2(2) 5 905) L gy O g(2)
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so that we have a cartesian square

fib(f)
—5

w x
L]
0——y.

Dually, the fiber functor of 2°P is the cofiber functor of Z, and we have an
adjunction cof  fib.

Remark 8.3. In a strong pointed derivator, every morphism in 2(1) underlies some
object of 2(2). Thus, we can construct “the” fiber or cocfiber of any morphism
in 2(1) by first lifting it to an object of #(2). Since weakly smothering functors
reflect the isomorphism relation, the result is independent of the chosen lift, up to
non-unique isomorphism.

In a pointed derivator 2, we define a fiber sequence to be a coherent diagram
of shape M = 2 x 3 in which both squares are cartesian and whose (0,2)- and
(1,0)-entries are zero objects:

Le—s

x 0
]
Yy—+z2

!

Suitable combinations of Kan extensions give a functorial construction of fiber
sequences Z(2) — 2(m), which induces an equivalence onto the full subcategory
of 2(m) spanned by the fiber sequence.

Recall that ¢, denotes the functor [ — M induced by the identity of 2 on the
first factor and the functor 2 — 3 on the second factor which sends 0 to j and
1 to k. Then a fiber sequence is an X € Z(m) such that X2 and X ) are
zero objects and ¢§; X and ¢, X are cartesian. By the pasting lemma, (§, X is also
cartesian, and therefore induces an isomorphism w = Q.

We can thus continue a fiber sequence indefinitely to the left:

—

e P W QY Qo sy 2

9. STABLE DERIVATORS

In an algebraic example of unbounded chain complexes, we saw that 2 was the
“shift” functor. This is actually an equivalence, since we can also shift the other
direction.

Theorem 9.1. For a pointed derivator 9, the following are equivalent:

(i) The adjunction ¥ 4 is an equivalence.
(i) The adjunction cof - fib is an equivalence.
(ii5) A square X € 2(0) is cartesian if and only if it is cocartesian.

Such a derivator is called stable.

Stable derivators (or model categories, or (oo, 1)-categories) are the homotopy-
theoretic version of abelian categories: they are the place where we do homotopy-
theoretic commutative algebra and homological algebra. As a first evidence of this,
we have:
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Theorem 9.2. A stable derivator is preadditive, i.e. the map X 1Y — X XY in
2(1) is an isomorphism.

Proof. We left extend from

X 00— X

oo |

Y Y — X UuY.

We identify the given objects by comma categories. Now we extend by zero to

X 0

and left extend again to

0 X 0 0 X 0
Y —XUuY —Y and then Y —XUuUY —Y
0— X 0 X 0.

Comma categories and homotopy finality show that all squares are cocartesian,
hence so are all rectangles, and thus we can identify the labeled objects as shown.
But now the lower-right square is also cartesian, exhibiting X UY as X xY. O

We write X @Y for the common value and call it a direct sum or biproduct.

We can then add morphisms f,g: X — Y in the usual way:
XS xexyvey Ly
Thus Z is enriched over abelian monoids.

In fact, Z(1) is not just preadditive but additive — this operation makes the
homsets abelian groups, not just abelian monoids. We already mentioned the in-
version map. Indeed, we could also derive the above theorem from the fact that
loop space objects are groups and double loop spaces are abelian groups, since in
a stable derivator everything is a double loop space, X = Q2%2X.

A stable derivator is actually better than an abelian category, essentially because
its colimits don’t lose information. In an abelian category, if you take the quotient
by a subobject, then you can recover the subobject as the kernel of the quotient
map. But if you take the quotient of a map that isn’t injective, then you can’t
recover the map itself, only its image. By contrast, in a stable derivator, from the
quotient (= cofiber) of any map we can recover that map as the fiber of the quotient
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map, using bicartesianness:

X —
0

The most classical way to deal with stability is via the following.

Ne——~

—

Theorem 9.3. If 2 is stable, then 2(1) is a triangulated category in the sense
of Verdier.

A triangulated category is equipped with an autoequivalence ¥ and a collection
of composable strings of morphisms of the form

f g

X Y h

A 2X

called distinguished triangles satisfying certain axioms. In a stable derivator, we
take these to underlie the cofiber sequences, and prove the axioms.

The structure of a stable derivator is much better behaved than that of a trian-
gulated category, since everything has a universal property. Triangulated categories
have the problem that things are asserted to exist with some property, but are not
characterized by that property, and other random things can also exist with the
same property.

10. DESCENT

Two of the most important strains of ordinary category theory are the theory of
abelian and similar categories — generalizations of abelian groups — and the theory
of toposes and similar categories — generalizations of sets. Stable derivators are
the homotopy version of abelian categories, which we’ve seen are better-behaved.
Let’s look for a homotopy version of toposes.

One of the most important properties of a topos is its exactness properties. The
first one is this:

Definition 10.1. An ordinary category with finite limits is called lextensive if it
has (finite) coproducts which are stable (i.e. preserved by pullback) and disjoint,
i.e. the coproduct injections are monic and we have a pullback square

00— X

|

Y —X+Y

This may look a little ad hoc, but it’s equivalent to the following: given a map
of cocones under a discrete category:

X — X' +Y +—Y’

L]

X—X+Y+——Y
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whose codomain is a coproduct cocone, then the squares are pullbacks iff the domain
is also a coproduct cocone. It’s also equivalent to asking that the pseudofunctor

¢°P — CAT
X—%/X

takes coproducts to products.

This is quite pretty, and should make you itch to generalize it from coproducts
to more general colimits. There’s one modification we have to make in order for it
to be vaguely sensible: if we have a map a — b in the diagram category A, then
our map of cocones would include data like

X}
\Xa XL
Xq
\ X Xeo

and if the squares into the cocone vertices are to be pullbacks, then the pasting
lemma would imply that the other square must be a pullback. So we should include
this in the hypotheses (it being vacuous when A is discrete).

Recall i : A — A> and 2 = (0 — 1). A diagram X € 2(A x 2) is said to be
equifibered or cartesian if for every j: 2 — A, the induced square (j x id)*X is
cartesian.

Definition 10.2. A derivator 2 has descent for A-colimits if for any X €
PD(AP x 2) such that X7 € Z(AP) is colimiting and (¢ x id)*X is equifibered, the
following are equivalent:

(i) Xo is colimiting.

(ii) X is equifibered.

Unfortunately, even Set doesn’t have descent for non-discrete colimits! Consider
pushouts; here is an equifibered diagram over ":

lid,id] lid,s]

2 2+2 2
1 1+1 > 1

where s : 2 — 2 is the switch automorphism. But the pushout of both rows is 1,
while the resulting squares

o L
= =

—

are obviously not pullbacks.

Fortunately, there are better replacements. Clearly the problem is that the
pushouts are losing information, just like the quotients classical abelian categories.
Thus, using homotopy colimits instead, we could hope to remedy the problem. In
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fact, the classical homotopy derivator of spaces with weak homotopy equivalence
has descent for all colimits!

10.1. The loop space of the circle. The following proof is inspired by homotopy
type theory.

Let P = (a = b) be the free-living parallel pair. In a derivator satisfying stability
and descent for P-colimits, let S denote the colimit of the constant P-diagram
(mp)*(1) at the terminal object. We will show that Q(S') is “Z”, or more precisely
is the coproduct of countably many copies of 1.

Let F: P x 2 — Cat be defined by F(a,0) = F(b,0) = Z and F(z,1) =1, with
the images of the two arrows (a,0) = (b,0) being the identity and the successor
function respectively. Let @ be the Grothendieck construction of F', with induced
discrete opfibration p : @ — P x 2, and consider X = (i x id)ipi(7g)* (1) where
ixid: Px2 — P" x2is the inclusion. Since p is a discrete opfibration, pi(mg)*(1)
looks like

HZ]'*)HZ]'

|l

1—?71

and its restrictions to P x {0} and P x {1} can be computed by first restricting
(mg)*(1) to the corresponding subcategories of Q. Moreover, since the left Kan
extension to P™ x 2 is performed levelwise, X looks like

[ 1 —=[[;1—Y

|1

I =1——5"
where Y is the colimit of [[,1 =2 [[, 1. This can equivalently be described as the

colimit of a constant diagram on 1 over the full subcategory ¢y C @, which looks
like this:

[y

—_

A\

—_

—_
—_

This clearly has a contractible nerve, so Y = 1. Thus, to show that QS =[], 1 it
will suffice to show that X is equifibered. By descent, for this it will suffice to show
that the restriction of X to P x 2 is equifibered. But in this case all the horizontal
morphisms are isomorphisms, so all squares are automatically cartesian.
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