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1. 2-category theory

2-category theory is a special case of enriched category theory, but there are some fea-
tures particular to that case.

2-category theory.

Definition. A 2-category K is given by
• a set of object obK ;
• for each pari of objects X,Y ∈ K a hom-category K(X,Y)

– write objects f ∈ K(X,Y) as f : X → Y (1-cells)

– morphisms α : f → g ∈ K(X,Y) as α : X
f
((

g
66⇓ Y (2-cells)

We have identity 2-cells and vertical composition of 2-cells.
• composition functorK(Y,Z)×K(X,Y)→ K(X,Z) which defines composition of

1-cells and vertical composition of 2-cells. In particular, we have whiskering:

Y
g
''

g
77⇓1g Z , X

f
''

f ′
77⇓β Y 7→ X

g f
''

g f ′
77⇓gβ Z

• nullary composition: 1 → K(X, X) denoted by ∗ 7→ 1X : X → X. Finally, we
have

• axioms assuring that every way of composition 0-,1-, and 2-cells yields the same
result.

Everything we’ll say about 2-categories has analogs in the bicategorical world.

Example.
• Cat—categories, functors, and natural transformations
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2 2-DIMENSIONAL AND MONOIDAL CATEGORIES

• MonCats(p,`,c)—monoidal categories, strict (strong, lax, colax) monoidal func-
tors, and monoidal natural transformations

• Lex—categories with finite limits, limit preserving functors, and natural transfor-
mations

• a one-object 2-category is a strict monoidal category

The project of formal category theory is to generalize the basic results of category theory
from Cat to other 2-categories.

Functor 2-categories. For categories there’s just one notion of functor category. For 2-
categories there are 16 sensible combinations of what we might want for a functor 2-
category.

A 2-functor K
F
−→ L is given by assignations on 0-, 1-, and 2-cells which preserve all

forms of composition strictly.
In the 2-categorical case, any equality in the 1-categorical place can be replaced by

either an invertible or non-invertible 2-cell. These 2-cells provide additional data, which
is then required to be “coherent.” I’ll give one example of what this means and then not
worry about it.1

A pseudofunctor K
F
−→ L is given by assignations on 0-, 1-, and 2-cells plus:

• for each A
f
−→ B

g
−→ C in K , an invertible 2-cell F f ,g : Fg · F f ⇒ F(g · f ) : FA→

FC in L
• for each A

1A
−−→ A in K , an invertible 2-cell FA : 1FA ⇒ F(1A) : FA→ FA in L

satisfying axioms:
•

Fh · Fg · F f
Fh·F f ,g +3

Fg,h·F f

��

Fh · F(g · f )

Fg f ,h

��
F(h · g) · F f

F f ,hg

+3 F(h · g · f )

• two other axioms involving the unit
• other axioms involving 2-cells in K .

Note there are certain sorts of composition that are still preserved strictly, e.g. vertical
composition of 2-cells. The reason is you can’t replace this sort of equality by an invertible
cell because there are no cells in higher dimensions. A reference is [KS].

Example.
• a pseudofunctor between one-object 2-categories (strict monoidal categories) is a

strong monoidal functor
• Let C be a category with pullbacks. There’s a pseudofunctor Cop → CAT given

by X 7→ C/X and f : X → Y 7→ C/Y
f ∗
−→ C/X.

A lax functor K
F
−→ L is the same data and axioms as a pseudofunctor except the 2-

cells FA and F f ,g are not necessarily invertible. A oplax functor is obtained by orienting
FA and F f ,g in the opposite direction. The pseudofunctors are contained in the intersection
of the lax and the oplax things.2

1You just kind of sit and stare at it and write down some obvious things and hope you have enough, and
usually you have.

2Richard said are the intersection, then Steve objected.
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Between each of these kinds of functor, we have various kinds of transformation. We’ll
concentrate on the case of 2-functors for simplicity. Given F,G : K ⇒ L, a 2-natural
transformation α : F ⇒ G is given by:

• components αX : FX → GX for each X ∈ K satisfying the usual naturality con-

dition and also, for X
f
''

g
77⇓γ Y in K , we have

FX
F f
**

Fg
44⇓Fγ FY

αY // GY = FX
αX // GX

G f
**

Gg
44⇓Gγ GY

A pseudo natural transformation α : F ⇒ G is given by components αX : FX → GX
in L for all X ∈ K plus invertible 2-cell components

FX

F f
��

αX //

⇓α f

GX

G f
��

FY
αY
// GY

in L for each map f : X → Y in K . These again have to satisfy some axioms about
composition and identities.

A lax natural transformation is as before—now the α f is not necessarily invertible—
as is an oplax natural transformation—now the α f is not necessarily invertible and re-
versed in direction.

Because 2-categories have an extra dimension there is an extra dimension of maps be-
tween them: modifications. Given, say, pseudonatural transformations α, β : F ⇒ G : K →
L a modification Γ : α //+3 β is given by components ΓX : αX ⇒ βX : FX → GX in L
for all X ∈ K satisfying axioms:

•

G f · αX
α f +3

G f ·ΓX

��

αY · F f

ΓY ·F f

��
G f · βX

β f

+3 βY · F f

commutes for all f : X → Y in K .
Now if K and L are 2-categories we have various kinds of functor 2-category:
• objects are 2-, pseudo-, lax-, or oplax functors
• 1-cells are 2-, pseudo, lax, or oplax natural transformations
• 2-cells are modifications

Remark. An important case is functor categories into Cat. If K is a locally small 2-
category we have a Yoneda embedding K → [Kop,Cat], where we use square brackets to
denote the strictest case: 2-functors, 2-natural transformations, and modifications.

Relations between these functor categories3. Fix K and L. Write Lax(K ,L)s for the
2-category of lax functors, strict 2-natural transformations, and modifications. The inclu-
sion J : [K ,L] → Lax(K ,L)s has both left and right 2-adjoints if K is small and L is

3Maybe this is the first thing that I’ll say that doesn’t involve just defining reams of stuff.
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complete and cocomplete: In fact, we can identify Lax(K ,L)s with [K†,L] (an isomor-
phism of 2-categories) for another 2-category K†. So if K is small and L is complete
(resp. cocomplete) then J has a right (resp. left) 2-adjoint.

What is K†? Objects are those of K . 1-cells are strings of composable 1-cells of K .

A 2-cell α from X
f1
−→ · · ·

fn
−→ Y to X

g1
−→ · · ·

gm
−−→ Y is given by an order preserving map

{1, . . . , n}
ϕ
−→ {1, . . . ,m} and 2-cells α1, . . . , αm where

αi : ◦ j∈ϕ−1(i) f j ⇒ gi.

Note in order for this 2-cell to exist these 1-cells must have the same source and target,
which is an additional condition.

Exercise. A 2-functor K† → L is a lax functor K → L.

Monads in a 2-category. The case of interest of us for this talk will be K = 1.

Definition. A monad in a 2-category L is a lax functor 1
F
−→ L.

What is this? Writing ∗ for the single object, we have ∗ 7→ F(∗) = A, ∗
1∗
−→ ∗ 7→ F(1) =

s : A → A, and ∗
1∗
&&

1∗

88⇓11∗ ∗ 7→ 1s : s ⇒ s : A → A (by one of the axioms for lax functors).

Plus

• 1F∗ ⇒ F(1∗) : F(∗) ⇒ F(∗) i.e., η : 1A ⇒ s : A → A (preservation of nullary
composition)

• F(1∗) · F(1∗)⇒ F(1∗ · 1∗) : F(∗)→ F(∗) i.e., µ : s · s⇒ s : A→ A.

Plus axioms

sss

sµ

��

µs +3 ss

µ

��

s
sη +3

1s �$
AA

AA
AA

A

AA
AA

AA
A ss

µ

��

s
ηsks

1sz� }}
}}
}}
}

}}
}}
}}
}

ss
µ
+3 s s

What is 1†?

• single object *
• 1-cells ∗ → ∗ are natural numbers including 0 (the empty string)
• 2-cells n⇒ m are order preserving maps {1, . . . , n} → {1, . . . ,m}

i.e., 1†(∗, ∗) = �+. There is the topologist’s delta, which contains finite non-empty ordinals
and order preserving maps. This is the algebraist’s delta, which contains all finite ordinals
(including the empty ordinal) and order preserving maps.4

As a one-object 2-category, this makes �+ a strict monoidal category: the monoidal
structure is addition of natural numbers. (This is where the algebraist’s delta differs from
the topologist’s delta, which is not a monoidal category because it has no unit.)

We write 1† as Σ�+ and so have that 2-functors Σ�+ → L correspond to monads in L.

4There is a further confusion: The objects of the topologist’s delta are the natural numbers. The objects of the
algebraist’s delta are also the natural numbers, but these are not the same natural numbers.
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Adjunctions in a 2-category. We had a mildly slick way of defining monads in a 2-
category. For adjunctions the best way is just to do it. An adjunction in a 2-category
L is given by f : A � B : g objects and 1-cells and 2-cells η : 1A ⇒ g f : A → A and
ε : f g⇒ 1B : B→ B such that

f

1 f �$
AA

AA
AA

AA

AA
AA

AA
AA

fη +3 f g f

ε f

��

g

1g
�$
@@

@@
@@

@@

@@
@@

@@
@@
ηg +3 g f g

gε

��
f g

Mates. Any 2-functor preserves adjunctions. In particular, if f : A � B : g is an adjunc-
tion in L, we can apply the hom-fucntor L(X,−) : L → Cat for any X ∈ L to get an
adjunction

L(X, A)
f ·−
//> L(X, B)

g·−oo

in Cat. So we have natural isomorphisms between L(X, B)( f · h, k) � L(X, A)(h, g · k).
We can also apply a contravariant hom-functor L(−, X) : Lop → Cat to get an adjunc-

tion

L(A, X)
−·g //
⊥ L(B, X)
−· f
oo

So we have isomorphisms of hom-categories L(A, X)(h · g, k) � L(B, X)(h, k · f ).5

This is some part of the thing that’s called mates. Mates, precisely: given

A

h
��

f1 //
⊥ B

k
��

g1
oo

C
f2 //
⊥ D
g2
oo

then L(A,D)( f2h, k f1) � L(B,C)(hg1, g2k). I.e., 2-cells α correspond to 2-cells α:

A

h
��

f1 //

⇒α

B

k
��

A

h
��
⇐α

B

k
��

g1
oo

C
f2 // D C Dg2

oo

Proof: f2h⇒ k f1 corresponds to h⇒ g2k f1 corresponds to hg1 ⇒ g2k.

The free adjunction. We had a 2-category classifying monads in the sense that 2-functors
with this domain corresponded to 2-adjunctions. We now want to do the same thing for
adjunctions. The reference is a four page paper [SS].

There’s a 2-category Adj so that 2-functors Adj → L are adjunctions in L. It has two
objects A and B and

• Adj(A, A) = �+

• Adj(B, B) = �op
+

5We can move an f on the right on the right to a g on the right on the left.
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• Adj(B, A) has objects {u, u f u, u f u f u, . . .}which we identify with natural numbers
{1, 2, . . .}. Morphisms n → m are order preserving maps {1, . . . , n} → {1, . . . ,m}
sending 1 to 1. E.g., 4 → 3 given by 1, 2 7→ 1; 3, 4 7→ 2 is the thing we might
label

u f u f u f u
uε f uε +3 u f u

ηu f u +3 u f u f u

• Adj(A, B) = Adj(B, A)op.

Limits and colimits in a 2-category. 2-(co)limits are a special case of enriched (co)limits.
I’m going to start by just listing a bunch of examples.

Example (conical limits and colimits). Given a diagram D : I → L, I a 1-category and
L a 2-category, a 2-limit for D is a limit for D in the underlying 1-category of L which is
preserved by each representable L(X,−) : L → Cat, i.e.,

L(X, lim D) � limL(X,D)

as categories. Similarly, for colimits using the contravariant representables.

Example (cotensors and tensors6). If C is a small category and X ∈ L then the cotensor
of X by C, written C t X is characterized by a 2-natural isomorphism

L(Y,C t X) � L(Y, X)C.

In particular, taking C = 2 then 2 t X is an object of L equipped with

2 t X ((
66⇓γ X

such that every C
f
''

g
77⇓α X factors uniquely as

C
〈α〉 // 2 t X ((

66⇓γ X

and there’s a further 2-dimensional aspect of this universal property.
The tensor of X by C, C ⊗ X satisfies

L(C ⊗ X,Y) � L(X,Y)C

2-natural in Y .

All other limit and colimit types can be constructed from these two examples in the
sense that all ordinary limits can be constructed from products and equalizers. This is not
to say that if a particular limit exists then it had to be constructed in this way, from conical
limits and cotensors. Let’s look at some other specific limit and colimit types.

Example. Given A
f //
g
// B the inserter of f and g is the universal object C

i
−→ A for

which there is a 2-cell

C
f i
''

gi

77⇓γ B

6The limit one is the cotensor and the colimit is called a tensor.
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In this context, universal means if given C′
f i′
((

gi′
66⇓γ′ B then there is a unique C′ → C so

that the restriction of γ along this map is γ—and there is a 2-dimensional aspect of this
universal property too. In Cat, the inserter of f and g is the category whose objects are
pairs (a ∈ A, γa : f a→ ga).

Example. Given a cospan A
f
−→ C

g
←− B the comma object is the universal data

D h //

k
��

⇒

B

g

��
A

f
// C

Typical notation is D = f ↓ g. In Cat, D has objects being triples (a ∈ A, b ∈ B, γ : f a →
gb ∈ C).

There are dual colimit notions for both of these.

Example. Given A
f
''

g
77⇓γ B the inverter is the universal A′

h
−→ A such that γh is an

invertible 2-cell. In Cat the inverter is the full subcategory of A on those a ∈ A so that γa

is invertible.
The dual notion is called a coinverter. The coinverter of γ is the universal B

q
−→ B′

so that qγ is invertible. In Cat, 2-limits are easy to describe, while colimits in Cat, like
colimits in Set, have to be described by some inductive process. The coinverter in Cat is
defined by B′ = B[Σ−1] where Σ = {γa : f a→ ga,∀a ∈ A}.

We’ve claimed that 2-colimits can be built from tensors and conical colimits. E.g., we
can construct the coinverter of γ from tensors and pushouts: the 2-cell γ corresponds to the

1-cell 2 ⊗ A
〈γ〉
−−→ B. Writing I for the walking isomorphism, the pushout

2 ⊗ A

p

〈γ〉 //

��

B

q
��

I ⊗ A // B′

defines the coinverter of the 2-cell γ.

Definition. A 2-category is complete if it admits conical limits and cotensors and cocom-
plete if it admits conical colimits and tensors. A 2-functor is continuous or cocontinuous
if it preserves these.

Definition. LetL be a cocomplete 2-category. Let I be a small 2-category and D : I → L
a 2-functor. We define the weighted colimit 2-functor

(−) ? D : [Iop,Cat]→ L

by two conditions:
(i) (−) ? D is cocontinuous

(ii) I
y
−→ [Iop,Cat]

(−)?D
−−−−→ L � D
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Why do these define a 2-functor. Given a small 2-category I, [Iop,Cat] is the free
cocompletion of I under 2-dimensional colimits. We call the value ϕ?D of this 2-functor
at ϕ ∈ [Iop,Cat] the weighted colimit of D by ϕ.

Let’s see, e.g., how to express coinverters as a weighted colimit. Take I = 0
f
''

g
77⇓γ 1 .

Then D : I → L picks out a 2-cell in L. Now I(−, 0) ? D = D(0) by condition (ii) and
similarly I(−, 1) ? D = D(1). Furthermore

I(−, 0) ? D

I(−, f )?D
��

⇒I(−,g)?D
��

D(0)

f

��
g

��
⇒

I(−, 1) ? D D(1)
where the 2-cells are I(−, γ) ? D and Dγ.

Define ϕ to be the coinverter

I(−, 0)
I(−, f )

,,

I(−,g)
22⇓I(−,γ) I(−, 1)

q // ϕ

Now apply (−) ? D to get the coinverter of Dγ

D0
D f
))

Dg
55⇓Dγ D1 r // Q

In fact, ϕ : Iop → Cat is

0
f
''

g
77⇓γ 1 7→ I ⇓� 1

1

ff
0

xx

More generally, if L is any 2-category, D : I → L a 2-functor, ϕ ∈ [Iop,Cat], the
weighted colimit ϕ ? D is characterized by a 2-natural isomorphism

L(ϕ ? D, X) � [Iop,Cat](ϕ,L(D−, X))

2-natural in X. This is the general definition, but in the case where L is cocomplete the
definition given above is really what this thing means. In a general 2-category, (−) ? D
will always be defined at the representables and cocontinuous in the weight insofar as it is
defined.

I want to finish with an application to the formal theory of monads. First:

Kan extensions. Given 2-functorsL
F
−→M andL

G
−→ K withM small andK cocomplete

the (pointwise7) left Kan extension LanFG : M→ K is defined by

(LanFG)(M) =M(F−,M) ?G.

Example. Take L = •⇒ •, letM be the free living cofork 0⇒ 1→ 2, and take F : L →
M to be the obvious inclusion. Given a diagram G : L → K , then LanFG : M → K is
given by 0 7→ G0, 1 7→ G1, and 2 7→ the coequalizer of G0⇒ G1.

Dually, we have right Kan extensions. TakingM = −1 → 0 ⇒ 1 the free living fork
and F the obvious inclusion, then RanFG picks out the equalizer of G0⇒ G1.

7This term is first used in the context of enriched categories in Dubuc’s thesis.
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The formal theory of monads. Recall Mnd = Σ�+ is the 2-category classifying monads
in a 2-category, and Adj is the 2-category classifying adjunctions in a 2-category. Given

a monad in a 2-category Mnd
G
−→ K is there an adjunction giving rise to this monad? We

know two answers when K = Cat, the Eilenberg-Moore and Kleisli constructions. In
general, we give ourselves the liberty of assuming that K is complete or cocomplete in
which case we can form the right or left Kan extensions

Mnd G //

F
��

K

Adj

==z
z

z
z

If RanFG exists then it picks out
GA //> V
oo

where GA is the object with the endmorphism G1: GA→ GA that is a monad. (Recall the
objects of �+ are natural numbers 0, 1, . . ..) Furthermore, this V is the Eilenberg-Moore
object on GA.

In Cat the Eilenberg-Moore object is the usual category of G1-algebras. In K , it’s
defined by a 2-natural isomorphism

K(X,V) � K(X,GA)K(X,G1)

where the thing on the right is the category of K(X,G1)-algebras.
In general the way to define limit notions in a 2-category is to say that homing into that

object gives the corresponding limit notion in Cat.

2. Interlude

Strict monoidal categories are just one-object 2-categories; monoidal categories are just
one-object bicategories. One thing that’s useful in dealing with these sorts of things is
string notation.

String notation. The way this works is you take the Poincare dual of a pasting diagram
in a 2-category or more generally in a bicategory: 0-cells become regions, 1-cells remain
1-cells (strings) but pointing in the opposite direction, and 2-cells become beads on the
strings.

More precisely, we can display composite 2-cells in a 2-category/bicategory using string
notation:

• regions of the page are labelled by objects
• lines on the page denote 1-cells, their domain and codomain being the adjacent

regions
• nodes represent 2-cells

[Pictures omitted.]
A nice thing about string diagrams is it gives a very efficient way to specify adjoints.

Given an adjunction A
g
//⊥ B

foo
, we have η and ε the unit and counit. In strings this looks

like a cap and a cup (the beads are traditionally omitted) and the triangle identities say that
the two “S” shaped diagrams formed from these can be “straightened,” i.e., are equal to
the straight lines corresponding to the identity 2-cells. Note, you don’t need to label the
regions because they can be reconstructed from the labels on the strings.
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Exercise. Express the mates correspondence using string diagrams.

Note for monoidal categories, interpreted as one-object bicategories, you’ll never have
to label the region.

3. Monoidal categories

I’ll end with a mixed bag of observations on monoidal categories, particularly concern-
ing the Eckmann-Hilton argument.

Eckmann-Hilton argument. A monoid object in monoids is a commutative monoid.
There are analogs in 2-category theory:

2-d Eckmann-Hilton. A pseudomonoid object in (monoidal categories and strong monoidal
functors) “is”8 a braided monoidal category.

I.e., a pseudomonoid object in monoidal categories is a monoidal category (C,⊗, I)
with a functor � : C × C → C strong monoidal with respect to ⊗ and J : 1 → C also
strong monoidal with respect to ⊗. The coherence constraints α′, λ′, ρ′ for (�, J) are strong
monoidal transformations with respect to ⊗.

It then follows that I � J, ⊗ � �, and ⊗ � �rev. From this we induce a natural family of
isomorphism A⊗ B

σA,B
−−−→ B⊗ A satisfying coherence axioms—the basic data for a braided

monoidal category.
The key point with a braiding is that σA,B and σB,A need not be each other’s inverses; if

they are, this is called a symmetric monoidal category. In string notation, the convention
is to draw σA,B as two strings labelled A and B with the latter crossing under the former.

Example. Vector spaces form a monoidal category. A bialgebra in this context is an alge-
bra and a coalgebra in which the coalgebra structure maps are algebra maps. An example
is a group ring. For this to make sense, we need a little bit of additional structure on the
monoidal category and that’s the structure of a braiding.

A failure of Eckmann-Hilton. We can look at pseudomonoid objects in (monoidal cat-
egories and lax monoidal functors) in which case something quite interesting happens: A
2-monoidal/duoidal category is a pseudomonoid object in monoidal categories and lax
monoidal functors—i.e., (C,⊗, I) a monoidal category equipped with a second monoidal
structure (C,�, J) so that � : C × C → C and J : 1→ C are lax monoidal with respect to ⊗
and similarly for the coherence constraints of (�, J).

This means we have two monoidal structures and maps

(A � B) ⊗ (C � D)→ (A ⊗C) � (B ⊗ D).

In the strong monoidal world these maps would be invertible. Setting B and C to be units
we’d see that ⊗ � �; setting C and D to be units we’d see these tensor products are braided.
We also have maps

I → J I → I � I J ⊗ J → J.
Why is this structure interesting? It’s because we see it quite a lot. First, a few observa-

tions:
• An equivalent definition: (C,⊗, I) is monoidal and ⊗, I, and their coherence con-

ditions are oplax monoidal with respect to (�, J).
• any braided monoidal category is a (2-monoidal/duoidal) category with ⊗ = �,

I = J. (Proof: a pseudomonoid in strong things is a pseudomonoid in lax things.)

8Not quite.
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Duoidal categories are a natural setting for defining bialgebras.

Bialgebras in duoidal categories. Recall a bialgebra in vector spaces is an algebra that
is also a coalgebra and moreover such that the coalgebra structure maps are algebra ho-
momorphisms. For this to make sense, we need that if A is an algebra there is an algebra
structure on A ⊗ A, defined using the braiding. But we’re not really using the fact that it’s
a braiding; we’re just using the fact that it’s a duoidal category. The point is in any duoidal
category the tensor product � lifts to the category of ⊗-monoids.

If (C,⊗, I,�, J) is a duoidal category, then it’s a pseuodmonoid in MonCatlax. There’s a
2-functor MonCatlax → Cat that sends (C,⊗, I) to Mon⊗(C) which sends pseudomonoids
to pseudomonoids. Thus, (C,⊗, I), an object of MonCatlax, considered with the pseu-
domonoid structure ((C,⊗, I),�, J), gets sent to some (Mon⊗(C),�, J). I.e., if C is duoidal,
then the �-tensor lifts to Mon⊗(C).

Explicitly, (A ⊗ A
m
−→ A

i
←− I) � (B ⊗ B

n
−→ B

j
←− I) is defined to be

(A � B) ⊗ (A � B)→ (A ⊗ A) � (B ⊗ B)
m�n
−−−→ A � B

i� j
←−− I � I ← I.

Dually, the ⊗ monoidal structure lifts to Comon�(C).

Definition. A bialgebra in a duoidal category C is an object of Comon�(Mon⊗(C)) �
Mon⊗(Comon�(C)).

Explicitly, this is
• an object X ∈ C

• a monoid structure X ⊗ X
m
−→ X

i
←− I

• a comonoid structure X � X
c
←− X

u
−→ J

• axioms, most importantly that X ⊗ X
m
−→ X

c
−→ X � X equals the composite

X ⊗ X
c⊗c
−−→ (X � X) ⊗ (X � X)→ (X ⊗ X) � (X ⊗ X)

m�m
−−−→ X � X.

Recall a braided monoidal category is a special case of this in which the two tensor
products are the same. In some ways, the axioms are even clearer from the duoidal per-
spective, in particular the need for the swapping over in the middle, which is necessary for
type checking in the duoidal setting but isn’t obviously so in the braided setting.

I haven’t really given any examples, but I’ll leave that to Marcelo on Friday.
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