

Isar Stubbe

Université du Littoral

Grothendieck topologies and Grothendieck quantales

A locale L can be thought of as a particular poset (L, \leq) but also as a particular monoid (L, \wedge, \top) . The precise relation between these two manifestations of L is that the *poset* is exactly the category of left adjoints in the split-idempotent completion of the *monoid*. This generalises to Grothendieck topologies: each site determines, and is determined by, a quantaloid (\mathbf{Sup} -enriched category) of closed cribles, which in turn is always the split-idempotent completion of a particular quantale (monoid in \mathbf{Sup}). The latter are the “Grothendieck quantales” of the title. Besides locales, also inverse quantal frames are examples of this notion. This facilitates the description of sheaf toposes as particular \mathbf{Sup} -module categories.

This is joint work with Hans Heymans.