

Richard Garner

Macquarie University

Finitary monads, Lawvere theories, and Cauchy completion

There are two main ways in which a category theorist can articulate the notion of equational theory: using Lawvere theories, and using finitary monads on **Set**. The equivalence between the two formulations is well-known, and well-understood; this talk will reconsider it from the perspective of enriched category theory. On the one hand, a finitary monad on **Set** is a monoid in the category **End**_{*f*}(**Set**) of finitary endofunctors of **Set**, so equally a one-object **End**_{*f*}(**Set**)-enriched category. On the other hand, it turns out that every category with finite powers—and so in particular, every Lawvere theory—bears a canonical **End**_{*f*}(**Set**)-enrichment. In fact, we find that categories with finite powers are precisely the same thing as **End**_{*f*}(**Set**)-categories admitting a certain class Φ of absolute colimits, and that, from this perspective, the mechanism by which a Lawvere theory is associated to a particular finitary monad is simply that of Cauchy completion relative to Φ . The enriched-categorical perspective explains also the semantics: models of a Lawvere theory, or algebras of a finitary monad, are simply **End**_{*f*}(**Set**)-functors from the theory or the monad into the (Φ -cocomplete) **End**_{*f*}(**Set**)-category of sets, so that the equivalence of the models of the theory with the algebras of the associated monad is a direct consequence of the universal property of Cauchy completion.