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In e-commerce environments, the trustworthiness of a seller is utterly important to potential buyers,
especially when a seller is not known to them. Most existing trust evaluation models compute a single value
to reflect the general trustworthiness of a seller without taking any transaction context information into
account. With such a result as the indication of reputation, a buyer may be easily deceived by a malicious
seller in a transaction where the notorious value imbalance problem is involved, i.e., a malicious seller
accumulates a high level reputation by selling cheap products then deceives buyers by inducing them to
purchase more expensive products.

In this paper, we first present a trust vector consisting of three values for Contextual Transaction Trust
(CTT). In the computation of CTT values, three identified important context dimensions, including Product
Category, Transaction Amount and Transaction Time, are taken into account. In the meantime, the compu-
tation of each CTT value is based on both past transactions and the forthcoming transaction. In particular,
with different parameters specified by a buyer regarding context dimensions, different sets of CTT values
can be calculated. As a result, all these trust values can outline the reputation profile of a seller that in-
dicates the dynamic trustworthiness of a seller in different products, product categories, price ranges, time
periods, and any necessary combination of them. We name this new model ReputationPro. Nevertheless,
in ReputationPro, the computation of reputation profile requires new data structures for appropriately in-
dexing the pre-computation of aggregates over large-scale ratings and transaction data in three context
dimensions, as well as novel algorithms for promptly answering buyers’ CTT queries. In addition, storing
pre-computed aggregation results consumes a large volume of space particularly for a system with millions
of sellers. Therefore, reducing storage space for aggregation results is also a great demand.

To solve these challenging problems, we first propose a new index scheme CMK-tree by extending the
two-dimensional K-D-B-tree that indexes spatial data to support efficient computation of CTT values. Then,
we further extend the CMK-tree and propose a CMK-treeRS approach to reducing the storage space allocated
to each seller. The two approaches not only are applicable to three context dimensions that are either linear
or hierarchical, but also take into account the characteristics of the transaction-time model, i.e., transaction
data is inserted in chronological order. Moreover, the proposed data structures can index each specific prod-
uct traded in a time period in order to compute the trustworthiness of a seller in selling a product. Finally,
the experimental results illustrate that the CMK-tree is superior in efficiency of computing CTT values to
all three existing approaches in the literature. In particular, while answering a buyer’s CTT queries for each
brand-based product category, the CMK-tree has almost linear query performance. In addition, with signif-
icantly reduced storage space, the CMK-treeRS approach can further improve the efficiency in computing
CTT values. Therefore, our proposed ReputationPro model is scalable to large-scale e-commerce websites in
terms of efficiency and storage space consumption.
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1. INTRODUCTION
In e-commerce environments, when a buyer needs to select a seller from a large pool
of sellers, the trustworthiness of a seller is a crucial issue in decision-making [Jøsang
et al. 2007; Kim et al. 2008]. At eBay1 with 233 million sellers and buyers, after each
transaction, a buyer can provide a rating (+1, 0, or -1) to the centralized trust manage-
ment system according to transaction quality. After accumulating over a time period, a
single positive feedback rate is calculated to indicate the trustworthiness of the seller
in the latest time period (e.g., “the latest one month”, “the latest six months” and “the
latest twelve months”). However, this simple trust management system is vulnerable to
some frauds from malicious sellers [Kerr and Cohen 2006; Rietjens 2006; Jøsang and
Golbeck 2009]. For example, a malicious seller can gain a good reputation by honestly
selling good and low value (price) products. Once having accumulated a good reputa-
tion, s/he may deceive buyers by inducing them to buy more expensive products, but
either not delivering the ordered product or else delivering a fake product. In the lit-
erature, this is referred to as the value imbalance problem [Dellarocas 2002; Kerr and
Cohen 2006; Jøsang and Golbeck 2009], and several real world cases have been re-
ported [Rietjens 2006]. For instance, an Australian deceiver at eBay tricked people for
more than AU$10K in total. A Californian deceiver cheated victims in transactions for
exceeding US$300K in total.

In view of this problem, Zhang et al. [2011; 2012b] identified the key issues related
to value imbalance in transactions, as outlined below.

— The lack of consideration of context in transaction trust evaluation: In e-commerce
environments, different transactions generally have different natures and contexts;
even the same seller needs to be considered differently with regard to the trustwor-
thiness in different forthcoming transactions [Wang and Lin 2008; Wang and Lim
2008; Li and Wang 2010; Rettinger et al. 2011]. In fact, the value imbalance problem
is only a type of the context imbalance problem [Zhang et al. 2012b] in transactions,
where imbalance can also exist in product categories. For example, following a few
cases of fraud at Alibaba2, which supports both B2B and B2C online trading with 50
million users, buyers are explicitly reminded to manually check if the products being
offered by a supplier fall into in the same categories as the products that the supplier
usually sells3. This example also indicates that reputation-based transaction trust
evaluation should be “transaction context-aware”.

— The static results of trust evaluation: Most models compute a single trust value based
on past transactions [Sabater and Sierra 2001; Kamvar et al. 2003; Xiong and Liu
2004; Wang and Varadharajan 2005a; Wang et al. 2009; Wang et al. 2012]. How-
ever, such a single value basically only reflects a seller’s general trust status, and
is static with regard to any forthcoming transaction [Wang and Lim 2008]. As il-
lustrated above, different transactions may have different contexts. The static trust
evaluation of a seller can hardly predict the likelihood of a successful forthcoming

1http://www.ebay.com/
2http://www.alibaba.com/
3http://resources.alibaba.com/article/232530/Protect yourself from fraudsters pretending to be Gold
Suppliers.htm
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transaction. Thus, trust evaluation should be associated with both past transactions
and the forthcoming transaction.

1.1. Motivation
Let us consider a simple example. Suppose a malicious seller S1 has completed 198
transactions with good quality selling “AT&T SIM Card” at the price of $1 and ob-
tained 198 positive ratings. The seller S1 also has completed other 2 transactions with
poor quality selling “Apple iPhone5s 16GB” at the price of about $700 and obtained 2
negative ratings. Based on the trust evaluation model used at eBay, the trustworthi-
ness of S1 is as high as 0.99. Next, consider a scenario that a buyer B plans to buy
an “Apple iPhone5s 16GB”. In the meantime, the seller S1 is selling this product, and
the price $700 offered by him/her is cheaper than other sellers. Clearly, the seller S1 is
very attractive and appears to be trustworthy as well. Thus, buyer B tends to buy the
“Apple iPhone5s 16GB” from S1. In such a case, the monetary loss of B is very likely to
happen. However, in addition to the general trust value 0.99 to buyers, if B knew that
S1 received negative ratings in occurred transactions selling “Apple iPhone5s 16GB”,
B would not purchase from S1. In fact, from buyers’ point of view, they are more con-
cerned about the trustworthiness of a seller in a potential forthcoming transaction,
rather than a general trust value resulting from all past transactions.

Suppose a seller S2 has completed many more transactions, selling products in a
variety of categories over a long period of time. When buyer B plans to buy a “Canon
EOS 6D SLR Digital Camera” at the price of around $1600 from S2, in addition to
the trustworthiness of S2 in selling this product, B could also be concerned about the
trustworthiness of S2 in selling “Canon DSLR camera” with a price range of “$1000-
$2000” (i.e., a query w.r.t. a higher layer in the hierarchical product category in a price
range) in the latest 3 months or the latest 6 months. This is particularly the case when
the product in the forthcoming transaction is just available in market and the number
of existing transactions selling this product is quite low or even zero. If S2 is reputable
in all these related transactions, there should be good reasons for B to trust S2 in a
new transaction for purchasing a “Canon EOS 6D SLR Digital Camera” at the price
of around $1600. Otherwise, if S2 has problems in the transactions in a certain prod-
uct category or a certain price range (e.g., S2 received a lot of negative ratings in the
transactions in selling “Canon EOS 6D SLR Digital Camera”), it is necessary for trust
evaluation to indicate the flaw of S2 in reputation.

The above process follows the suggestion provided on the Alibaba website, which
advises buyers to check if the product to be purchased from a seller is in the categories
in which the seller usually sells and if the existing transactions in these categories are
reputable. Similarly, as a buyer is very concerned about the possibility of monetary
loss, trust evaluation needs to indicate trustworthiness over different price ranges,
each of which takes the price of the product to be purchased as approximately the
medium value. In addition to them, a further step is to evaluate trust over the combi-
nation of product category and price range as well as time period, as different buyers
buy products in different categories and with different prices from the same seller.
Such evaluation results can reveal potential risk if a seller has problems in reputation
in the transactions in a product category, a price range and a time period, related to
the potential new transaction that the buyer plans to complete with the seller.

Obviously, these identified needs cannot be satisfied by a single-value trust valua-
tion model. In the meantime, the new needs bring challenges to trust computation as
a long-existing seller usually has large-scale transactions with a wide variety of prod-
uct categories as well as a wide price range. Therefore, the computation of a seller’s
trustworthiness in various transaction contexts incurs high complexity.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.



A:4 H. B. Zhang et al.

1.2. A Trust Vector based Framework and The Challenges in Computation
Based on the above examples and analysis, in contrast to most existing trust manage-
ment models that compute a single trust value, our proposed framework is to compute
a trust vector for a seller [Zhang et al. 2012b]. The computation of trust values in the
trust vector takes transaction context into account and is associated with a forthcom-
ing transaction.

The trust vector consists of three major elements, which are called Contextual
Transaction Trust (CTT) values. They are

(1) the trustworthiness of a seller in selling a specific product to be traded in a forth-
coming transaction;

(2) the trustworthiness of the seller in a layer in the product category hierarchy that is
higher than the specific product to be traded in the forthcoming transaction, within
a price range and a time period;

(3) the trustworthiness of the seller in a price range and a time period.

For each element in the trust vector, the higher the value is, the more trustwor-
thy the seller will be. When computing the last two elements, the parameters, such
as product category, price range and time range, can be specified and adjusted by the
buyer. For example, if “Canon EOS 6D SLR Digital Camera” is the product in the
forthcoming transaction, the buyer can specify and adjust “product category” along a
path in the product category hierarchy, such as “Canon DSLR camera”, “DSLR cam-
era” and “Digital camera” in sequence. If the product is “Apple iPhone5s 16GB”, the
corresponding product categories are “Apple iPhone” and “Smartphone” in sequence.
In the meantime, the buyer may also specify and adjust the price range and the time
range. Each price range takes the price of product as approximately the medium value.

We use granularity to represent the differences in transaction context determined
by a layer in the product category hierarchy, a price range and a time period. In ad-
dition, we term the query on CTT values as a CTT query, and term the computation
of CTT values as CTT computation. Hence, with all computed trust results, the repu-
tation profile of a seller can be outlined, which can indicate the dynamic trustworthi-
ness of a seller in different products and product categories, price ranges, time periods
and necessary combination of them, greatly help identify the value imbalance prob-
lem potentially existing in forthcoming transactions, and thus avoid monetary losses
of buyers.

However, at e-commerce websites, a popular seller usually sells a wide variety of
products distributed in a number of product categories. In addition, a large number
of buyers can be accessing one seller’s reputation data simultaneously with regard
to their potentially forthcoming transactions. In order to promptly answer a buyer’s
CTT queries, it is necessary to pre-compute aggregates over large-scale transaction
data and ratings with necessary combinations of three context dimensions, i.e., Prod-
uct Category, Price and Transaction Time. In addition, storing the aggregation results
will consume a large volume of space particularly for a system with millions of sellers.
Thus, the CTT computation for outlining sellers’ reputation profiles is a very challeng-
ing problem that requires new data structures and novel algorithms that are scalable
to large-scale e-commerce websites in terms of efficiency and storage consumption for
CTT computation.

1.3. Our Approaches and Contributions
To solve the challenging CTT computation problem, we propose our model Reputation-
Pro in this paper. Our work and contributions are briefly summarized below:

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.



ReputationPro: The Efficient Approaches to CTT Computation in E-Commerce Environments A:5

(1) In contrast to most existing trust evaluation models [Sabater and Sierra 2001;
Damiani et al. 2002; Kamvar et al. 2003; Xiong and Liu 2003; Xiong and Liu 2004;
Wang and Varadharajan 2005b; Malik and Bouguettaya 2009; Wang et al. 2012], our
model considers three important context dimensions in e-commence environments, i.e.,
Product Category, Price and Transaction Time (see Section 3), and it outlines the rep-
utation profile of a seller which can indicate the dynamic trustworthiness in different
products, product categories, price ranges, time periods, and any necessary combina-
tion of them (see Section 4).

Generally speaking, ReputationPro is typically a heuristic-based [Sherchan et al.
2013] multi-context [Sabater and Sierra 2005] trust evaluation model. There are two
important reasons leading to its outperformance over the existing context-aware trust
evaluation models:

— ReputationPro is a multi-context model which has the mechanisms to deal with
several contexts at a time comprising different trust or reputation values associated
with them.
Compared with single-context trust evaluation and similarity-based context-aware
trust evaluation, multi-context trust evaluation can reflect a seller’s dynamic trust-
worthiness in various transaction contexts, which provides comprehensive and de-
tailed trust information of a seller. As multi-context trust evaluation is much more
complex particularly when considering the combinations of context dimensions, very
limited work reported in the literature.

— ReputationPro is an efficient heuristic-based multi-context model that can be direct-
ly applied in large-scale e-commerce applications.
Like PeerTrust [Xiong and Liu 2004] and RATEWeb [Malik and Bouguettaya 2009]
trust evaluation models, ReputationPro adopts heuristic-based technique to aggre-
gate and average trust ratings as the trustworthiness or reputation values of a
seller. Compared with IHRTM model [Rettinger et al. 2011], which is the only
multi-context model reported in the literature and adopts statistical and machine
learning-based techniques, ReputationPro is much more efficient and thus more
suitable to be applied to the dynamic environments of e-commerce applications with
millions of users and transactions that are updated every day.

Note that we have to point out that both rater credibility and secure data storage
are important issues in trust evaluation. But they are out of scope of this article. Our
proposed ReputationPro model has a different focus on how compute reputation profile
of sellers efficiently with reduced space consumption.

(2) In the literature, our targeted CTT computation problem is similar to data ware-
housing and OLAP (On-Line Analytical Processing) technology [Chaudhuri and Dayal
1997] (see Section 2.3). In particular, the traditional RA (Range Aggregate) [Papadias
et al. 2001] in two-dimensional spatial data warehouses is relatively close to CTT com-
putation. Typically, an RA query is in regards to the computation of the total number
of points falling into a query region. Thus, we first present a review on popular ap-
proaches to the RA problem in two dimensional space and identify the limitations of
these approaches in solving our targeted problem (see Section 2.4). Then, we further
extend the RA problem in a two-dimensional space to CTT computation with the x-
axis representing the Transaction Time dimension in days, the y-axis representing
the Transaction Amount dimension, and the Product Category dimension taken as the
extended third dimension (see Section 5).

(3) Towards efficient CTT computation, we propose a new disk-based index scheme
CMK-tree and a CTT computation algorithm (see Section 6). According to the re-

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.



A:6 H. B. Zhang et al.

quirements of CTT computation, four important and remarkable characteristics of the
CMK-tree are summarized below:

— In the traditional two-dimensional RA problem [Tao et al. 2004] (see Fig. 2), one
point represents one object only (e.g., a car). By contrast, as a common case in e-
commerce environments, a seller may have multiple transactions with the same
price on a given day selling the same product, i.e., one point may represent multiple
such transactions. The CMK-tree does not index all transactions but aggregates the
repeated transactions on a given day, which sell the same product;

— Some existing approaches to two-dimensional RA problem overlook the inserted ob-
jects themselves. Unlike these approaches, the CMK-tree guarantees that each spe-
cific product can be indexed in order to compute the trustworthiness of the seller in
selling a product (i.e., TIST see Section 4.3);

— The CTT computation has the same characteristic as the transaction-time mod-
el [Zhang et al. 2008], i.e., the records of newly happened transactions are inserted
in chronological order. The CMK-tree adopts multi-version structure [Becker et al.
1996] to effectively deal with transaction-time model;

— Only two Vertical Range Aggregate (VRA) queries [Tao et al. 2004] are carried out to
answer a CTT query based on the CMK-tree. This is more efficient than the MVSB-
tree which needs to carry out four dominance-sum queries for a RA query.

(4) Though three disk-based approaches taking into account the above special char-
acteristics have been proposed [Zhang et al. 2014] to CTT computation, they have
low efficiency of computing CTT values in some cases (see Section 2.6). By contrast,
the new index scheme CMK-tree proposed in this article reduces computation time
by 12.2%-66.7% on four large datasets. In particular, while answering a buyer’s CTT
queries for each brand-based product category, it has almost linear query performance
(see Section 6.4). This is a significant advantage in answering CTT queries when a
large number of buyers are accessing a seller’s reputation data simultaneously.

(5) Existing approaches for CTT computation adopt a single fine time granulari-
ty and aggregate the ratings by days [Zhang et al. 2014]. However, with continuous
growth in transaction time (e.g., one year or two years) and significant increase of
historical transaction data and ratings, the aggregation index with a single fine time
granularity does not scale in terms of storage space. Here the aggregation index refers
to the index containing some aggregates of ratings. To solve this problem, we further
propose an approach CMK-treeRS to reduce the storage space allocated to each seller
for storing the aggregation index (see Section 7). The CMK-treeRS takes into account
the requirements of buyers’ CTT queries, which maintains the aggregation index at
different time granularities: recent ratings (e.g., “the latest 3 months, i.e., the latest 90
days”) are aggregated at the fine time granularity of days, and earlier ratings (e.g., “3
months ago, i.e., 90 days ago”) are aggregated at a coarse time granularity of weeks.

(6) We have conducted experiments on four large datasets with transactions of 12
months. The experimental results illustrate that the performance of CMK-tree is much
better in efficiency than all three existing methods [Zhang et al. 2014] in computing
CTT values. In addition, our proposed CMK-treeRS brings a little loss to the accuracy
of CTT computation with much gain in storage space reduction and computation time
improvement (see Section 8).

The rest of the paper is organized as follows. Section 2 provides a brief overview of
related work. We introduce the modeling of transaction context in Section 3. In Sec-
tion 4, we introduce our proposed trust vector and the ReputationPro model. Section 5
presents how to extend Range Aggregate (RA) in a two-dimensional space to CTT Com-
putation. Section 6 proposes a new disk-based index scheme the CMK-tree in detail.
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Section 7 proposes an approach CMK-treeRS to save storage space of aggregation index.
While Section 8 evaluates our approach empirically, Section 9 concludes our paper.

2. RELATED WORK
This section reviews related work in four aspects. First, Section 2.1 presents a review
on the existing trust evaluation approaches. In contrast to existing studies [Sabater
and Sierra 2005; Jøsang et al. 2007] which introduce typical trust evaluation models,
we focus on categorizing trust models from different perspectives. Second, Section 2.2
reviews some existing context-aware trust evaluation approaches. In particular, a ta-
ble is plotted to compare ReputationPro model with some existing trust evaluation ap-
proaches so as to highlight its characteristics and the contributions of our work from
the perspective of trust evaluation. Third, Section 2.3, Section 2.4 and Section 2.5 re-
view the related techniques in data warehousing. In these sections, we also focus on
identifying the limitations of these techniques in resolving our targeted CTT computa-
tion problem. Finally, Section 2.6 reviews the existing approaches to CTT computation.

2.1. Taxonomy of Trust Evaluation
2.1.1. Application-Based Taxonomy. In the literature, some works categorize trust eval-

uation approaches according to their application environments [Wang and Li 2011;
Sherchan et al. 2013]. These are generally subdivided into trust evaluation models
applied in Network and those applied in Internet. Network applications include Peer-
to-Peer (P2P) networks [Suryanarayana and Taylor 2002], multi-agent systems [S-
abater and Sierra 2005], social networks [Sherchan et al. 2013] and ad hoc network-
s [Zhang 2011]. Internet applications include e-commerce [Jøsang et al. 2007], web
services [Wang and Vassileva 2007] and cloud computing [Noor et al. 2013].

In P2P networks, Kamvar et al. [2003] propose the EigenTrust model, and a “glob-
al” trust value of a given peer is calculated via collecting binary trust ratings. Xiong
and Liu [2004] propose a PeerTrust model which defines some general trust metric-
s and formulas to aggregate ratings into a final trust value. In multi-agent systems,
Marsh [1994] proposes a computational model for trust, which is acknowledged as the
earliest work about trust in computer science. In Marsh’s computational model, the
trust properties, such as context dependent and propagative are introduced. In social
networks, trust propagation is an important issue. Golbeck and Hendler [2006] pro-
pose trust propagation algorithms based on binary ratings. The existing trust models
in ad hoc networks focus on modeling the trustworthiness of nodes by collecting trust
information about them from other nodes [Liu and Issarny 2004] and delivering reli-
able packets [Zouridaki et al. 2006]. In the field of service-oriented computing (SOC),
Wang et al. [2009] propose some trust evaluation metrics and a formula for trust com-
putation, with which a final trust value is computed. RATEWeb model [Malik and
Bouguettaya 2009] aggregates consumers’ ratings which aims to facilitate the trust-
oriented service provider selection. Based on feedback, Habib et al. [2011] focus on
computing the “global” reputation of a cloud service.

2.1.2. Technique-Based Taxonomy. Like the taxonomy proposed in [Damiani et al. 2006;
Sherchan et al. 2013], we further attempt to categorize trust evaluation approaches
according to the techniques that are adopted for trust establishment.

— Traditional Security Techniques: Not surprisingly, trust is related to security, and
thus traditional security techniques, e.g., authentication, encryption, access control,
etc, can be adopted for trust establishment. For example, Vimercati et al. [2012]
proposed an approach to secure data access based on credential-based access con-
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trol and trust management. Hwang and Li [2010] propose a security-aware cloud
architecture, which uses policies to evaluate the credibility of cloud service.

— Heuristic-Based Techniques: The trust evaluation models that adopt heuristic-based
techniques aim to define a practical model which is easy to understand and con-
struct [Sherchan et al. 2013]. Therefore, they are suitable for systems with a large
number of users.
From the computational point of view, one of the heuristic-based approaches is to ag-
gregate and average quantitative feedback ratings. For example, the models in [X-
iong and Liu 2004; Malik and Bouguettaya 2009; Wang et al. 2012] calculate the
summation or weighted average of ratings. In addition, the works in [Damiani et al.
2006; Wang et al. 2009] propose new aggregation methods taking advantage of fuzzy
models where membership functions are used to determine the trustworthiness of
targets.

— Statistical and Machine Learning-Based Techniques: The statistical and machine
learning-based approaches focus on proposing a reasonable mathematical model for
managing or inferring trust information.
Typically, Bayesian systems [Mui 2003; Jøsang and Ismail 2002] and subjective be-
lief model [Jøsang 2001; Wang and Singh 2007] are two major examples based on s-
tatistical theory. On the other hand, machine learning techniques, such as Artificial
Neutral Networks (ANNs) [Ham et al. 2009] and Hidden Markov Models (HMM-
s) [ElSalamouny et al. 2010], are adopted for trust evaluation. In [Wang et al. 2013],
conditional probability model is used to infer the trust values between participants
within online social networks.

— Information Theory-Based Techniques: In online trading, there is a gap between the
committed information, such as product quality, and buyers’ actual observations.
From the point of view of information theory, Sierra and Debenham [2007] proposed
a set of formulas to define commitment and enactment (observation) as well as the
concepts like reliability and reputation. Similarly, in social networks, Adali et al.
[2010] use entropy to measure “balance in the conversation” between two users, and
they define their model as behavior-based trust model.

2.2. Context-Aware Trust Evaluation
2.2.1. The Granularity of Trust Evaluation. As mentioned before, most of trust evaluation

approaches lack consideration of context information. Instead, they often compute one
value to reflect a general or global trust status of a target [Xiong and Liu 2003; Kamvar
et al. 2003; Wang and Varadharajan 2005a; Vu et al. 2005; Wang and Varadharajan
2005b; Wang et al. 2009].

In the literature, some studies differentiate trust evaluation models by granular-
ities, and categorize them into single-context models and multi-context models [Mui
2003; Sabater and Sierra 2005]. More specifically, the single-context models refer to
models that compute a single trust or reputation value, without taking into account
the context information. This is the coarse-granularity trust evaluation. By contrast,
the multi-context models refer to models that have the mechanism to deal with sever-
al contexts at a time, while comprising different trust or reputation values associated
with them. This is the fine-granularity trust evaluation. Compared with single-context
models, multi-context trust evaluation models can provide comprehensive and detailed
trust information of a target, and so its results are more accurate. But multi-context
trust evaluation is much more complex, particularly when considering the combina-
tions of context dimensions. Thus, very limited work has been reported in the litera-
ture.
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However, one may argue that it is necessary to introduce context information for
trust evaluation with high computational complexity. Due to the diversification of
a member’s performance within certain application environment, the single-context
model has its limitations. For example, in e-commerce, as depicted by the motivation
at the beginning of this paper (see Section 1.1), value imbalance is a typical prob-
lem resulting from single-context trust evaluation. Likewise, Liu et al. [2012] identify
an “unexpected” phenomenon of reputable sellers in e-commerce called imprudence,
which refers to the situation where they behave inappropriately (possibly out of com-
placence to deliver poor products). Therefore, all of these evidences suggest that trust
evaluation with fine granularity (multi-context trust evaluation) is in great demand.

2.2.2. Trust Evaluation with Contextual Information. In the literature, there are some exist-
ing studies considering the relationship between trust evaluation and context infor-
mation. In this subsection, we review and categorize them in following three aspects.

— Multi-faceted Trust Evaluation: Griffiths [2005] proposes a Multi-Dimensional Trust
(MDT) model, which studies contextual trust from a multiple-faceted perspective.
The trustworthiness of a particular task can be modeled in several dimensions (e.g.,
timeliness, quality and cost), letting a user specify the weight of each dimension
for trust evaluation based on the personal preference. Thus, given the same seller,
the trust results computed for different buyers may vary. Similarly, in REGRET
[Sabater and Sierra 2001] and RATEWeb systems [Malik and Bouguettaya 2009], a
multi-dimensional structure is adopted when evaluating a seller’s reputation.
However, these models still focus on how to compute a single general or global trust
value. From the point of view of granularity, MDT belongs to the single-context mod-
el, and it overlooks that the transaction context (e.g., product category and transac-
tion amount) may change in historical transactions. Therefore, they still can hardly
predict the likelihood of a successful forthcoming transaction.

— Similarity-Based Context-Aware Trust Evaluation: The context similarity calcula-
tion is regarded as an important means to deal with the contextual trust evaluation
problem. Uddin et al. [2008] propose a CAT (Context-Aware Trust) model to compare
the similarity of contexts by using key values that can describe a specific context at
least partially. Caballero et al. [2007] defined a formula using task key values to
calculate the similarity between two tasks in order to evaluate the trust level of d-
ifferent tasks. Rehak et al. [2006] propose a trust model to resolve contextual trust,
using clustering to identify the full context space as several reference contexts based
on the context attributes. The trust evaluation of a new context is the weighted sum
of the trust values in all reference contexts. Toivonen et al. [2006] use a more com-
plex ontology structure to calculate similarity.
Similarity-based context-aware trust evaluation models still do not belong to multi-
context trust evaluation. As pointed out by Mui [2003], the context similarity is used
to infer the trustworthiness of a target in a certain context where there are no or
not enough ratings from the same context. Therefore, these trust models still focus
on calculating a single trust value under corresponding specific context. However,
they are different from our ReputationPro model proposed in this article, which aim-
s to promptly answer a buyer’s CTT queries on a seller’s trustworthiness in various
transaction contexts. Instead of providing only a single value, our approach com-
putes sets of trust values to outline the reputation profile of a seller.

— Statistical and Machine Learning-Based Context-Aware Trust Evaluation: Rettinger
et al. [2011] propose a context-sensitive trust evaluation model (IHRTM) taking ad-
vantage of statistical relational learning. In the IHRTM model, contextual informa-
tion is discussed in the Seller × Item space. According to the learning results, all 47
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selected sellers in their experiments are assigned to 4 groups based on the context
attributes in the Seller space, such as feedback score and positive feedback rate,
and the 630 items sold by these sellers are assigned to 40 clusters based on the con-
text attributes in the Item space, such as product category and product condition
(new or used). Finally, a 4 × 40 matrix is formed to indicate the trustworthiness
of 4 seller clusters under 40 item clusters. Note that the IHRTM model belongs to
multi-context trust evaluation. In order to improve the accuracy of predicting the
trustworthiness of a forthcoming transaction, Liu and Datta [2012] extract useful
features from transaction context, such as product category and price, as observa-
tions to construct a Hidden Markov Model (HMM) for modeling the dynamic trust of
a seller. In addition, to reduce computational complexity, information theories and
Multiple Discriminant Analysis (MDA) are adopted for feature space reduction.
A major disadvantage of all the statistical and machine learning-based trust evalua-
tion approaches is their high computational complexity, which makes them difficult
to be applied to the environments with millions of users [Sherchan et al. 2013].
For example, when having a large number of sellers, there will be many clusters of
sellers for IHRTM, leading to a high complexity in learning iterations. For dynam-
ic environments of e-commerce applications where new transactions happen every
day, the cost of re-learning, which takes new transactions into account, is higher.
Moreover, from the transaction context perspective, IHRTM does not support the
analysis of reputation on the product categories along a path in the product catego-
ry hierarchy (e.g., “Apple iPhone” and “Smartphone” in sequence). This analysis is
particularly necessary when a new product, or a product in a new category, is just
released. Also, it does not support the trust evaluation of a seller in the transac-
tions in a given price range. This need comes from a buyer when s/he is very con-
cerned about the risk of monetary loss in a forthcoming transaction [Xiong and Liu
2004; Swaminathan et al. 2010]. By contrast, the ReputationPro model can outline a
seller’s reputation profile and indicate his/her dynamic trustworthiness in different
product, product categories, price ranges, and time periods.

In Fig. 1, we draw a table to compare ReputationPro trust evaluation model with
some existing trust evaluation approaches so as to highlight its characteristics and
the contributions of our work from the perspective of trust evaluation.

2.3. OLAP (On-Line Analytical Processing) and Data warehouses
In the broader research literature, our targeted problem of CTT computation is some-
what similar to sales analysis from multiple perspectives in data warehouses and busi-
ness intelligence. Typically, the sales data warehouse for a company contains three
dimensions Product category, Location and Time. The OLAP operations refer to the
queries on the aggregation of sales over each dimension or their combinations, such as
the sum of sales per product category or the sum of sales per product category and per
month combination. Gray et al. [1996] point out that there are O(2n) possible aggrega-
tions for a data warehouse with n dimensions composing a “data cube”.

In order to accelerate query processing, some results can be pre-computed and s-
tored as materialized views [Harinarayan et al. 1996; Lin and Kuo 2004]. However,
these approaches only benefit the queries on dimensions with predefined hierarchies.
In particular, the Time dimension in sales analysis refers to static calender month-
s, e.g., January, February, etc. By contrast, in CTT computation, while the product
category hierarchy is predefined and static, Price and Transaction Time are dynamic
dimensions (see Section 3). Specifically, the dynamicity of the Price dimension refers to
the reality that the price of a product may change over time. Even on a given day, mul-
tiple transactions selling the same product may have different prices. In addition, the
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Application Fields Technology Adoption Contextual Information 

P2P: Peer to Peer 

networks 

 

MAS/SN: Multi-Agent 

Systems and Social 

Networks 

 

AHN: Ad-hoc Networks 

 

EC: E-Commerce 

 

WS: Web Services 

 

CC: Cloud Computing 

TST: Traditional 

Security Techniques 

 

HET: Heuristic-Based 

Techniques 

 

ST/ML: Statistical and 

Machine Learning-

based Techniques 

 

IT: Information Theory-

Based Techniques 

SC: Single-Context model (without 

taking into account context Information 

or multi-faceted trust evaluation) 

 

CSI: Context information or context 

Similarity as Impact factor (no in-depth 

discussions on the impact of context and 

still not a multi-context trust evaluation) 

 

MC: Multi-Context model (computing 

several contexts at a time and 

comprising different trust or reputation 

values associated with them) 

 

Approaches Application 

Fields 

Technology 

Adoption 

Contextual 

Information 

Marsh [1994] MAS/SN HET CSI 

EigenTrust- 

Kamvar et al. [2003] 
P2P HET SC 

Jøsang [2001] MAS/SN ST/ML SC 

PeerTrust- 

Xiong and Liu [2004] 
P2P, EC HET CSI 

Vimercati et al. [2012] WS TST SC 

RATEWeb- 

Malik and Bouguettaya [2009] 

WS, EC HET SC 

Golbeck and Hendler [2006] MAS/SN HET SC 

Wang et al. [2013] MAS/SN ST/ML CSI 

Liu and Issarny [2004] AHN HET CSI 

Hwang and Li [2010] CC TST SC 

TRSIM- 

Caballero et al. [2007] 

P2P HET CSI 

MDT- 

Griffiths [2005] 

MAS/SN HET SC 

Liu and Datta et al. [2012] EC ST/ML CSI 

REGRET- 

Sabater and Sierra [2001] 

MAS/SN HET SC 

Sierra and  Debenham [2007] MAS/SN, EC IT CSI 

Wang and Singh [2007] MAS/SN ST/ML SC 

Wang et al. [2009] WS, EC HET SC 

IHRTM- 

Rettinger et al. [2011] 

EC ST/ML MC 

RepuationPro EC HET MC 

 

Fig. 1. The comparison of existing trust evaluation approaches

dynamicity of the Transaction Time dimension refers to the new transactions added to
the database over time, modifying the set of “most recent transactions”.

Some existing works improve the performance of queries in data based on specifi-
cally designed column-oriented database systems [Abadi et al. 2008]. Different from
these works, our approach in this article is based on popular relational database man-
agement systems that are being widely used by e-commerce websites, so that the de-
signed models can be directly applied.
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Fig. 3. An aR-tree

2.4. The Two-Dimensional (2D) RA Query
In the literature, the RA (Range Aggregate) problem in two-dimensional spatial da-
ta warehouses is relatively close to our targeted CTT computation problem (see Sec-
tion 5); therefore we review the approaches to the RA problem separately.

Fig. 2 shows the traditional RA query [Papadias et al. 2001] in a two-dimensional
space which is in regards to computing the total number of points falling into a query
region q surrounded by [x1, x2] and [y1, y2], e.g., answering a query in traffic supervision
systems, such as: “What is the total number of cars inside a certain district?”. Usually,
a query region can be any area within the two-dimensional space. To accelerate query
processing, most existing works still pre-compute some results, but they appropriately
store the results in the specialized index [Papadias et al. 2002; Tao et al. 2004; Tao and
Papadias 2005; Zhang et al. 2008]. Since the memory-based approaches are inappro-
priate for large-scale data processing, in this subsection, we will restrict our review to
some well-known disk-based approaches.

2.4.1. The aR-tree. The aR-tree [Jurgens and Lenz 1998; Papadias et al. 2001] main-
tains the x-y coordinates for each minimum bounding rectangle (MBR) (e.g., R1, R2, R3,
R4 in Fig. 3(a) are all MBRs). In the meantime, each MBR records the total number as
an aggregate of the objects that fall into an MBR. To compute the number of objects
in a query region q, in Fig. 3(a), the MBR R4 within q will not be accessed. Rather,
R4’s pre-computed aggregate (i.e., 3) is directly used. But R3 needs to be visited, as it
partially overlaps with q. The total number of points in q equals their sum 3 + 1 = 4.
A serious problem of the aR-tree is that its performance significantly degrades when
answering a large query region, since in such a case there are more MBRs overlap with
the query region (see Fig. 3(b)).

2.4.2. The aP-tree. Tao et al. [2004] propose the aP-tree to improve the aR-tree, based
on the following transformation on a query region q. They first convert each spatial
point to an interval (i.e., a horizontal line) (see Fig. 4(b)). When q is surrounded by
[x1, x2] and [y1, y2] is transformed to two borders (i.e., two vertical lines): x1 : [y1, y2]
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Fig. 4. An RA query transformed to two Vertical Range Aggregate (VRA) queries
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Fig. 5. An RA query transformed to four dominance-sum queries

and x2 : [y1, y2], an RA query is converted to retrieving the number of intervals that
intersects the two borders. For instance, in Fig. 4, the number of intervals intersecting
the left border x1 : [y1, y2] is 3 while the number of intervals intersecting the right bor-
der x2 : [y1, y2] is 5. The total number of points in q equals their difference 5−3 = 2. Tao
et al. [2004] define the number of intervals intersecting a border as a Vertical Range
Aggregate (VRA). In order to compute each VRA value, the aP-tree is then proposed
that contains an additional field agg in each entry, extending the original multiversion
B-tree (MVBT) [Becker et al. 1996].

In order to answer an RA query, the aP-tree indexes all the objects [Zhang et al.
2008; Zhang et al. 2014]. As shown in Fig. 2, in the traditional RA problem, one point
in a two-dimensional space represents only one object (e.g., a car). However, in our tar-
geted CTT computation problem, one point may represent multiple such objects. For
example, it is quite common that a seller has multiple transactions with the same price
selling the same product on a day. Here the x-axis represents days, and the transac-
tions occurred on the same day have the same x-coordinate. In this case, the proposed
new index scheme should take this characteristic into account. Unlike the aP-tree,
the new index does not need to index all the transactions; rather, multiple repeated
transactions should be aggregated, and then the new index only needs to store the
aggregation results.

2.4.3. The MVSB-tree and The BA-tree. Zhang et al. [2008] address the RA problem in
a two-dimensional space by converting an RA query to four dominance-sum queries.
Given two two-dimensional points x = (x1, x2) and y = (y1, y2), x dominates y if x1 ≥ y1
and x2 ≥ y2. The corresponding dominance-sum of the point P is the aggregation of all
the points that are dominated by P . Therefore, in Fig. 5(a), the total number of points
in the query region P1P2P3P4 equals 7−5−2+2 = 2, namely, the dominance-sum of the
point P2 (see Fig. 5(b)) subtracts the dominance-sum of the point P1 (see Fig. 5(c)) and
the dominance-sum of the point P4 (see Fig. 5(d)). As the dominance-sum of the point
P3 (see Fig. 5(e)) has been subtracted twice, their sum must be added again. In order
to compute each dominance-sum query, Zhang et al. further propose the MVSB-tree
[2001; 2008] and the BA-tree [2002], respectively.
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Fig. 6. The structure of BA-tree

The MVSB-tree results from augmenting the SB-tree [Yang and Widom 2003]. It
logically divides the two-dimensional space into multiple nonintersecting rectangles.
When inserting an object with the coordinate (xi, yi), the aggregation operations per-
form in all the rectangles within the area [xi,maxx)× [yi,maxy). Here maxx and maxy

collectively form the upper-right corner of the complete space. Although the MVSB-
tree considers a point may represent multiple such objects, it overlooks the inserted
objects themselves. If it is applied to CTT computation problem, each specific product
cannot be indexed. As a result, computing the trustworthiness of a seller in selling a
product cannot be fulfilled. Furthermore, the MVSB-tree is particularly designed for
solving the dominance-sum problem. Thus, four dominance-sum queries are needed to
answer an RA query (see Fig. 5). By contrast, our proposed new index scheme answers
only two VRA queries for the same purpose, and thus improves efficiency (see Fig. 4).

The BA-tree is another index scheme for answering RA queries that extends the
K-D-B-tree [Robinson 1981]. Fig. 6 depicts a general structure of BA-tree, as in the
K-D-B-tree, each node corresponds to a rectangular space, such as the area A. The
node at a higher level corresponds to a larger rectangular space formed by several
adjacent areas, such as the area formed by A, B and C. The root node corresponds to
the complete space. The augmentation of the BA-tree over the K-D-B-tree is that each
node (e.g., the area D) also stores three aspects of information: the subtotal of points to
the lower left of D (see Fig. 6(a)), the x-coordinates of the points below D (see Fig. 6(b))
and the y-coordinates of the points to the left of D (see Fig. 6(c)). The BA-tree achieves
linear performance when answering each dominance-sum query. However, as pointed
out by Zhang et al. [2008], it does not fit the transaction-time model where the records
of transactions are inserted in chronological order.

2.4.4. The CRB-tree. Apart from the above reviewed approaches, the CRB-tree has
been proposed for solving RA problem [Govindarajan et al. 2003; Agarwala et al. 2012].
The general structure of a CRB-tree contains two parts: 1) one normal B+-tree [Bayer
and McCreight 1972] constructed on the y-coordinates of points in a two-dimensional
space; and 2) another B+-tree constructed on the x-coordinates of points, but with each
internal node storing weights as a secondary structure. The CRB-tree has good per-
formance for answering RA queries and can further reduce the space consumption.
However, as pointed out in [Tao et al. 2004; Zhang et al. 2008], it is based on a strin-
gent assumption that it runs on top of bit-wise machines. Specifically, an integer with
a value v is represented by exactly log2 v bits for a bit-wise machine so that multiple
integers may be compressed into a single word. By contrast, a typical word-wise ma-
chine model uses four bytes to store a single integer. Therefore, the CRB-tree “is mainly
of theoretical interest” [Tao et al. 2004; Zhang et al. 2008], and does not apply to the
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Table I. The summary of limitations

Approaches Limitations
aR-tree Performance degrades with a larger query region
aP-tree Cannot essentially aggregate the same objects

Overlooks the inserted objects themselves
MVSB-tree Based on four dominance-sum queries

BA-tree Does not fit the transaction-time model
CRB-tree Does not fit the common word-wise machines

aggk-1 agg1 

now begin 

seg1 seg2 ಹಹ segk agg2 

t1div t2div tk-1div 

 

Fig. 7. A general structure of HTAFS model

prevalent commercial word-wise computers. By contrast, our proposed approaches in
this article are all based on common word-wise machine models and thus can directly
apply to commercial web applications like eBay on tops of commercial servers.

Table I summarises the limitations of existing approaches to two-dimensional (2D)
Range Aggregate (RA) after being extended to solve CTT computation problem.

2.5. Hierarchical Temporal Aggregation with Fixed Storage Space (HTAFS)
Broadly speaking, the two-dimensional RA problem includes range-temporal aggrega-
tion, i.e., point aggregate in a two-dimensional space with one as the time dimension.
In addition, a more general problem over RA is spatio-temporal aggregation, i.e., three
dimensions with one as the time dimension. In the literature, some index schemes have
been proposed to solve these aggregation problems [Zhang et al. 2001; Zhang et al.
2002; Tao and Papadias 2005]. However, all these approaches do not have restriction
on storage space to store aggregation index. As a result, with continuous growth in the
Time dimension (e.g., one year or two years) and significant increase of historical data,
the aggregation index does not scale in terms of storage space.

In contrast to the above existing approaches, Zhang et al. [2003] propose a Hierar-
chical Temporal Aggregation model with fixed storage space (denoted as HTAFS) to
control storage space of aggregation index over data streams. Fig. 7 depicts the gener-
al structure of the HTAFS model to deal with point aggregation in a one-dimensional
space. A k-level time hierarchy, where gran1 is at the coarsest time granularity (e.g.,
by days) and grank is at the finest granularity (e.g., by seconds). Suppose that the H-
TAFS model divides the time space [begin, now) into k segments. Each segment segi
(i = 1, 2, ..., k) maintains the corresponding aggregations with the time granularity
grani. The term begin denotes the starting time and now denotes the increasing cur-
rent time. New objects are inserted with the point “now” moving to the right in the
x-axis. The constraint for the HTAFS model is that the size of available storage space
is fixed. When the size of the total storage becomes more than a threshold S, older
information is aggregated at a coarser time granularity.

In [Zhang and Wang 2013], we have applied the HTAFS model to CTT computation
and proposed a model named CTTFS . Compared with original HTAFS model, the ad-
ditional characteristics in CTT computation are identified. Specifically, as a seller has
imbalanced transaction volumes in different product categories, a dynamic storage s-
pace allocation strategy is first proposed in order to guarantee a fixed storage space
allocated to a seller for CTT computation. However, although the CTTFS model can
save the storage space to some extent, as analyzed in Section 7, the strategy of allo-
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cating the fixed storage space is unreasonable for CTT computation. Thus, unlike the
CTTFS model, a new solution CMK-treeRS is proposed to reduce storage space con-
sumption in this article which aggregates ratings with different time granularities for
different time periods.

2.6. Existing Approaches to Contextual Transaction Trust Computation
In our previous work, we have proposed a preliminary trust vector which takes trans-
action context factors into account in the computation of contextual transaction trust
values, and have introduced the first set of technical solutions to compute CTT values
[Zhang et al. 2012a]. In [Zhang et al. 2012b], more details of our proposed trust vector
based framework for CTT computation are presented. In particular, we have conducted
empirical studies to compare the trust vector with some typical single-value trust val-
uation models [Sabater and Sierra 2001; Wang and Varadharajan 2005b] to illustrate
its advantages. After that, we have further extended our work [Zhang et al. 2012a]
by introducing a new product category hierarchy for supporting finer-grained analysis
on the transaction trust of a seller as well as aggregating repeated transactions and
have proposed three new disk-based index schemes eaR-tree, eaP-tree and eH-tree for
CTT computation [Zhang et al. 2014]. All these approaches can meet the requirements
of answering a buyer’s CTT queries on the dynamic trustworthiness of a seller in d-
ifferent product categories, price ranges and time periods. However, they have poor
performance in some cases. Specifically, as the eaR-tree extends the aR-tree, the query
cost for eaR-tree depends on the size of the CTT query region formed by the price range
and transaction time range: the larger the query region, the worse the performance in
answering a CTT query. For both the eaP-tree and the eH-tree that extend the aP-tree,
they index all the transactions and cannot essentially aggregate repeated transactions
that occurred on a day, leading to inferior performance.

In the new disk-based index scheme CMK-tree, the above problems will be solved.
Like the BA-tree [Zhang et al. 2002], the CMK-tree extends the two-dimensional K-D-B-
tree or 2-D-B-tree, however, it adopts a different extension strategy that is particularly
designed to efficiently support CTT computation. Moreover, all existing approaches
aggregate the transaction data and ratings at the granularity of days. As mentioned
in Section 2.5, they lead to the problem of large space consumption when dealing with
a large number of sellers. Therefore, we further propose the CMK-treeRS to reduce the
storage space allocated to each seller for storing the aggregation index.

3. TRANSACTION CONTEXT
This section first presents transaction context dimensions for evaluating the trustwor-
thiness of sellers. Then, we further explain the transaction context imbalance problem
existing in e-commerce environments.

3.1. Transaction Context Dimensions
In our previous work [Zhang et al. 2012b], we have identified three important context
dimensions with influence on the trustworthiness of a forthcoming transaction. They
are Product Category, Transaction Amount and Transaction Time. The context of a
transaction can be represented as different layers in the product category hierarchy
and different ranges in each of the Price dimension and Transaction Time dimension.
• Product Category (a static but hierarchical dimension): The category of

transaction items has a hierarchical structure. There are some Products and Services
Categorization Standards (PSCS) that aim at constructing the product category hier-

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.



ReputationPro: The Efficient Approaches to CTT Computation in E-Commerce Environments A:17

. . . 

. . . 

 

 

 

 

 

 

 

 

 

                                  

. . . 

. . . 

19060302 

Smartphone 

19010202 

Notebook 

. . . 

190810091  

Brand 1                      

(e.g., Apple) 

. . . 

. . . 

. . . 

. . . 

19081009 

MP3 player 

 L= 6 

. . . 
             Segment 16                      

Food, Beverage, Tobacco 

 190810   

Audio device 

 1901 Computer System 

. . . 

1910010101023    

Brand 3             

(e.g. Olympus) 

1910010101022

Brand 2       

(e.g., Nikon) 

1910010101021 

Brand 1        

(e.g., Canon) 

191001010103

Mirrorless 

Camera  

1910010102 

Film      

camera 

1910010101

Digital 

camera  

191001010101

Compact 

Camera  

191001010102 

DSLR Camera  

. . . 

 191001 Photo, 

video camera 

19100102

Video 

camera  

19100101 

Photo 

camera  

19081006

CD player 

. . . 
            Segment 19             

Information, Communication   

and Media technology 

“Root” (All product categories) 

. . . 

1908 Multimedia-, 

Entertainment 

technology  
. . . 

1910 Photo, 

video technology 

190812   

Video device 

. . . 

. . . 

 L= 1 

 L= 2 

 L= 3 

 L= 4 

 L= 5 

 L= 7 

1906 Telecommunications 

device 

 190603   

Cellular phone 

network device  

190603021 

Brand 1        

(e.g., Apple) 

190603022  

Brand 2                      

(e.g., Samsung) 

 190102   

Mobile PC 

19010201 

Tablet PC 

190102021 

Brand 1        

(e.g., Dell) 

C-value 

Fig. 8. Part of product category hierarchy for the segment “Information, communication and media”

archy, such as UNSPSC4 and eCl@ss5, each of which groups similar products and pro-
vide an industry-neutral hierarchical structure of product categories with up to four
layers. eBay has a different product category6 schema with simply two layers, and it
groups products by considering some factors such as marketing and common use.

We establish the product category hierarchy for the analysis of dynamic reputation
of a seller. We extends eCl@ss due to its reasonable classification in practice, i.e., prod-
ucts in eCl@ss are more functionally grouped, and they are subdivided for specific
usage. For example, in eCl@ss, “Digital Camera” can be further classified as “DSLR
(Digital single-lens reflex cameras)”, “Compact Digital Camera” and “Mirrorless Digi-
tal Camera”. But it is not subdivided in both UNSPSC and eBay. In addition, we sort
out the logical relations between product categories in eCl@ss. Then, we add the at-
tribute “Brand” to the product category hierarchy to support finer-grained analyses on
transaction trust with “drill down” and “roll up” operations in the hierarchy. Under
each brand, there are corresponding products that belong to this brand.

Fig. 8 presents a small part of our extended product category hierarchy. For instance,
if the product is “Apple iPod nano 16GB (mc696ll/a)”, then its ancestors in the prod-
uct category hierarchy are “Apple MP3 player (iPod)” and “MP3 player” in sequence.
If the product is “Apple iPhone5 16GB”, then its ancestors in the product category hi-
erarchy are “Apple iPhone” and “Smartphone” in sequence. The category hierarchy for
the product “Canon EOS 6D SLR Digital Camera” is complex that has sever layers,
and its ancestors are “Canon DSLR camera”, “DSLR camera” and “Digital camera” in
sequence. In our extend hierarchy, each product category has a unique id termed as
C-value (see Fig. 8), with which a layer, the layer’s parent and children can be located.
• Transaction Amount and Transaction Time (two dynamic linear dimen-

sions): Transaction amount refers to the sum of the prices of all products in a trans-
action. A transaction of about $10 is obviously different from one involving $10K. The

4http://www.unspsc.org/
5http://www.eclass.de/
6http://pages.ebay.com/sellerinformation/ebaycatalog/categories.html
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larger the transaction amount, the more likely a fraudulent action may occur since the
potential benefit of the fraud is greater [Ba and Pavlou 2002]. For the sake of simplicity,
like eBay, each item in a transaction is considered separately in our work. A transaction
with multiple transaction items are taken as several transactions separately with one
item each. Hence, the transaction amount equals the price of the product in a transac-
tion. In this paper, we use “transaction amount” and “price” interchangeably. Transac-
tion time is the time when a transaction happens. Trust evaluation is time-sensitive,
because the transaction quality may change over time [Spitz and Tuchelmann 2009].

The Price dimension is dynamic as the price of a product may vary from time to time.
Owing to product condition (new and used) and product value changes over time, the
prices of transactions selling the same product may be different. Also, a buyer’s queries
on a price range can vary with the same product, or vary from product to product. For
instance, the price of a product that a buyer wants to buy from a seller is around $500,
and the buyer may be concerned about the trustworthiness of this seller on selling
products at a price range of “$400-$600” or “$350-$650”. If the price of another product
is $1500, the corresponding price range in a query may be “$1000-$2000”, taking $1500
as the medium value.

The Transaction Time dimension has a specific characteristic in trust computation.
Any CTT queries on the transaction time range starts from a previous point and ends
at the point “now”, i.e., a query regarding the reputation in the recent transaction-
s, such as “the latest 1 month”, “the latest 3 months” and “the latest 12 months”. In
addition, Transaction Time dimension is also dynamic because the time point “now”
changes everyday, and new transactions added to the database over time change the
set of “most recent transactions”.

3.2. Transaction Context Imbalance
Malicious sellers and fraudulent transactions could take advantage of the results de-
livered by transaction trust evaluation without considering any transaction context.
Consequently, it may lead to some transaction context imbalance problems.
• Transaction Amount Imbalance: There are two different cases in the transac-

tion amount imbalance.

(a) A seller accumulates a high level of trust by offering cheap and attractive products,
and then s/he may deceive buyers with expensive products. In the literature, this
issue is also termed as value imbalance [Dellarocas 2002; Kerr and Cohen 2006;
Jøsang and Golbeck 2009].

(b) Buyers usually believe that if a seller has successfully finished many transactions
selling expensive products, s/he may not cheat in forthcoming transactions selling
cheaper products. In fact, such a “reputable” seller may not be as prudent as in
expensive transactions to serve each buyer well due to limited profit.

• Product Category Imbalance: A seller has accumulated a high trust level by
selling certain products, and then s/he can utilise this high trust value to sell products
in different categories for more profit. According to the suggestion from Alibaba (see
Section 1.1), such a seller should have different trust levels with respect to different
products or different product categories [Xiong and Liu 2004]. For instance, a seller,
who sold watches before and now starts to sell a certain type of notebook computers,
should not have the same level of trust as before due to the lack of sufficient experience
and reputation in selling the new products with a completely different nature.
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4. A TRUST VECTOR BASED FRAMEWORK FOR OUTLINING REPUTATION PROFILE
In this section, we first define the data that are needed for CTT computation. We then
present a trust vector which consists of three CTT values and introduce why they can
be used to outline the reputation profile of a seller.

4.1. Trust Data Representation
The following data elements are needed for CTT computation.

TR(t) =< S;B; p;C-hrchy; ta; t; r > (1)

• TR(t) is a transaction between a seller S and a buyer B happening at time t;
• p is the product (i.e., transaction item) traded in the transaction TR(t);
• C-hrchy represents the path in product category hierarchy to which p belongs;
• ta is the transaction amount in transaction TR(t) for p;
• r is a rating (an integer in a range, e.g., {−1, 0, 1} or {1, 2, 3, 4, 5}) that the buyer
B gives to the seller S for TR(t) to reflect a seller’s performance during the whole
transaction;
• A set of n past transactions can be denoted as Trans = {TR(t1), TR(t2), ..., TR(tn)}.

4.2. CTT metrics
ReputationPro can be directly applied in large-scale e-commerce applications. Thus,
like trust evaluation models [Sabater and Sierra 2001; Kamvar et al. 2003; Xiong and
Liu 2003; Xiong and Liu 2004; Wang and Varadharajan 2005a; Wang and Li 2011;
Malik and Bouguettaya 2009], ReputationPro adopts heuristic-based technique to ag-
gregate and average trust ratings as the trustworthiness or reputation values of a
seller. Namely, we calculate each CTT value as the average of the ratings in a specific
transaction context. Following this idea, two aggregates are pre-computed and stored
separately. They are count r, the number of ratings of the corresponding transactions,
and sum r, the sum of ratings in a specific layer of product category hierarchy with-
in a specific transaction price range and a specific time period. With a pair of count r
and sum r, accordingly, the trust value can be computed as T = sum r

count r . In addition,
based on the parameters of a CTT query, a set of {count ri, sum ri} can be returned.

Accordingly, the trust value is T =

∑
sum ri∑
count ri

.

4.3. A Trust Vector and ReputationPro
Our proposed trust vector [Zhang et al. 2012b] consists of three major CTT values.

(a) Transaction Item Specific Trust (TIST): TIST is the average of all the ratings
{ri} in the past transactions Trans for trading the same transaction item p as in a
forthcoming transaction.

(b) Product Category based Trust (PCT): PCT is the average of all the ratings
{ri} of the past transactions Trans for selling the products in a product category (e.g.,
“Canon DSLR cameras” or “DSLR cameras”) of p (e.g., “Canon 6D DSLR camera”)
in the product category hierarchy (see Fig. 8). When computing PCT, a price range
covering the price ta and a time range can be specified as the parameters. The variables
p and ta come from the context of the forthcoming transaction.

(c) Similar Transaction Amount based Trust (STAT): STAT is the trust value of
a seller in a specific price range covering price ta and a time range. STAT is important
for analyzing the trustworthiness of a seller in different price ranges.

In the above trust vector, all three CTT values are associated with both past trans-
actions and the forthcoming transaction. With the same seller but a different forth-
coming transaction, the computed trust values may be different. Even with the same
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forthcoming transaction, the trust values can vary. This is because a buyer can specify
and change the layer in the product category hierarchy, the price range and the time
period for computing the last two CTT values: PCT and STAT. With the combinations
of the parameters specified in all three context dimensions, different sets of CTT values
can be computed, all of which can outline the reputation profile of the seller indicating
the trustworthiness in various types of transactions. Thus, our ReputationPro model
can greatly help detect the possibility of context imbalance problem in a forthcoming
transaction.

5. EXTENDING TWO-DIMENSIONAL RANGE AGGREGATE FOR CTT COMPUTATION
In this section, we first discuss the relationship between the two-dimensional RA prob-
lem and our targeted CTT computation problem. In Section 3, we have introduced that
transaction context includes a static and hierarchical dimension, i.e., Product Catego-
ry, and two dynamic linear dimensions, i.e., Transaction Amount (Price) and Trans-
action Time. When computing PCT and STAT values, a CTT query covers both the
Transaction Amount dimension and the Transaction Time dimension. Similar to the
case depicted in Fig. 2 in Section 2.4, a CTT query can be first regarded as an RA prob-
lem in a two-dimensional space, where the x-axis represents the Transaction Time
dimension in days and the y-axis represents the Transaction Amount dimension. Con-
sequently, a CTT query on a seller in a time range [t1, t2] and a transaction amount
range [ta1, ta2] can be converted by computing the number of the ratings count r and
the sum of the ratings sum r of the transactions that fall into the query range formed
by [t1, t2] and [ta1, ta2].

Here, for further analysis, we need to point out that each point in a two-dimensional
space represents one transaction or a set of transactions. There are three cases that
should be differentiated (see Fig. 2).

Case 1: Given one point at (ti, tai), it may represent only one transaction that oc-
curred on a day ti with the transaction amount tai.
Case 2: As mentioned in Section 1.3, one point at (ti, tai) may represent a set of
repeated transactions that occurred on a day ti selling the same product with the
same price tai. In such a case, we need data structures to aggregate these repeated
transactions.
Case 3: Given one point at (ti, tai), it may represent a set of transactions that oc-
curred on a given day ti selling different products with the same price tai. In such a
case, they should be regarded as different transactions and aggregated separately.

Note that if the prices of transactions selling the same product are different, we
regard them as different transactions and aggregate them separately.

We discuss next how to extend the two-dimensional RA problem to CTT computation
after taking into account the Product Category as the third dimension:

Step 1: Each transaction has a numeric string C-hrchy to represent the path in the
product category hierarchy to which the product traded in the transaction belongs;

Following the eCl@ss introduced in Section 3, a two-digit number is added to each
layer of the product category hierarchy. Thus a unique C-value is assigned to each
product category. For example, in Fig. 8, the node “MP3 player” at layer 4 has the C-
value of “19081009” representing the path from the “product category root” to it. As the
products traded in the transactions are at the bottom of product category hierarchy,
the value of C-hrchy equals the C-value in the corresponding brand-based product
category;

Step 2: Each product category in the product category hierarchy maintains the ag-
gregates count r and sum r that are obtained from the past transactions selling the
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products in this product category as well as the corresponding transaction amount
range and transaction time range;

Step 3: Each product category is an intermediate node in the product category hi-
erarchy. In the meantime, for each brand-based product category (e.g., “Canon SLR
Digital Camera”), it is the root of a subtree that is external to the hierarchy.

This subtree can be regarded as a tree for solving the RA problem in a two-
dimensional space, which records the pairs of count r and sum r in the Transaction
Amount dimension and the Transaction Time dimension. Accordingly, as we take the
points depicted in Fig. 2 as transactions, all these transactions should belong to the
same brand-based product category. Also, the subtree can be of multiple layers, de-
pending on the number of transactions and the distributions in transaction amount
and transaction time in the corresponding brand-based product category.

6. THE CMK-TREE
This section presents the CMK-tree — a disk-based index structure that supports effi-
cient computation for a buyer’s CTT queries. While Section 6.1 describes the structure
of the CMK-tree, the process of CMK-tree construction is provided in Section 6.2. Sec-
tion 6.3 introduces the retrieval process in a CMK-tree to answer a typical CTT query.
Here a typical CTT query refers to computing the value of Product Category based
Trust (PCT) covering three transaction dimensions, namely, the average of all the rat-
ings in the past transactions selling the products at a specific layer in the product
category hierarchy, within a price range and a time period (see details in Section 4.3).
In fact, the process of computing Transaction Item Specific Trust (TIST) or Similar
Transaction Amount based Trust (STAT) is very similar to that of PCT. The only dif-
ference is that in the computation of TIST, there is a need to further search the actual
records in the database. In the computation of STAT, search needs to be performed
in all the categories of the products sold by the seller. Section 6.4 focuses on detailed
analysis on the structure of the CMK-tree and the performance of the CMK-tree algo-
rithm in answering buyers’ CTT queries. Finally, Section 6.5 discusses how to extend
our proposed CMK-tree for CTT computation.

6.1. The Structure of the CMK-tree
There are three types of nodes in the CMK-tree: R-node (Rn), I-node (In) and L-node
(Ln), each of which can have multiple records depending on the node capacity. General-
ly speaking, as shown in Fig. 9, one CMK-tree consists of a C-tree and multiple MK-trees
that are external to the C-tree. The C-tree consists of R-nodes, and an MK-tree consists
of I-nodes and L-nodes. Next, we will present the node structures in detail.

6.1.1. The C-tree (Product Category Tree). Following Step 2 in the extension process de-
scribed in Section 5, each record in an R-node Rni (see Fig. 10(a)) has the form

< C-value, [tamin, tamax], [tmin, tmax], count r, sum r, pointer >,
where the C-value denotes the unique id of the product category within the product
category hierarchy; [tamin, tamax] and [tmin, tmax] are the transaction amount range
and the transaction time range of all the transactions belonging to the current product
category; count r and sum r denote the aggregates over these transactions; pointer
points to its child, which is an R-node or an I-node. Therefore, an R-node contains
multiple product categories represented by corresponding records, and these product
categories are on the same layer within the product category hierarchy. All R-nodes
form an N-ary tree, and we term it as a C-tree (product Category-tree).

6.1.2. The MK-tree. In addition to a C-tree consisting of R-nodes, following Step 3 in
the extension process, each record in an R-node at the brand-based product category
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Fig. 11. A special case of 2-D-B-tree

layer (i.e., the bottom of the C-tree) points to a subtree that is external to the C-tree.
Specifically, the design of each such subtree is based on extending the original two-
dimensional K-D-B-tree or 2-D-B-tree [Robinson 1981] that is used for indexing spatial
data.
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Fig. 12. MK-tree – An extended multi-version “domain 0” two-dimensional K-D-B-tree

The 2-D-B-tree partitions a two-dimensional space into multiple nonintersecting
rectangles (see Fig. 11(a)). Each record in a node in the 2-D-B-tree corresponds to a
rectangular space. Unlike the general structure depicted in Fig. 11(a), a special case
“domain 0” K-D-B-tree has been proposed in [Robinson 1981]. In particular, for a gen-
eral K-D-B-tree, a rectangular space can be split along any dimension (e.g., x-axis or
y-axis). By contrast, for a “domain 0” K-D-B-tree, the space cannot be split along a spe-
cific dimension. For example, in Fig. 11(b), instead of dividing x-axis, the split can only
be operated along the y-axis.

In the CMK-tree, the idea of “domain 0” K-D-B-tree [Robinson 1981] is adopted to
generate each subtree to extend the C-tree. Since the x-axis (Transaction Time dimen-
sion) continuously moves to the right in our targeted problem, each subtree can be
considered as a multi-version structure that makes partial persistence7 [Zhang et al.
2008] a “domain 0” 2-D-B-tree. In order to further demonstrate the structure of a sub-
tree, we assume that each point in a two-dimensional space depicted in Fig. 12(a)
represents a transaction, and all the transactions belong to the same brand-based
product category. Correspondingly, in the subtree generated by these transactions (see
Fig. 12(a)), a record in the node X surrounds the rectangular a1a2a3a4 (R1). This is
the first version of “domain 0” 2-D-B-tree as illustrated in Fig. 11(b). Another record in
the node X surrounds the rectangular b1b2b3b4 (R2) which is the second version. The
record in the node Z at a higher level surrounds a larger rectangular space formed by
a1a2b3b4. Furthermore, like the transformation given in Section 2.4.2, each transaction
will generate an interval along the Transaction Time dimension (see Fig. 12(b)). As an
extended structure, each record simultaneously maintains the transactions whose gen-
erated intervals intersect with the left border of the corresponding rectangle as well as
the aggregates of transactions. For example, in Fig. 12(b), the record surrounding the
rectangle b1b2b3b4 also stores the aggregates of transactions α1, α2 and α3 whose gen-
erated intervals along the Transaction Time dimension intersect with the left border
b1b2 as well as the indexes of these three transactions for computing the trustworthi-
ness of the seller in selling a specific product. To facilitate discussion, we term such a
subtree, i.e., an extended Multi-version “domain 0” K-D-B-tree, as MK-tree.

Next, we introduce the I-nodes and the L-nodes of an MK-tree. Based on the above
description, the record in an I-node Ini (see Fig. 10(b)) has the form

< [tamin, tamax], [tmin, tmax], count r, sum r, Pi, Qi > ,

7partial persistence implies that updates are only applied to the latest version of the data structure, creating
a linear ordering of versions.
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where [tamin, tamax] and [tmin, tmax] surround each nonintersecting rectangle; the ter-
m Pi is a pointer pointing to its child, which is an I-node or an L-node; the term Qi

is another pointer pointing to an aB+-tree that derives from the B+-tree [Bayer and
McCreight 1972]. As stated before, the purpose of building an aB+-tree is to index the
transactions whose generated intervals along the Transaction Time dimension inter-
sect with the left border of the rectangle surrounded by [tamin, tamax] and [tmin, tmax].
In the meantime, the aggregates over these transactions are maintained in count r and
sum r. Specifically, each aB+-tree is built in the separate transaction amount space.
Like the B+-tree, the records in an aB+-tree are kept sorted based on their transaction
amount (price). Also, each node in an aB+-tree has the same structure that consists of
multiple records, each of which has the form < price, count r, sum r, pointer > (see Fig.
10(b)). The pointer points to its child, but for the records at leaf level, pointer points
to the transaction record stored in the database. Note that each generated aB+-tree is
based on the transactions in a brand-based product category. In addition, unlike the
original B+-tree, the number of records to be inserted in an aB+-tree may be larger
than the number of distinct values of transaction amount (y-coordinates) due to the
reason illustrated in Case 3 in Section 5.

When building an MK-tree, in order to avoid duplication of aB+-trees, the I-nodes ac-
tually include two types: (1) the I-node pointing to aB+-trees, and (2) the I-node without
pointing to aB+-trees. To differentiate the above two situations, we call the I-node ‘L-
I-node (In(L))’ if its children are L-nodes, and ‘I-I-node (In(I))’ otherwise. Therefore,
the I-node depicted in Fig. 10(b) is an L-I-node In(L)i. These two node structures will
become clearer after introducing insertions in the next subsection.

Each record appearing in an L-node Lni (see Fig. 10(c)) also contains count r and
sum r because of aggregating the repeated transactions with the same price on a given
day which sell the same product. It has the following form

< price, time, count r, sum r, pointer > ,
where the pointer points to the transaction record stored in the database.

6.2. The Construction of a CMK-tree
This section formally describes the insertion of transactions for the CMK-tree, includ-
ing the path in the product category hierarchy (C-hrchyi), transaction amount (tai),
transaction time (ti) and the rating for the transaction (ri). In the meantime, the trans-
action records are inserted in chronological order.

6.2.1. Insertion. Before inserting the data of a newly happened transaction into a
CMK-tree, a path is first searched in a C-tree from top (the product category root)
to bottom (the brand-based product category) (see Fig. 9) based on the C-hrchy of the
transaction. If the product in the transaction belongs to a new product category on
which the seller has no prior transactions, the new records are generated for this prod-
uct category as well as its sub-categories and inserted to the corresponding R-nodes.
Otherwise, the set of ranges and aggregates (i.e., [tamin, tamax], [tmin, tmax], count r,
sum r) maintained in each record along the path are updated accordingly. After that,
the insertion operations should be performed in an MK-tree pointed by the correspond-
ing record in an R-node at the brand-based product category layer. Fig. 13 depicts the
state of a CMK-tree after inserting the data of three transactions trading different
products, which belong to the same product category with the same C-hrchy. In addi-
tion, the information < tai (transaction amount), ti (transaction time), ri (rating) > of
three transactions is < 5, 1, 1 >, < 15, 1, 1 > and < 10, 2, 1 >.

6.2.2. Split. The split of an R-node is relatively simple. Unless stated otherwise, in
the following example, we assume the capacity of all the nodes is five. In addition,
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Fig. 13. The state of a CMK-tree after inserting three transactions

the field sum r in all the records is ignored, and we only use the field count r as the
example to illustrate the aggregation process. Fig. 14(a) shows an example of the R-
node split where Rn1 is an R-node containing a record < C-valuep, [10, 60], [1, 5], 32 >
at a higher level of the C-tree. The R-node Rn1 points to its child node Rn2 containing
five records, i.e., from C-valuech1 to C-valuech5 . Here we use C-valuep and C-valuech to
denote the parent product category and the child product category, respectively. [10, 60]
is the transaction amount range, and [1, 5] is transaction time range. 32 is the total
number of transactions in the current product category represented by C-valuep.

When a new record < C-valuech6 , [15, 15], [6, 6], 1 > (i.e., a new product category) is
inserted to the R-node Rn2, it overflows, and then this record is moved to a new R-node
Rn3. In the meantime, Rn3 is pointed to by another new record generated in Rn1, and
the data fields [tamin, tamax], [tmin, tmax], count r and sum r in this record are updated
to reflect the ranges and aggregates of its child node (see Fig. 14(a)).

The split of either an L-node or an I-node that occurs in an MK-tree is more compli-
cated, and includes two situations, respectively.

1) L-node split
Situation 1: If the record to be inserted in an L-node has the same transaction

time (i.e., x-coordinate) as a record existing in it, the L-node splits according to the
transaction amounts of all the records it contains.

Fig. 14(b) illustrates the split of an L-node Ln1 after inserting a new record <
30, 2, 1 >, which leads to a new L-I-node In(L)1. The number 30 is the transaction
amount, 2 is the transaction time and 1 is the field count r in sequence. Note that the
inserted record first needs to be checked whether the transactions with the same price
selling the same product have already been indexed by the records in Ln1. If there
exists repeated transactions, instead of splitting the L-node Ln1, it is only to update
count r and sum r in the corresponding record within Ln1. For the L-I-node In(L)1, in
order to get the full partition on the entire transaction amount space, the boundary is
set to the intermediate value of the maximal transaction amount in the new L-node
Ln1 and the minimal transaction amount in the L-node Ln2. For instance, in Fig. 12(b),
the y-coordinate of a boundary K1K2 equals to ⌊yβ2

+yβ3

2 ⌋. Hence, the two records in a
generated L-I-node In(L)1 are < [0, 13], [1, 2], 0, Q1 > and < [13,∞), [1, 2], 0, Q2 >, re-
spectively, where both Q1 and Q2 point to an aB+-tree.

— aB+-tree split: When an L-node pointed by a record in the L-I-node is split into two
L-nodes, correspondingly, the aB+-tree pointed by this record also needs to split. For
example, we assume that all the transactions represented by the points in Fig. 12(b)
are in the same brand-based product category. If the rectangle b1b2b3b4 splits into
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Rn1 

Fig. 14. The construction of a CMK-tree

two rectangles b1K1K2b4 and K1b2b3K2, the original aB+-tree splits into two aB+-
trees that store the information of one point (i.e., α1) and two points (i.e., α2, α3) in
a1a2a3a4, respectively.

Situation 2: If the record to be inserted in an L-node has a different transaction
time (i.e., x-coordinate), a new L-node is generated.
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Fig. 14(c) illustrates that if the record inserted to the L-node Ln1 is < 30, 3, 1 >,
a new L-node Ln2 is generated. In the meantime, an L-I-node In(L)1 is generated
with two records pointing to Ln1 and Ln2. The two records in the I-node In(L)1 are
< [1, 15], [1, 3), 0, Q1 > and < [0,∞), [3,∞), 9, Q2 >.

— Generate a new aB+-tree: In Fig. 14(c), the record < [0,∞), [3,∞), 9, Q2 > in the
I-node In(L)1 surrounds a new rectangle. Accordingly, a new aB+-tree pointed by
Q2 has to be generated to index the transactions in the same brand-based product
category whose generated intervals along the Transaction Time dimension intersect
with the left border 3 : [0,∞). In addition, the number 9 (i.e., count r) denotes the
total number of such transactions.

In Fig. 14(c), we assume that two records < 5, 1, 1 > and < 5, 2, 2 > in the L-node Ln1

index the transactions selling the same product but traded at different time; another t-
wo records < 15, 1, 1 > and < 15, 2, 3 > index the transactions selling different products
but traded at the same price. The new aB+-tree pointed by Q2 is equivalent to the aB+-
tree pointed by Q1 after inserting four different records: < 5, 3 >, < 10, 2 >, < 15, 1 >
and < 15, 3 >. However, since the record < [1, 15], [1, 3), 0, Q1 > in the I-node In(L)1
represents the initial rectangle, the aB+-tree pointed by Q1 is null in this example and
the field count r is 0. Here the above four records do not include the Transaction Time
dimension, as each aB+-tree is built in a separate Transaction Amount dimension.
The insertion and split of an aB+-tree are the same as those of a B+-tree [Bayer and
McCreight 1972].

Notice that 3 in the record < 5, 3 > is the aggregated value for the field of count r
in two records < 5, 1, 1 > and < 5, 2, 2 >, as they index the transactions selling the
same product. Also, the records < 15, 1 > and < 15, 3 > index the transactions selling
different products, and thus they should be inserted separately.

— Merge aB+-trees: Several aB+-trees may need to be merged to generate a new
aB+-tree. In Fig. 14(b), assume another record < [0,∞), [3,∞), 10, Q3 > is to be
inserted in the L-I-node In(L)1. Since two records < [0, 13], [1, 2], 0, Q1 > and
< [13,∞), [1, 2], 0, Q2 > in the original L-I-node In(L)1 have the same time range
[1, 2], the two aB+-trees pointed by Q1 and Q2 respectively first need to be merged
to form a new aB+-tree. Then, the newly generated aB+-tree is pointed by Q3. The
above operations are performed on all the records with the same time range.

Here we need to emphasize that since the L-node split in Situation 2 leads to the
problem of space utilization, in order to guarantee the minimum space utilization for
each L-node larger than 50%, Situation 2 happens only when all the L-nodes are at
least half full.

2) I-node split
Situation 1: If the record to be inserted in an I-node has the same transaction time

range as an existing record in that I-node, all the records with the same transaction
time range as the inserted record will be moved to a newly generated I-node. In addi-
tion, if each record in an I-node has the same transaction time range as the inserted
record, the same as the L-node split in Situation 1, the I-node splits according to the
transaction amount ranges of all the records it contains.

In Fig. 14(d), for example, if the record < [15, 30], [3,∞), 9, Q5 > in the L-I-node In(L)1
splits into two new records < [15, 20], [3,∞), 5, Q5 > and < [20,∞), [3,∞), 4, Q6 >, the
above two records lead to the overflow of In(L)1. Then, the node In(L)1 will continue to
split into two L-I-nodes: a new In(L)1 and a new In(L)2. In the meantime, another I-I-
node In(I)3 with two records < [0, 50], [1, 3), 0 > and < [0,∞), [3,∞), 19 > (19 = 10+9 =
10 + 5 + 4) is generated to point to the node In(L)1 and the node In(L)2, respectively.
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Situation 2: If the record to be inserted in an I-node has a different transaction time
range, similar to the L-node split in Situation 2, a new I-node is generated to contain
the inserted record. Such a strategy is to guarantee the maximum space utilization for
an I-node.

In Fig. 14(e), after the record < [0,∞), [4,∞), 19 > inserted to In(L)1, a new L-I-
node In(L)2 is generated. In the meantime, an I-I-node In(I)3 with two records <
[0, 50], [1, 4), 0 > and < [0,∞), [4,∞), 19 > is generated to point to the I-nodes In(L)1 and
In(L)2, respectively. Notice that each record in node In(I)3 will not include a pointer
Qi so as to avoid duplication of the aB+-tree. This is because the same aB+-tree has
already been indexed by its child node In(L)2, which is an L-I-node.

Algorithm 1 presents pseudo-code for the complete insertion process.

ALGORITHM 1: The CMK-tree Construction
Input: A transaction TRi includes C-hrchyi, tai, ti and ri.
Output: CMK-tree
1: // construct a C-tree
2: Starting from the “Root” of the product category hierarchy
3: Determine the path in C-tree based on the C-hrchyi of each transaction TRi.
4: for all R-nodes along the path do
5: if The product traded in TRi belongs to a new product category on which the seller has no prior transactions then
6: i. insert the generated new record in corresponding R-node.
7: ii. if the R-node overflows, split.
8: else
9: update corresponding ranges and aggregates maintained in a record
10: end if
11: end for
12: // construct the MK-trees that are external to the C-tree
13: for all L-nodes and I-nodes in the path from bottom up do
14: if the node is the L-node then
15: i. if transaction time ti is different from any transactions in the L-node, and this L-node is at least half full,

then generate a new L-node.
16: ii. if transaction time ti is the same as a record in the L-node, and repeated transactions have already been

indexed in this L-node, then update corresponding count r and sum r.
17: iii. otherwise, insert the transaction TRi

18: iv. if the L-node overflows, split
19: else if the node is the I-node then
20: i. insert the generated new records
21: ii. if the I-node overflows, split
22: end if
23: end for

6.3. CTT Computation Algorithm
Basically, the CTT computation algorithm answers a buyer’s typical CTT queries cov-
ering three transaction dimensions based on our proposed CMK-tree. The processing
of CTT computation starts by locating product category in the C-tree according to the
C-value (i.e., product category) in a buyer’s query. Then, it computes the left border
VRA and the right border VRA (see Fig 4(b)) in one or several MK-trees, respective-
ly, depending on the number of brand-based product categories that are included in a
CTT query.

For example, to answer a typical CTT query: <product-category: “Audio device”,
price-range: “$100-$200”, time-range: “the latest 6 months” >, all the sub-categories
of the product category specified in a CTT query are first considered (see Fig. 9). As
each record in an R-node contains a transaction amount range ([tamin, tamax]) and a
transaction time range ([tmin, tmax]) for its corresponding product category, there are
three cases that should be differentiated.
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Case 1: If a CTT query on the transaction amount range and the transaction time
range falls into the region surrounded by [tamin, tamax] and [tmin, tmax], then it is
not necessary to search its child node (sub-categories). Instead, count r and sum r
in that record can be used directly.
Case 2: If a CTT query on the transaction amount range and the transaction time
range are out of the region surrounded by [tamin, tamax] and [tmin, tmax], then it is
not necessary to search its child node (sub-categories) either.
Case 3: If a CTT query on the transaction amount range and the transaction time
range overlaps with the region surrounded by [tamin, tamax] and [tmin, tmax], then
the search iteratively executes from Case 1 to Case 3 in its descendants until reach-
ing the layer of I-nodes. Taking each reached I-node as the root of an MK-tree, all the
corresponding MK-trees are searched for the left border VRA and the right border
VRA, respectively.

For Case 3, we take the computation of a VRA 2 : [0, 5] as an example to introduce
the search process in an MK-tree. As depicted in Fig. 14(d), the I-nodes, the rectan-
gle represented by which contains 2 : [0, 5], are iteratively searched until reaching the
layer of L-I-nodes, and thus the record < [0, 13], [1, 3), 0, Q1 > in the L-I-node In(L)1 is
selected. In order to compute the VRA 2 : [0, 5], both the aB+-tree and the L-node point-
ed by the above record need to be searched, and the VRA equals to the sum of the two
search results. Note that instead of visiting only one record as introduced in the above
example, the search for computing the VRA may be executed on several aB+-trees as
well as L-nodes pointed by the corresponding records, respectively, depending on the
number of the rectangles overlapped by the query range in the Transaction Amount
dimension. For instance, to compute another VRA 3 : [10, 30] based on Fig. 14(d), two
records < [0, 15], [3,∞), 10, Q4 > and < [20,∞], [3,∞), 4, Q6 > in the L-I-node In(L)2
are selected for conducting the further searches. The aggregation results (count r and
sum r) in the record < [15, 20], [3,∞), 4, Q5 > can be used directly, as the transaction
amount range [15, 20] in that record falls into the query range [10, 30] in the Transaction
Amount dimension.

If the transaction time for a VRA equals to the left border of a rectangle represented
by the selected record in an L-I-node, search only performs on the aB+-tree pointed
by this record. For example, in Fig. 14(e), to compute the VRA 3 : [5, 10], the record
< [0, 15], [3, 4), 10, Q4 > in the L-I-node In(L)1 is selected. Instead of searching L-node,
only the aB+-tree pointed by the above record is searched. However, since the right
border in CTT computation is always fixed to the point “now”, the search for computing
the right border VRA is performed on both the aB+-trees and L-nodes pointed by the
selected records.

Algorithm 2 describes the process of CTT computation in a CMK-tree.
6.4. Structure and Performance Analysis
In this section, we will provide an analytical study on the CMK-tree, focusing on its
structure and query performance. The symbols and their meanings used in our analy-
sis are explained in Table II.

Property 1. Each MK-tree in a CMK-tree represents a two-dimensional space formed
by Transaction Amount and Transaction Time for all the transactions in a brand-based
product category. All the records in each layer of I-nodes in an MK-tree fully parti-
tion the corresponding two-dimensional space into multiple nonintersecting rectangles.

Assume that all the transactions in a brand-based product category are represent-
ed by a number of points in two-dimensional space depicted in Fig. 12(a). Since the
insertions come in the nondecreasing time order, an new insertion only happens in
the latest version of “domain 0” 2-D-B-tree, for example, the version 3 in Fig. 12(a). In

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.



A:30 H. B. Zhang et al.

ALGORITHM 2: CTT Computation Algorithm in a CMK-tree
Input: A typical CTT query with specific product category, transaction amount range ([ta1, ta2]) and transaction time

range ([t1, t2]).
Output: CTT value
1: CTT=0
2: count r1=0, sum r1=0, count r2=0, sum r2=0
3: The Searching starts from the “Root” of product category hierarchy
4: Determine the layer in product category hierarchy based on the CTT query on product category, and return

corresponding record R in an R-node.
5: begin Search(CMK-tree, R)
6: if the record is in an R-node then
7: Case 1: CTT=CTT+ sum r

count r , count r and sum r are from the record
8: Case 2: CTT=CTT
9: Case 3: Search(CMK-tree, Rchildnode)
10: else if the record is in an I-node then
11: Let rec1 be the index record whose rectangle contains t1 : [ta1, ta2] // for the left border VRA
12: Let rec2 be the index record whose rectangle contains t2 : [ta1, ta2] // for the right border VRA
13: while neither rec1 nor rec2 is a record in L-I-nodes do
14: i. rec1 be its child whose rectangle contains t1 : [ta1, ta2]
15: ii. rec2 be its child whose rectangle contains t2 : [ta1, ta2]
16: end while
17: for all rec1s do
18: if t1 equals to the left border of rec1 then
19: only search aB+-tree that is pointed by rec1 for left border to aggregate count r1 and sum r1
20: else
21: the search conducts on both the aB+-tree and the L-node pointed by rec1 to aggregate count r1 and

sum r1
22: end if
23: end for
24: for all rec2s do
25: the search conducts on both aB+-tree and L-node pointed by rec2 to aggregate count r2 and sum r2
26: end for
27: CTT=CTT+ sum r2−sum r1

count r2−count r1

28: end if
29: end Search

Table II. List of symbols

symbol explanation
S a seller

Trans the transaction set for the seller S

n the number of past transactions contained in Trans

the number of brand-based product categories (see Fig. 8)
m to which n past transactions belong

the number of points in a two-dimensional space formed by
ni the transactions in a brand-based product category.
h the height of the product category hierarchy for a newly happened transaction

the number of points in a two-dimensional space formed by the transactions in Trans
nh which are in the same brand-based product category as the newly happened transaction
ncL the capacity of an L-node in a CMK-tree
ncI the capacity of an I-node in a CMK-tree

Note:
m: The number of brand-based product category determines the size of C-tree
ni: For m brand-based product categories, we have

∑m

i=1
ni ≤ n. This is because one point may repre-

sent a set of repeated transactions that occurred on a day (see Case 2 in Section 5). In practice,
∑m

i=1
ni

may be much less than n.
ncI : The difference of node capacity between I-I-node and L-I-node is ignored in our discussion.
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the meantime, the division within each version can only be operated along the Trans-
action Amount dimension (y-axis). As shown in Fig. 14(b) and Fig. 14(c), each record
in an L-I-node corresponds to either a new version for “domain 0” 2-D-B-tree (e.g.,
< [0,∞), [3,∞), 9, Q2 >) or a partition in the latest version (e.g, < [0, 13], [1, 2], 0, Q1 >).
Obviously, these records partition the complete two-dimensional space. More impor-
tantly, the rectangles formed by them are nonintersecting. In addition, except the
records in L-I-nodes, the records in I-I-nodes (a higher level) still fully partition
the two-dimensional space into multiple nonintersecting rectangles, for example, the
records in node In(I)3 as depicted in Fig. 14(d) and Fig. 14(e).

Property 2. To answer a CTT query for each brand-based product category, the CMK-
tree delivers almost linear query performance.

Let us go back to the CTT computation algorithm given in Section 6.3, where the
method of computing the left border VRA and the right border VRA is adopted while
answering a CTT query. In order to clearly understand property 2, we first examine the
performance of computing each VRA. Property 1 has illustrated that the transaction
amount ranges and transaction time ranges of the records in the I-nodes in an MK-tree
do not intersect each other. Thus, when computing a VRA, the search traverses from
top to bottom in an MK-tree until reaching the layer of L-I-nodes. Then, one or several
corresponding records in L-I-nodes are chosen. Finally, both the aB+-trees and the leaf
nodes pointed to by these records are searched. To sum up, the structure of MK-tree
achieves logarithmic time cost (O(log n)) for computing each VRA. Hence, to answer a
buyer’s CTT queries for a specific brand-based product category, the query of CMK-tree
is almost linear. Also, this property has been demonstrated in the experiments, the
results of which are to be introduced in Section 8.

When a buyer performs “roll up” operations, the search iteratively performs from
Case 1 to Case 3 introduced in Section 6.3 in the descendants of the current R-node,
and finally one or several MK-trees are selected. The search then continues in the s-
elected MK-trees twice for computing the left border VRA and the right border VRA,
respectively. Note that the number of MK-trees may be much less than m in practice.
Therefore, the process has the linearithmic time cost (O(n log n)) in total. However,
the CMR-tree has better performance than all three existing approaches that were
proposed in [Zhang et al. 2014] (see Section 8). This is a significant advantage in an-
swering CTT queries.

Next, we analyse the space utilization of the CMK-tree that is important to evaluate
disk-based index schemes. We adopt the same analysis method as in [Kang et al. 2004]
and consider the predictability of space utilization, i.e., minimum space utilization of
each node.

Lemma 1. The minimum space utilization is no less than ncL
2 for an L-node; The

minimum space utilization is no less than ncI
3 on average for an I-node.

Proof. Let t1, t2 and t3 be three different time periods. Suppose an initial state that
all the records in the L-node Ln1 have the same transaction time t1. For a new record
with the transaction time t2 to be inserted in Ln1, there are two cases. (1) If space
utilization of Ln1 is no less than ncL

2 , a new L-node Ln2 is established. (2) Otherwise,
the new record with the transaction time t2 is inserted into Ln1 until it overflows. Then,
the node Ln1 splits into a new Ln1 and a new L-node Ln2. The space utilization of each
generated L-node is still no less than ncL

2 . All the records in the two L-nodes are within
the same time range [t1, t2]. In this case, if the new records with the transaction time
t2 continue to be inserted in an L-node, either Ln1 or Ln2 is selected as the targeted L-
node depending on the transaction amount of the new record. Note that both Ln1 and
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Ln2 might split again during insertion, but the minimum space of any generated new
L-nodes is no less than ncL

2 , and the records maintained in each node are within a time
range [t1, t2]. The above operations are repeated until a record with the transaction
time t3 is inserted. This is because a new L-node is established for that record. So,
the minimum space utilization is no less than ncL

2 for an L-node. In fact, except the L-
nodes with the minimum space utilization no less than ncL

2 , there is at most one L-node
with the space utilization less than ncL

2 . In particular, this specific L-node includes
the records that are most recently inserted. For example, the newly generated L-node
maintains only one record with the transaction time t3.

To estimate the space utilization of I-nodes, we consider the worst case. Let t1, t2,
t3 and t4 be four different time periods. Still, we suppose an initial state that a full
I-node In1 with ncI records includes only one record with the transaction time range
[t1, t2]. The rest of the records in In1 have the same transaction time range [t3, t4]. If a
new record with a transaction time range [t3, t4] to be inserted in the I-node In1, the
node In1 overflows. Then, it splits into a new In1 maintaining the one record with the
transaction time range [t1, t2] and another full I-node Ln2. All the records in node Ln2

have the same time range [t3, t4]. In such a case, if a new record with the transaction
time range [t3, t4] continues to be inserted in an I-node, the node Ln2 is selected as the
targeted I-node. Then, the node In2 overflows and splits into two I-nodes according to
the transaction amount ranges of all the records it contains. Hence, due to continuous
splits of I-nodes, the records in the original full I-node In1 are distributed in three
different I-nodes. Therefore, we can conclude that, in the worst case, the minimum
space utilization is no less than ncI

3 on average for an I-node.

Lemma 2. The height of an MK-tree in the CMK-tree is at most ⌈log
⌊ ni

⌈
ncL
2

⌉
⌋

⌈ncI
3 ⌉ ⌉ + 1

(∀i ∈ [1,m]). The number of aB+-trees in the CMK-tree pointed by L-I-nodes is at most∑m
i=1⌊

ni

⌈ncL
2 ⌉⌋.

Proof. First, we examine the height of an MK-tree that is built based on the trans-
actions in a brand-based product category. For m MK-trees in a CMK-tree, we focus on
analyzing one of them. Suppose the past transactions in a brand-based product catego-
ry form ni (∀i ∈ [1,m]) points in a two-dimensional space. In Lemma 1, we have proved
that the minimum space utilization is no less than ncL

2 for an L-node. In addition,
there may exist one L-node with space utilization less than ncL

2 . Hence, the number
of L-nodes in an MK-tree is at most ⌊ ni

⌈ncL
2 ⌉⌋. The above L-nodes will be indexed by I-

nodes, each of which has the minimum space utilization no less than ncI
3 on average.

Hence, the height of an MK-tree in the CMK-tree is at most ⌈log
⌊ ni

⌈
ncL
2

⌉
⌋

⌈ncI
3 ⌉ ⌉+ 1. Since the

number of transactions traded by the seller S in m brand-based product categories has
an imbalanced distribution, each MK-tree has a different height. The CMK-tree is an
unbalanced tree.

Second, we examine the total number of aB+-trees, each of which is pointed by a
record in an L-I-node. There are at most ⌊ ni

⌈ncL
2 ⌉⌋ L-nodes in an MK-tree, and each L-

node is pointed by a record in an L-I-node. Thus, the number of aB+-trees in an MK-tree
is also ⌊ ni

⌈ncL
2 ⌉⌋ at most. Therefore, for m MK-trees in the CMK-tree, the total number of

aB+-trees is at most
∑m

i=1⌊
ni

⌈ncL
2 ⌉⌋.

Theorem 1. In a CMK-tree, the number of nodes accessed by an insertion operation

is O(h) +O(log
nh
ncL
ncI ) + 1.
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Proof. For an insertion operation in the CMR-tree, we consider the insertion cost
in the worst case. As described in Section 6.2.1, an insertion operation first searches
a path in the C-tree based on the C-hrchy of the newly happened transaction. The
number of accessed nodes is O(h). Then, the insertion operation traverses an MK-
tree. Lemma 2 illustrates that the height of an MK-tree in the CMK-tree is at most

⌈log
⌊ ni

⌈
ncL
2

⌉
⌋

⌈ncI
3 ⌉ ⌉+1 (∀i ∈ [1,m]). Hence, the number of accessed nodes for inserting a newly

happened transaction in an MK-tree is O(log
nh
ncL
nch ) + 1. As a result, the total number of

accessed nodes is O(h) +O(log
nh
ncL
ncI ) + 1 for an insertion operation.

6.5. Extending the CMK-tree for High-Dimensional CTT Computation
As we have mentioned before, the state-of-the-art trust and reputation management
approaches consider single context and lack dimensionality. By contrast, our proposed
ReputationPro model targets the multi-context transaction trust computation problem
in real-world e-commerce environments taking multiple transaction dimensions in-
to account. Basically, our proposed CMK-tree focuses on CTT computation with three
identified important transaction context dimensions: Product Category, Transaction
Amount and Transaction Time. More specifically, in CMK-tree, each MK-tree main-
tains the aggregations of trust ratings that incorporate two dimensions of Transaction
Amount and Transaction Time. Then, multiple MK-trees are adopted as the subtrees
to extend a C-tree. Thus the C-tree maintains the aggregations of trust ratings that
incorporate all three identified transaction context dimensions. Next, considering the
possibility to take extra dimension(s) into account in CTT computation, we propose
CMK+-tree which extends the CMK-tree. In the following, we first consider the situa-
tion with the additional fourth dimension.

6.5.1. CMK+-tree. With regard to a new dimension, as pointed out in Section 3, we
need to identify its characteristic as either a hierarchical dimension (e.g., similar to
the Product Category dimension) or a linear dimension (e.g., similar to the Transaction
Amount dimension). Accordingly, two algorithms are proposed to construct the CMK+-
tree. In order to differentiate these two algorithms, we denote the generated CMK+-
tree as CMK+-tree(HD) if the fourth dimension is a Hierarchical Dimension, or CMK+-
tree(LD) if the fourth dimension is a Linear Dimension.

Algorithm 3 (CMK+-tree(HD) construction): The construction of CMK+-
tree(HD) is to adopt multiple CMK-trees as subtrees, which cover three transaction con-
text dimensions (i.e., Product Category, Transaction Amount and Transaction Time) to
extend the new hierarchical tree, i.e., the fourth dimension (see Fig. 15(a)):

• When inserting a record in a CMK+-tree(HD), following the search process in a C-
tree as depicted in Algorithm 1, a path is located from top to bottom in the new
hierarchical tree. In the meantime, the update operations are performed in the cor-
responding records along that path. Different from the C-tree in the CMK-tree, each
record in the new hierarchical tree includes aggregations of trust ratings that cov-
er all the four transaction context dimensions. Therefore, when updating along the
path, the corresponding aggregations covering four dimensions are updated.

• When a leaf node in the hierarchical tree is reached, Algorithm 1 is called to gener-
ate a CMK-tree as a subtree to extend the new hierarchical tree.

Algorithm 4 (CMK+-tree(LD) construction): Similar to the CMK-tree, the con-
struction of a CMK+-tree(LD) is to adopt multiple subtrees to extend a C-tree. However,
different from the original C-tree, the C-tree in the CMK+-tree(LD) includes aggrega-
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Fig. 15. The construction of the CMK+-tree

tions of trust ratings that cover four transaction context dimensions. In addition, as
shown in Fig. 15(b), each subtree in a CMK+-tree(LD) maintains the aggregates of rat-
ings covering three linear dimensions: Transaction Amount, Transaction Time and the
fourth dimension:

• When inserting a record in a CMK+-tree(LD), following Algorithm 1, a path is lo-
cated in a C-tree from top to bottom based on the C-hrchy (see Section 4.1) of a
transaction record. In the meantime, the corresponding records are updated along
that path, where the aggregations maintained in a record cover four dimensions.

• When a leaf node in the C-tree is reached, an extended MK-tree is built as a subtree
to extend the C-tree. Essentially, the structure of the extended MK-tree, as shown in
Fig. 15(b), is an extended multi-version “domain 0” 3-D-B-tree. In the literature, the
R-tree based variants and the K-D-B-tree based variants are two popular structures
which can be used for indexing data in any linear dimensionality [Böhm et al. 2001].
On the other hand, as illustrated in Section 6.1.2, the multi-version structure is
an effective means to support aggregation operations along a temporal dimension.
Therefore, correspondingly, there are two different ways to generate each subtree:
1) multi-version aR-tree [Tao et al. 2004] and, 2) extended multi-version “domain
0” K-D-B-tree. Since the multi-version aR-tree belongs to a variant of the R-tree, its
performance is still subject to the number of overlapped MBRs (see Section 2.4.1).
By contrast, our proposed MK-tree is an extended multi-version “domain 0” 2-D-B-
tree which has been proved to be efficient for CTT computation (see Section 6.4).
Following the idea of MK-tree depicted in Section 6.1.2, we can continuously extend
it to form an extended multi-version “domain 0” 3-D-B-tree.

CMK+-tree based CTT computation: Now, we consider how to compute CTT val-
ues based on the CMK+-tree.

— CTT computation in the CMK+-tree(HD). Firstly, the search process starts by locat-
ing one node in the new hierarchical tree according to a buyer’s query. Then, similar
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to three-dimensional CTT computation (see Section 6.3), three cases should be dif-
ferentiated in the new hierarchical tree. After that, one or several CMK-trees are
selected for answering the buyer’s query on the remaining three dimensions. The
search process in each CMK-tree can be found in Algorithm 2.

— CTT computation in the CMK+-tree(LD). The process of three-dimensional CTT
computation can be applied to computing CTT values in this case. But the way to
compute two VRAs (left border and right border) in each subtree (i.e., extended MK-
tree) is different, as each VRA is computed based on a two-dimensional plane, rather
than a vertical line. For example, in Fig. 15(b), that two-dimensional plane is formed
by Transaction Amount dimension and the fourth dimension. Then, each VRA is to
compute the number of generated intervals intersecting a two-dimensional plane.
Finally, the result still equals to the difference of two VRAs.

6.5.2. High-Dimensional CTT Computation. The construction process of a low-dimensional
CMK+-tree can be applied to five or higher dimensional CTT computation. However,
high-dimensional CTT computation is complex, because the increased dimensions lead
to exponential storage space consumption for storing the pre-computed aggregation
results. In such a case, the following existing dimension reduction methods can be
adopted for high-dimensional CTT computation based on the CMK+-tree:

— Ordering dimensions: This approach is based on the observation that whether
a small number of dimensions bear most of the information. Namely, dimensional-
ity problem can be reduced by ordering dimensions according to their importance
so that only information from selected important dimensions is indexed. For exam-
ple, Lin et al. [1994] propose TV-tree to index high-dimensionality data that adopts
this idea to avoid the dimensionality problem. Therefore, for high-dimensional CTT
computation, we can first order all the transaction dimensions based on their im-
portance, and then maintain the index of low but important dimensionality (e.g.,
CMK+-tree).

— Mapping dimensions: This approach is to establish mapping relations between
high-dimensional data and low-dimensional data. For example, Ooi et al. [2000] pro-
pose to map a point in d-dimension to a 1-D line using the maximum or minimum
value of all dimensions. In addition, they also map a d-dimensional query to d sub-
queries with one query for each dimension. Likewise, Wang et al. [2013] propose a
paring function to map d-dimensional points to integers. Following this idea, we can
first map linear high-dimensional transaction data to our proposed low-dimensional
CMK+-tree, based on which to fulfill high-dimensional CTT computation.

7. CMR-TREERS—-THE CMK-TREE WITH REDUCED STORAGE SPACE
In the CMK-tree, transaction data and ratings are aggregated at the granularity of
days. Though it consumes smaller storage space than the actual data, with significant
increase of historical transaction data, the size of the CMK-tree will become much larg-
er. In this section, we introduce a new approach CMK-treeRS , which reduces storage
space consumption for a CMK-tree, and offers great benefit to trust management with
millions of sellers.

In Section 2.5, we have pointed out that the Hierarchical Temporal Aggregation
model with fixed storage space (HTAFS) [Zhang et al. 2003] can be applied to CTT
computation, in order to control the size of the storage space allocated to a seller for
storing aggregation index [Zhang and Wang 2013]. However, as a matter of fact, it
is difficult to select the size of the fixed storage space, since the number of distinct
products as well as the number of product categories in the transactions traded by dif-
ferent sellers are different. Now let us consider an example. Assume two sellers S1 and
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S2 have the same volume of transaction data over a period of time. The transactions
traded by S1 are widely distributed in multiple product categories, but seller S2 has
numerous repeated transactions belonging to only a few product categories. For S1,
it is necessary to allocate a relatively large storage space to store aggregation index
so as to obtain his/her trustworthiness in each product category and a corresponding
sub-category. By contrast, for S2, it is not necessary to allocate the storage space with
the same size as S1, because most transactions are repeated, leading to less storage
space consumption for storing aggregation index.

In practice, the time range in CTT queries is usually “the latest 1 month”, “the latest
3 months”, “the latest 6 months”, or “the latest 12 months”. When adopting a CMK-
tree for CTT computation, the above time ranges can be searched, but the CMK-tree
consumes a large storage space as the aggregation granularity in the Transaction Time
dimension is “days”. Alternatively, if we aggregate ratings at a coarse time granularity
of months, as depicted in Fig. 12(a), the number of points in a two-dimensional space
formed by transactions further decreases, since more repeated transactions exist in a
month than on a day. In such a case, the size of storage space consumed for a CMK-tree
can be reduced to a large extent. However, such a coarse aggregation granularity leads
to a serious problem regarding the accuracy of CTT computation. For instance, if the
current time is “August 10”, to answer a buyer’s CTT query with the specified time
range as “the latest 1 month”, the result can be computed based on either the data
of “August” only or the data of both “August” and “July”. However, either way cannot
guarantee the accuracy of CTT results. In the worst case, the ratings for computing a
CTT value of “the latest 1 month” come from one day only or one month plus “29 days”
(if one month contains “30 days”). On average, the CTT result comes from the ratings
of 1 month ± 1

2month.
In the proposed approach CMK-treeRS , a new strategy is adopted, which aggregates

ratings with different time granularities for different time periods. In other words,
in the CMK-treeRS , the ratings within the latest t days are aggregated at a fine time
granularity of days, and the ratings of t days ago are aggregated at a coarse time gran-
ularity of weeks. Taking into account the problem of accuracy of CTT values as men-
tioned in the above, our work provides a tradeoff between storage space consumption
and accuracy. In addition, in practice, t is set to be “90 days”, considering the typical
time ranges in CTT queries are “the latest 1 month”, “the latest 3 months”, “the latest
6 months” and “the latest 12 months”. Therefore, for CTT queries regarding a seller’s
trustworthiness of “the latest 1 month” or “the latest 3 months”, there is no accuracy
problem in the time dimension. For the queries of “the latest 6 months”, on average,
ratings included in computation cover 6 months ± 1

2week. Likewise, in the case of “the
latest 12 months”, on average, the ratings used in CTT computation cover 12 months
± 1

2week.

7.1. Construction of the CMK-treeRS

This section describes the process of CMK-treeRS construction. The algorithm for CMK-
treeRS construction adds the following operations to Algorithm 1, which is given in
Section 6.2 and is used for building a CMK-tree:

• If tnow − tbegin ≤ t + 1, insert the data of a newly happened transaction into the
initial CMK-tree based on Algorithm 1. The term tbegin denotes the starting time
and the term tnow denotes the current time. As new transactions happen everyday,
in order to guarantee the ratings within the latest t days to be aggregated at a fine
time granularity, firstly, it is necessary to perform insertion operations leading to
the aggregations of t + 1 days. Then, the ratings of t days ago are moved to the
aggregation index at a coarse time granularity. Note that this order of operations
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is necessary as if it is first to remove ratings for the transactions that happened t
days ago, the ratings to be aggregated at a fine time granularity will include t − 1
days only, affecting the accuracy of CTT values.
• Otherwise, find all the transactions that happened no later than tnow − t whose
corresponding ratings are aggregated by days. Then, the Hierarchical Temporal
Aggregation (HTA) operations are performed to form the CMK-treeRS . Finally, con-
tinue to insert the data of a newly happened transaction into the new CMK-treeRS

based on Algorithm 1.
Next, we explain HTA operations in detail. In general, HTA operations aim to

split one MK-tree in the initial CMK-tree into two MK-trees with ratings to be ag-
gregated at different time granularities. To facilitate discussion, we term the t-
wo generated MK-trees as MK-treeday and MK-treeweek, respectively. Suppose that
the number of transactions traded by a seller at the time point tnow belongs to m
brand-based product categories, namely, the initial CMK-tree at the time point tnow
includes m MK-trees. In the meantime, there are m′ (m′ ≤ m) brand-based product
categories which contain the transactions with the transaction time no later than
tnow − t, and their corresponding ratings are aggregated with the time granularity
of days. Then, the HTA operations are performed in the above m′ MK-trees. For the
sake of simplicity, we focus on introducing the following HTA operations within
one of m′ MK-trees contained in the initial CMK-tree.
— Remove the records maintained in an MK-tree, which can index the transac-

tions that happened t days ago. Note that our work also guarantees the s-
pace utilization of each node in the MK-tree during performing removal oper-
ation. For instance, as shown in Fig. 14(e), if the records < [0, 13], [1, 3), 0, Q1 >,
< [13, 30], [1, 3), 0, Q2 > and < [30, 50], [1, 3), 0, Q3 > in the I-node In(L)1 are
removed, the remaining records in In(L)1 as well as the record in In(L)2 are
merged. In the meantime, the records in the I-node In(I)3 are updated accord-
ingly. In addition, in a more complex case, if the removed transactions with the
transaction time falling into the time range of some records, a new aB+-tree is
generated8. For example, to remove the transactions that occurred before the
time point 2 in Fig. 14(b), briefly speaking, we need to (1) delete the correspond-
ing records in both Ln1 and Ln2, (2) merge the remaining records in these two
nodes, (3) generate a new aB+-tree, and (4) update the records in In(L)1.

— Standardize the data of transactions that happened t days ago. A standardiza-
tion operation is to set the transactions occurred in the same week with the
same x-coordinate. As stated before, the standardization operation essentially
leads to a smaller size CMK-treeRS . In Section 7.2, we will further explain how
and why the CMK-treeRS can also reduce the time of computing CTT values.

— Generate the second MK-tree, namely MK-treeweek, using the standardized re-
sults. Consequently, instead of having only one MK-tree, each subtree that is
external to the C-tree has both an MK-treeday and an MK-treeweek in the new
CMK-treeRS . Fig. 16 illustrates the general structure of the CMK-treeRS . Note
that if there already exist two MK-trees with aggregation index at different time
granularities in an external subtree, the MK-treeweek is updated by inserting the
standardized results.

8The purpose of generating a new aB+-tree is given in Section 6.2.2. Each generated aB+-tree is to keep
aggregation index of transactions in the same brand-based product category whose generated intervals
along the Transaction Time dimension intersect with the left border of the corresponding rectangle.
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7.2. CTT computation based on the CMK-treeRS

When answering a CTT query based on the new structure CMK-treeRS , like Algorith-
m 2 given in Section 6.3, the C-tree is first searched. Then, it computes the left border
VRA and the right border VRA in the subtrees that are external to the C-tree. More-
over, each external subtree in CMK-treeRS has up to two MK-trees with aggregated rat-
ings at different time granularities (see Fig. 16). Therefore, the computation of the left
border VRA and the right border VRA may also be performed in MK-treeday and MK-
treeweek respectively, depending on the query range in the Transaction Time dimen-
sion. If the specified time range in a CTT query is [tnow − t, tnow), only the MK-treeday
is searched; otherwise, the CTT computation algorithm searches both the MK-treeday
and the MK-treeweek in the corresponding external subtrees.

Now we introduce an example for further explanation. Suppose that the current
time refers to the day of “July 20” and t is set to “90 days”. For an external subtree in
the CMK-treeRS that includes two MK-trees, the MK-treeday maintains the aggregated
ratings with the time range [April 21, July 20) and the MK-treeweek maintains the ag-
gregated ratings with the time range [January 1, April 21). In this case, if a buyer’s
CTT query has “the latest 6 months” as the time range, the search for computing the
left border VRA is performed on the MK-treeweek. By contrast, for a CMK-tree with an
MK-tree as each external subtree, the MK-tree maintains the aggregated ratings for
around 200 days in total (i.e., from January 1 to July 20) with the time granularity of
days. Though the CMK-treeRS has two subtrees: MK-treeday and MK-treeweek, they are
much smaller in size. On one hand, the MK-treeday includes the aggregates of ratings
in a short period of time (i.e., 90 days vs 200 days). On the other hand, the MK-treeweek

stores the aggregations for the remaining period of time at a coarse time granularity of
“weeks” rather than “days”. Therefore, based on the CMK-treeRS , the time of comput-
ing both the left border VRA and the right border VRA can be reduced. The experiment
results to be introduced in Section 8 also have illustrated both storage space reduction
and performance improvement of the CMK-treeRS in answering buyers’ CTT queries.

8. EXPERIMENTS
In this section, we discuss the results of the experiments conducted on four large
datasets, which compare the proposed CMK-tree and CMK-treeRS with three exist-
ing approaches eaR-tree, eaP-tree and eH-tree [Zhang et al. 2014] with regards to the
aspects of both efficiency in CTT computation and storage space consumption.

Note that the effectiveness of our proposed trust vector based framework has already
been studied both analytically and empirically in our earlier work [Zhang et al. 2012b].
In particular, the trust vector based approach can reflect a seller’s dynamic trustwor-
thiness in different transaction contexts and identify risks potentially existing in a
forthcoming transaction, thus outperforming single-value trust valuation methods [S-
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abater and Sierra 2001; Wang and Varadharajan 2005b] and a prior trust vector based
approach [Wang and Lim 2008].

The ReputationPro model proposed in this article focuses on efficient CTT compu-
tation for outlining reputation profile as well as the reduction of storage space con-
sumption with new data structures and novel algorithms, i.e., the CMK-tree and the
CMK-treeRS . Our experiments have two parts: while Section 8.3 compares the CMK-
tree with the existing eaR-tree, eaP-tree and eH-tree in the computation time of CTT
values, Section 8.4 further compares the CMK-tree and the CMK-treeRS in the aspects
of both CTT computation time and storage space consumption.

8.1. Datasets
8.1.1. eBay Datasets. With eBay APIs9, we have obtained detailed feedback and trans-

action data for up to 90 days of selected sellers. In seller selection, we first chose a
number of popular products, and the sellers selling them with the largest number of
reviews. With them, we finally selected two sellers S1 and S2 who had totally around
12,000 transactions (approx. 133 transactions per day) and 4,000 transactions (approx.
44 transactions per day) respectively within 90 days.

While the products sold by S1 and S2 exist in multiple product categories, most
products are in the category ‘Information, Communication and Media technology’ (see
Fig. 8). Specifically, the products sold by S1 include MP3 players, Notebooks, Digital
Cameras, CD & DVD players, LCD monitors etc, and the products sold by S2 include
Digital Cameras, Video Cameras, Camera & Photo Accessories, Printers, Smartphones
etc. The selection of S1 and S2 allows performing both “drill down” and “roll up” oper-
ations in the product category hierarchy (see Fig. 8) when doing finer-grained analysis
on a seller’s transaction reputation.

8.1.2. Four Large Synthetic Datasets. Considering that only 90 day real transaction data
of a seller can be obtained from eBay, and the time range in a CTT query can be “the
latest 6 months” or ‘the latest 12 months”, we generated four large synthetic datasets
SD1(S1), SD2(S1), SD3(S2) and SD4(S2) based on the transaction data of eBay sellers
S1 and S2. In each synthetic dataset, we expanded the time period of transactions
and the daily volume of transactions so as to test the performance of our proposed
approaches under the circumstances with exceptionally large volumes of transactions.
Specifically, the above four synthetic datasets are further categorized into two types.

(1) Type I includes SD1(S1) for S1 and SD3(S2) for S2: For each Type I synthetic
dataset, we first duplicated the transaction data of each seller 10 times on a given day
and thus obtained the transaction data of 10 times as much as the corresponding real
dataset. Then, we continued duplicating the newly obtained transactions data of 90
days for about three times for the rest nine months (actually 365−90 = 275 days). E.g.,
the data of the 91st day duplicates the one of the 1st day. Consequently, with the initial
transaction data of 90 days, we obtained the transactions of 12 months. As a result,
two datasets contain about 480, 000 and 160, 000 transactions in total (i.e., approx. 1330
transactions per day for S1 and 440 transactions per day for S2), respectively. Type I
synthetic datasets guarantee that the proportion of each sold product is the same on a
daily basis in both the synthetic dataset and the corresponding real dataset.

(2) Type II includes SD2(S1) for S1 and SD4(S2) for S2: For each Type II synthetic
dataset, a transaction was randomly selected from the corresponding sellers eBay real
dataset of 90 days. This process was repeated until the size of transaction data on a day
within 90 days is 10 times as much as that on the same day in the real dataset. Then
we duplicated the data of 90 days for 365 days (12 months). In each Type II synthetic

9developer.ebay.com/support/docs
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Table III. List of selected products from two popular sellers

seller selected products
Apple iPod nano 16GB (mc696ll/a) at a price of $150, Dell Laptop (Inspiron i17rv-3529dbk)

S1 at a price of $650, Canon Powershot Digital Camera (sx40 hs) at a price of $380
Canon EOS DSLR Camera (T3i) at a price of $670, Kodak Pocket Video Camera (Zi8)

S2 at a price of $240, Brother Laser Printer (HL-2220) at a price of $90

dataset, basically the proportion of a transaction selling a product on a day or in a
month is different to that in the corresponding real dataset.

8.2. Experiment Setup
The parameters used in the experiments are as follows: the same page size of 1KB
applies to all five index schemes; it is 4 bytes for each of the transaction amount,
transaction time, count r and sum r in a record and the C-value is of 8 bytes; t in
the CMK-treeRS is set to be “90 days”, i.e., the ratings within the latest “90 days”
are aggregated at a fine time granularity of days, and the ratings of “90 days” ago
are aggregated at a coarse time granularity of weeks. In addition, each approach is
implemented using VC++ 6.0 running on a Lenovo Y560 laptop with an Intel Core
i5 CPU (2.20GHz), 2GB RAM, Windows 7 Professional operation system and MySql
5.1.35 relational database.

To evaluate the CTT query performance, we measure the CTT values computation
time. For each seller, we generated the corresponding queries on either Transaction
Item Specific Trust (TIST) or Product Category based Trust (PCT), covering three trans-
action dimensions (denoted as 3D CTT queries), and the queries on Similar Transac-
tion Amount based Trust (STAT), covering two transaction dimensions (denoted as 2D
CTT queries).

To generate 3D CTT queries, based on eBay datasets, we first selected 5 popular
products traded by the sellers, each of which has two characteristics: (1) “roll up” oper-
ations can be preformed continuously at least 3 times along a path in the product cate-
gory hierarchy; and (2) each product category along the path contains a large number
of transactions. Table III lists the selected products for two popular sellers. Then, we
set the time range in CTT queries to be “the latest 1 month” and computed their TIST
values. After that, for each of 5 selected products, “roll up” operations were performed
continuously 3 times along a path in the product category hierarchy to generate the
3D queries on PCT. To generate the price range in each PCT query, we adopted a s-
trategy to partition the transaction amount range of the current product category that
is included in a PCT query. Specifically, as each product category in the product cat-
egory hierarchy maintains its corresponding transaction amount range [ta1, ta2], we
partitioned this transaction amount range into 3 equal intervals, and each interval
is regarded as an input for the price range in a PCT query. Thus, each product cate-
gory corresponds to 3 PCT queries with different price ranges. In total, there are 45
(5 × 3 × 3) 3D queries on PCT values. For instance, the generated PCT queries for the
product “Apple iPod nano 16GB (mc696ll/a)” sold by S1 (see Table III) are <product-
category: “Apple MP3 player (iPod)”, price-range: “$100-$200”, time-range: “the latest
1 month” > (i.e., PCT at layer 5) and <product-category: “MP3 player”, price-range:
“$150-$300”, time-range: “the latest 1 month” > (i.e., PCT at layer 4). Our experiments
also tested the TIST and PCT queries at three different time ranges of “the latest 3
months”, “the latest 6 months” and “the latest 12 months”, respectively. Thus, there are
totally 200 (i.e., (45 + 5)× 4) 3D CTT queries tested for each seller.

To generate 2D CTT queries, 45 different price ranges for the above PCT queries
are used. In the meantime, the experiments also tested 4 different time ranges of “the
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(c) 2D CTT queries on SD1(S1) (d) 2D CTT queries on SD2(S1)

Fig. 17. The query performance on two datasets SD1(S1) and SD2(S1) derived from seller S1

latest 1 month”, “the latest 3 months”, “the latest 6 months” and “the latest 12 months”.
Thus, there are totally 180 (i.e., 45× 4) 2D CTT queries tested for each seller.

8.3. The Comparison of the CMK-tree and Three Existing Approaches
This section includes the results of the comparison between the CMK-tree and three
existing approaches eaR-tree, eaP-tree and eH-tree proposed in [Zhang et al. 2014] in
terms of CTT values computation time, storage space consumption and the time for
tree construction. The experimental results are obtained from the execution on four
large synthetic datasets, and the computation time in answering CTT queries is the
averaged results of 5 independent runs.

Figure 17 and Figure 18 plot the CTT values computation time of the eaR-tree, the
eaP-tree, the eH-tree and the CMK-tree in 3D CTT queries and 2D CTT queries. First
of all, from Figure 17, we can observe the follows.

(1) Compared with other approaches, the performance of the eaR-tree shows a differ-
ent trend in CTT values computation time on both SD1(S1) and SD2(S1).

When the time range in a CTT query becomes larger, it means a larger query region
for the eaR-tree, and the computation time increases almost linearly because more
MBRs are overlapped by the expanded query range. In particular, if the time range in
CTT queries is “the latest 12 months”, the eaR-tree has the worst performance in most
cases.
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(a) 3D CTT queries on SD3(S2) (b) 3D CTT queries on SD4(S2)
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(c) 2D CTT queries on SD3(S2) (d) 2D CTT queries on SD4(S2)

Fig. 18. The query performance on two datasets SD3(S2) and SD4(S2) derived from seller S2

In addition, a similar trend can be observed from the results of eaP-tree, eH-tree and
CMK-tree, since they are all based on two VRA queries (see Section 2.4.2) to answer a
CTT query. When the time range in a query expands, the computation time is stable
or even in decline. In CTT queries, as the time range refers to the latest time period,
the right border is always fixed to the time point “now”. Correspondingly, the time
of computing the right border VRA is also fixed for eaP-tree, eH-tree and CMK-tree.
However, when the time range in a query expands (i.e., the left border shifts to the
left), the time for computing the left border VRA decreases. This is because the above
three approaches take advantage of the multi-version structure (see Section 6.1.2), and
the versions with their starting time later than the left border of the time range will
not be visited. Note that eaP-tree and eH-tree extend a multi-version B-tree (MVBT)
[Becker et al. 1996], and CMK-tree extends a multi-version “domain 0” 2-D-B-tree. As
illustrated in Figure 17 and Figure 18, if the time range in a query covers the longest
time period, such as “the latest 12 months”, most versions of “domain 0” 2-D-B-trees
(see Fig. 12) have their starting time later than the left border of the time range. In
such a case, only a few nodes need to be visited for computing the left border VRA.
Consequently, the computation time for each of three approaches eaP-tree, eH-tree and
CMK-tree drops to their minimum.

(2) The CMK-tree proposed in this article is superior in the efficiency of computing
CTT values to the eaR-tree, eaP-tree and eH-tree on both SD1(S1) and SD2(S1).
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Fig. 19. I/O time for different index schemes construction on four datasets

The eaR-tree extends the aR-tree [Papadias et al. 2001], and its performance greatly
depends on the regions surrounded by the transaction time range and the price range
in a CTT query. The eaP-tree, which extends the aP-tree [Tao et al. 2004], indexes all
transactions and cannot essentially aggregate repeated transactions, leading to infe-
rior performance. The eH-tree, which improves the eaP-tree, is faster than the eaP-tree
in computing CTT values. The reasons are twofold. On one hand, the eH-tree adopt-
s the aP+-tree to reduce the time for computing the left border VRA. On the other
hand, in the eH-tree, the search is done in the fully ordered transaction amount space
maintained in an additional aB+-tree for computing the right border VRA [Zhang et al.
2014]. However, as the eH-tree is still based on the eaP-tree, it does not fundamentally
resolve the problem existing in the eaP-tree. Moreover, the eH-tree takes longer time in
constructing the aggregation index and consumes more storage space than the eaP-tree
(see Figure 19 and Figure 20).

By contrast, the CMK-tree can not only index each specific product traded in a time
period, but also aggregate repeated transactions. More importantly, it delivers shorter
and almost stable computation time for answering CTT queries. On average, for the
200 3D CTT queries based on Type I synthetic dataset SD1(S1), the CMK-tree reduces
computation time by 33.5% of the eaR-tree, by 44.8% of the eaP-tree, and by 16.2% of
the eaH-tree; for the 180 2D CTT queries, the CMK-tree reduces computation time by
25.2% of the eaR-tree, by 51.5% of the eaP-tree, and by 18.8% of the eaH-tree. In addition,
the improvement is more obvious on Type II synthetic dataset SD4(S2). On average,
for the 200 3D CTT queries, the CMK-tree reduces computation time by 66.7% of the
eaR-tree, by 64.9% of the eaP-tree, and by 37.6% of the eaH-tree; for the 180 2D CTT
queries, the CMK-tree reduces computation time by 63.2% of the eaR-tree, by 61.8% of
the eaP-tree, and by 35.4% of the eaH-tree.

From Figure 18, which plots the results executed on SD3(S2) and SD4(S2) for S2,
we can draw the same conclusion as the one from the results on datasets SD1(S1) and
SD2(S1) for S1. On average, for the 200 3D CTT queries based on Type I synthetic
dataset SD3(S2), the CMK-tree reduces computation time by 12.2% of the eaR-tree, by
41.1% of the eaP-tree, and by 20.0% of the eaH-tree; for the 180 2D CTT queries, the
CMK-tree reduces computation time by 15.6% of the eaR-tree, by 39.0% of the eaP-tree,
and by 17.1% of the eaH-tree. On average, for the 200 3D CTT queries based on Type
II synthetic dataset SD4(S2), the CMK-tree reduces computation time by 58.0% of the
eaR-tree, by 54.4% of the eaP-tree, and by 28.1% of the eaH-tree; for the 180 2D CTT
queries, the CMK-tree reduces computation time by 59.8% of the eaR-tree, by 62.2% of
the eaP-tree, and by 40.3% of the eaH-tree.
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Fig. 20. The storage space consumption for different index schemes on four datasets

Table IV. The comparison of constructing time between CMK-tree and the ex-
isting index schemes on four datasets

SD1(S1) SD2(S1) SD3(S2) SD4(S2)

CMK-tree vs. eaR-tree 18 : 100 21 : 100 34 : 100 16 : 100
CMK-tree vs. eaP-tree 88 : 100 86 : 100 60 : 100 73 : 100
CMK-tree vs. eH-tree 78 : 100 78 : 100 52 : 100 63 : 100

Table V. The comparison of storage space consumption between CMK-tree
and the existing index schemes on four datasets

SD1(S1) SD2(S1) SD3(S2) SD4(S2)

CMK-tree vs. eaR-tree 117 : 100 110 : 100 144 : 100 135 : 100
CMK-tree vs. eaP-tree 63 : 100 42 : 100 96 : 100 115 : 100
CMK-tree vs. eH-tree 59 : 100 40 : 100 87 : 100 105 : 100

We also have tested the storage space consumption and I/O time for constructing
these aggregation indexes on four synthetic datasets. As plotted in Fig. 19, the CMK-
tree takes shorter time in construction than three existing approaches on all four
datasets (see Table IV for detailed percentage). Overall, the proposed CMK-tree leads
to 12%-84% time reduction in index construction. However, as plotted in Fig. 20, the
CMK-tree consumes much storage space in some cases (6 out of 12 cases in Table V)
even if it aggregates repeated transactions (see Table V for detailed percentage). For
example, on SD4(S2) dataset, the CMK-tree increases 5%-35% in storage space con-
sumption. This is because, in order to achieve nearly linear query performance, the
CMK-tree continuously records the transactions whose generated intervals along the
Transaction Time dimension intersect with the left border of a rectangle using multi-
ple aB+-trees. Note that each rectangle is formed by a version of “domain 0” 2-D-B-tree
as shown in Fig. 12. In the next subsection, we will introduce the experimental results
delivered by our proposed CMK-treeRS , which not only significantly reduces storage
space consumption, but also improves CTT computation time.

8.4. The Comparison of the CMK-tree and the CMK-treeRS

Storage space reduction: The Table VI lists the percentage of storage space reduc-
tion of the CMK-treeRS compared to the CMK-tree. Overall, the CMK-treeRS reduces
23%-53% in storage space consumption on four synthetic datasets. On average, the
reduction is about 38%.
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Table VI. CMK-tree vs. CMK-treeRS

percentage of
database storage space reduction accuracy of CTT values

minimal difference: 0 ; maximal difference: 0.0015
SD1(S1) 44% error rate: 1.6%

minimal difference: 0 ; maximal difference: 0.001
SD2(S1) 53% error rate: 1%

minimal difference: 0 ; maximal difference: 0.028
SD3(S2) 31% error rate: 4.2%

minimal difference: 0 ; maximal difference: 0.0034
SD4(S2) 23% error rate: 3.2%

Computation time improvement: the computation time of the two approaches are
plotted in Figure 17 and Figure 18. In all cases, the CMK-treeRS is faster than the
CMK-tree in computing CTT values. On average, for the 200 3D CTT queries based
on four datasets SD1(S1), SD2(S1), SD3(S2) and SD4(S2), the CMK-treeRS reduces
computation time by 10.4%, 18.0%, 11.8% and 12.4% of the CMK-tree, respectively; for
the 180 2D CTT queries, the CMK-treeRS reduces computation time by 25.0%, 29.3%,
24.1% and 30.0% of the CMK-tree, respectively.

As explained in Section 7.2, compared with the CMK-tree, the search in the CMK-
treeRS for computing the left border VRA and the right border VRA is performed in two
subtrees, i.e., MK-treeday and MK-treeweek, but they are much smaller in size than the
original MK-tree maintained in the CMK-tree. Thus, the search time can be reduced
in computing two VRA queries. Note that if the time range in a CTT is “the latest 1
month” or “the latest 3 months”, only the MK-treeday is searched for computing both the
left border VRA and the right border VRA. Consequently, the CMK-treeRS also deliv-
ers almost stable computation time for answering CTT queries at the above two time
ranges. When the time range in CTT queries is “the latest 6 months”, the MK-treeday
is still searched for computing the right border VRA, but the MK-treeweek is searched
for computing the left border VRA leading to a longer computation time10; therefore,
we can observe that the computation time increases in this case for the CMK-treeRS .
However, if the time range in CTT queries is “the latest 12 months”, like the eaP-tree,
the eH-tree and the CMK-tree, the computation time delivered by the CMK-treeRS also
drops to the minimum, since only a few nodes are visited for computing the left border
VRA.
Accuracy of CTT values: In the meantime, as we have pointed out at the beginning
of Section 7, the CMK-treeRS reduces the storage space consumption at the expense of
the accuracy of CTT values, which exists in the results of the CTT queries regarding
“the latest 6 months” or “the latest 12 months”. Thus, we examined the differences of
the results delivered by the CMK-tree and the CMK-treeRS of the 95 CTT queries (i.e.,
50 3D CTT queries and 45 2D CTT queries) regarding the above two time ranges, i.e., a
totally 190 CTT queries are examined. Specifically, in Table VI, we listed the maximal
and minimal differences as well as the error rate for the 190 CTT queries on four
datasets. Overall, the CMK-treeRS leads to 0.001-0.028 as the maximal difference11 in
CTT values in [0, 1] and 2.5% as the average error rate. Therefore, we conclude that the

10The MK-treeday maintains the aggregated ratings of the latest 3 months, and the MK-treeweek maintains
the aggregated ratings of the remaining 9 months. Although 9 month transaction data and ratings are
aggregated at a coarse time granularity of weeks in the MK-treeweek, it still has a larger size than MK-
treeday . Thus, the search in the MK-treeweek consumes more time than that in the MK-treeday .
11It can be expected that the maximal difference exists in computing the value of 3D CTT queries with
the parameter of product category at a low layer in the product category hierarchy, since a small amount
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CMK-treeRS brings a little loss to the accuracy of CTT computation with much gain in
storage space reduction and computation time improvement.

9. CONCLUSION AND FUTURE WORK
In this paper, we have addressed the contextual transaction trust problem and pro-
posed a novel and efficient model ReputationPro to compute the reputation profile of
a seller. It aims to identify the value imbalance problem and context imbalance prob-
lem in forthcoming transactions that can cause huge monetary losses to victims. In
the meantime, it provides more comprehensive and detailed descriptors for the trust-
worthiness of a seller. Our proposed index scheme CMK-tree takes into account both
the static Product Category and dynamic Transaction Amount and Transaction Time
dimensions, and achieves nearly linear query performance in answering a buyer’s CTT
query. This is particularly significant to large-scale transaction data processing. In ad-
dition, our proposed CMK-treeRS can further reduce the storage space allocated to each
seller as well as the time of computing the CTT values with a little loss in accuracy of
CTT computation.

For future work, we will focus on improving the performance of the CMK-tree with
deletion operations. Given a transaction, its generated interval can intersect a num-
ber of rectangles until the time point “now”. Thus, when removing a transaction in
a CMK-tree, a number of nodes that represent the corresponding rectangles have to
be accessed, leading to high complexity. In fact, in the CMK-tree, multiple aB+-trees
are built to maintain the intersections between the generated intervals and the corre-
sponding rectangles. Therefore, adding indexes to manage these aB+-trees separate-
ly would improve the performance of deletion operations. Another direction would
be the study of bit-wise machine model based approaches for CTT computation, tar-
geting more efficient solutions. Finally, we will also focus on studying efficient high-
dimensional CTT computation approaches.
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