

Example 1: Algorithm speed

- Aim: To compare speed of 3 sorting algorithms A, B, C.
- Method: Run each algorithm once on the same data.
- Results: A: 7.3s B: 6.5s C: 11.8s
- · What can we conclude?

Variables

- Explanatory/covariate (independent)
 - Variable that is controlled/known in the experiment
- Response/outcome (dependent)
 - Variable that is measured outcome
- Variables in example 1?

Confounding Variables

- Related to both independent and dependent
 - As time passes, child grows taller and country's GDP increases.
 - Could falsely conclude: child's growth impacts GDP.
 - Study of gender risk of cancer
 - Smoking confounds
 - See also "Simpson's paradox"

Dealing with confounding variables

- Control
 - Remove all smokers from cancer study
 - · Conclusions are limited to non-smokers
 - May bias results if choice to smoke is related to other cancer-causing factors (e.g. suburb)
- · Measure and model
 - Include smoking as an independent variable in model
 - Estimate risk due to smoking and gender

Randomness

- Identical circumstances can produce different outcomes
- Real-world measurements are subject to measurement error
 - Response variable and/or covariate
- Individual cases are subject to unknown factors and real-world randomness
- Modelled as random noise in response variable; noise in covariate

Example 1: Algorithm speed

- Aim: To compare speed of 3 sorting algorithms A, B, C.
- Method: Run each algorithm once on the same data.
- Results: A: 7.3s B: 6.5s C: 11.8s
- · What are:
 - Independent and dependent
 - Possible confounding variables
 - Sources of randomness?

A 'valid' conclusion

- · B is fastest
 - On that data set (independent)
 - Using that code (independent)
 - In that programming language (ind)
 - With that compiler (ind)
 - On that machine (ind)
 - Running that OS (ind)
- Provided there were no other programs running during the tests!

Let's design an experiment

- Many data sets easy
- Different sizes of data set not so easy
- Different machines not much choice
- Different languages difficult
- Different programmers
- Different OS not much choice
- Control/measure background activity

Example 1: Experiment

- A variety of data set sizes:
 10,20,50,100,200,500,1000,...
- N random data sets of each size
- Run each algorithm on each data set
- Control other computer activity as much as possible
- Use different machines, compilers, OS

Allocation strategy

- Complete
 - All combinations of explanatory variables
 - Same data sets for each algorithm
 - Test all algorithms on all machines, OS, etc
- Randomised
 - Randomised blocks balanced random selections
- Experiment design
 - Selects subset of cases to study

Example 2: Human factors

- Question: Do users find it easier to use web sites that have drop-down menus or ones that use on-screen menus?
- Ethics approval for human experiments

Variables

- Explanatory
 - Drop-down vs on-screen menus
- Response (what we measure)
 - User preference statements (informal)
 - Likert scale 1-5
 - "Site B was easier to use than site A"
 - SD, D, N, A, SA
 - Time taken to complete a task
- Frame the research question clearly...

Other explanatory variables

- · Prior experience of the user
- · Gender, age, ethnicity
- Physical ability (to control mouse etc)
- Input device (mouse, touch pad, etc)
- Site colours, appearance, fonts
- · Colour blindness

Confounding variables

- · Site complexity
 - Larger sites more likely to use drop-down menus, but may be more difficult to navigate because they are larger
- · Site designer ability
 - More experienced designers may be more likely to use drop-down menus and also produce better site organisation + ease of use

Experiment design

- Control confounding variables?
 - Custom-built web sites for tests
 - Same content and design
 - Differ only in menu technology
 - But:
 - Are the test sites representative?
 - Design, structure, placement of menus comparable?
 - Test site designer is an independent variable!

Learning

- Doing a task changes a person they learn
- Using one test web site affects performance on paired test web site
- Cross-over design
- · For limitations and alternatives:
 - http://www.uq.edu.au/~hmrburge/ stats/twotrials.html

Sample size

- How much data do I need to have a strong chance of seeing the effect I am looking for if it is there?
 - An experiment that could never show the desired outcome is worse than useless.

Experiment validity

- · Internal validity:
 - Is the experiment conducted properly?
 - Are there confounding variables etc not considered?
- External validity:
 - Do the results generalise?
- · Test, re-test
 - Repeat the whole expt and analysis

Algorithm adaptation

- During algorithm development, we may test and then improve the algorithm iteratively.
- This can 'adapt' the algorithm to perform well on test data but it may not perform well on other data.

A (silly) example

 What is the fastest algorithm to sort the following data (assume it is in an array)?

1 7 3 8 11 9 2 6 16 5 0 4

Real examples

- Choose the best statistical model (or Artificial Neural Network/Decision Tree/other learning system) for your data
- Just about any program to extract information from data can be adapted.
 - Solving CAPTCHAs
 - Parsing English queries

Ways not to avoid adaptation

- My algorithm is based on fundamental principles
 - Only OK if truly established a priori
- I have a large data set that I use for testing
- All parameters are set from the data in my final algorithm

Avoiding adaptation

- Reserve a portion of data set for final testing
 - Once-off run of final tests, report those results whatever they are
- If your algorithm sets parameters from data, (e.g. learning or fitting a statistical model), use cross-validation for final testing

Cross validation: motivation

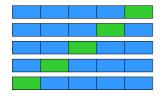
- · Algorithm where:
 - Run A on training data to set parameters P
 - Run A(P) on new data to analyse it
- E.g.
 - ANNs and statistical models
 - Decision trees
 - Person (face/gait/voice/etc) recognition

Problem

- If we use data to set the parameters and then test performance on the same data, results are biased ('adapted')
- · Idea:
 - Set parameters (train) on N/2
 - Test on remaining N/2
- Problem:
 - Limited training data (N/2) and test data (N/2)

Cross validation

- Train on, say 80% and test on 20%.
- · Do that 5 times.



Take-home messages

- Think response, explanatory, confounding.
- Other variables are they having a random effect or held constant?
- Formulate the research question clearly in advance.
- Understand what result is expected.
- Human experiments are more difficult.

Take-home messages

- Develop algorithms using a subset of your data.
- Test algorithms on data not previously used
- Use cross-validation for algorithms that involve training.
- Design for analysis: next time

- You've done your experiment now what ?
- Depends on the model you are testing...

Models

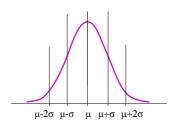
- Understand model before experiment...
- Mean + noise
 - The data items have a mean value plus noise
- Mean time to sort 10000 items
 - Algorithm A: 7.3s B: 6.5s C: 11.8s
 - Is B really better than A?
 - What about C?

Distributions and randomness

- · Actual measurements:
 - A: 7.8 7.4 6.9 7.0 7.3 7.2 6.8 7.7 ...
 - B: 6.3 6.7 6.2 6.5 6.6 6.8 6.4 6.9 ...
 - C: 12.9 11.2 10.7 12.3 10.1 11.9 11.5 ...
- Central Limit Theorem
 - Mean is Gaussian (Normal) with std dev s/√N where s is sample std dev

Gauss distribution

• Well-known bell curve



Estimation

- A statistic T is an estimate of a true parameter θ
 - Average \overline{X} is an estimate of mean μ
 - Std devn s is an estimate of $\boldsymbol{\sigma}$
- The question is: how accurate is the estimate?

Confidence interval

- B: $\overline{X} = 6.5$ s = 1.2 N = 100
 - We are 95% sure that an individual sample X will lie between μ 2 σ and μ + 2 σ
 - i.e. 4.1 and 8.9 (approximating μ by \overline{X}, σ by s)
 - We are 95% sure that \overline{X} lies between μ 2 σ /10 and μ + 2 σ /10
 - i.e. \overline{X} is within $2\sigma/10$ of μ .
 - Therefore, we can say that 95% likely that the true mean μ lies within 2 σ /10 of \overline{X} .
 - i.e. μ is likely between 6.2 and 6.8 (approximating σ by s)
 - This does not say whether B is better than A or not

Confidence interval

- Range of values with probability 1-α that the true parameter θ lies in the range
- e.g. Under normality, 95% (α = 0.05) CI for the mean is $\overline{X} \pm 1.96 \sigma / \sqrt{N}$
 - (If s is used instead of σ, the CI changes somewhat – see Student's t-distribution)

Comparing two means

- T-test
 - Take difference between means
 - Test whether it is zero
- If data are paired (same test data for sorting in each pair), use paired t-test
- · Assumes equal variance

Testing a hypothesis

- Hypothesis: "Algorithm B is better than algorithm A"
- More formally: "The mean execution time for algorithm B is less than A"
 - Median may be more appropriate?

The null hypothesis

- What would be the case if our hypothesis of signifiance is **not** true?
- "The mean execution time for algorithms A and B are the same"
- H_0 : $\mu A = \mu B$
- H_0 : $\mu A \mu B = 0$

Hypothesis testing

- We say that the null hypothesis is rejected (and that there is a statistically significant effect) if
 - the probability of
 - results at least as extreme as the results we obtained
 - occurring by chance
 - is sufficiently **small** (<5%).

Hypothesis testing example

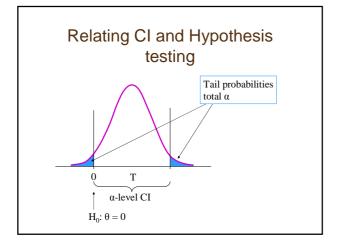
- Flip a coin N times and we happen to get heads every time.
- Is the coin 'fair' or is it a double-headed coin?
- N=2 25% chance of HH with fair coin
- N=4 6.25% chance of HHHH with fair
- N=10 0.1% chance of HHHHHHHHHH!

Hypothesis testing

- We are interested in the probability that a result at least as extreme as our result could happen by chance if the null hypothesis is true (i.e. if there is nothing significant happening).
- P-value: This probability.
- If p-value < 0.05, we say it is significant.
- Reporting p-values is sensible: p-value of 0.001 is much more significant!

Relating CI and Hypothesis testing

- If the null hypothesis lies inside an α-level confidence interval, then the null hypothesis is accepted.
- The α-level that puts the null hypothesis at the edge of the confidence interval is the p-value of the hypothesis test.



Subtleties

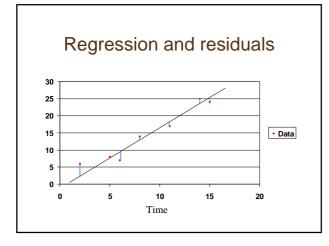
- Single-sided test versus double-sided test
- Different kinds of confidence intervals

Aside

• How much data do I need?

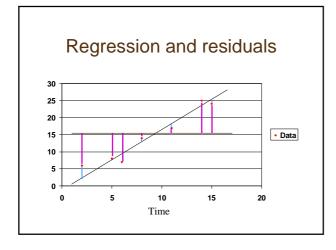
Regression and residuals

- A linear model
 - $-Y = X \theta + c + noise; Y is response variable$
 - $-\theta$: vector of fitted parameters
 - X: row vector of carrier (indep.) variables
- · Fitting model yields
 - $-\hat{\mathbf{y}} = \mathbf{X} \hat{\mathbf{\theta}} + \hat{\mathbf{c}}$; **X** is matrix of carrier data
- · Residuals: error in model fit
 - $-\mathbf{r} = \hat{\mathbf{y}} \mathbf{y}$



ANOVA

- · ANalysis Of VAriance
- Determine whether linear model parameters are significant
- Assumes normality (Gaussian distribution) of residuals



ANOVA

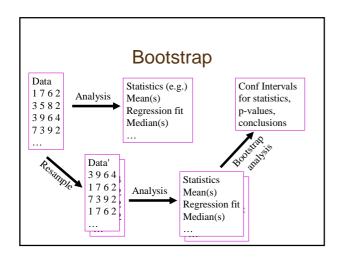
- $SS = r.r = \Sigma r_i^2$
- Compare mean model with line model
 - $-SS_{line} = r.r$
 - $-SS_{mean} = \Sigma (y-\bar{y})^2$
- ANOVA says:
 - $-SS_{mean} = SS_{line} + SS_{slope}$
 - $-\operatorname{If}\, \operatorname{SS}_{\operatorname{slope}}$ is large compared to $\operatorname{SS}_{\operatorname{line}}$ then slope is significant

ANOVA

- • SS_{slope} / (SS_{line} / N-2) is F(1,N-2) [a known distribution] – F-test
- Assumes residuals are:
 - Normal (Gauss) distribution
 - Zero mean
 - Equal variance
- MANOVA: Multivariate

More models

- GLM (Generalised Linear Models)
 - $-\mathbf{y} = f(A\mathbf{x} + \mathbf{b})$
 - f is monotonic
- Feed-forward ANNs
 - $-\mathbf{y} = f(\Sigma_i f(A_i \mathbf{x} + \mathbf{b}) + A_0 \mathbf{x} + \mathbf{b})$
 - More levels are possible but two levels gives a universal approximator



Types of bootstrap

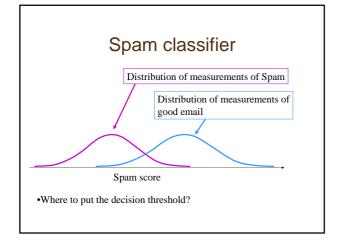
- · Resampling method
 - Random with replacement
 - Blocks (time series, or other correlated)
- · CI estimation methods
 - Percentiles (1st order accurate)
 - BC, studentized (2nd order accurate)

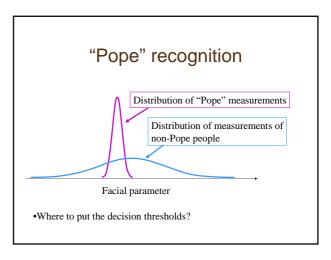
Comparison of bootstrap

- Bootstrap: Non-parametric: distribution (of statistics) need not be known
 - Flexible: can provide confidence intervals for statistics that are not well understood (i.e. not means/variances under normality)
- ANOVA/t-test, etc: Parametric: based on analysis of distribution
 - More powerful to draw conclusions

Classification/recognition tasks

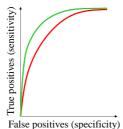
- · Gait/face recognition
- Spam email classifier
- "Recognise photos of the Pope"
- Calculate some measurement(s)
- Classify as A/B (good/bad) etc.
 - Linear/non-linear classifier





Classification: ROC

- Receiver Operating Characteristic (ROC) curve
- Plot
 - True positives(= 1-false negatives)
 - False positives
- As threshold is varied



ROC

- If the system is made more sensitive to true positive cases, it is more likely to produce false positives as well.
- Depending upon cost/benefit ratio of false positive and false negative, can choose optimal operating threshold.

Classification, Testing and CI

- · Spam classifier is a one-sided test
- · Pope recogniser is a two-sided test
 - H₀: Photo is Pope
 - H₁: Photo is not Pope
 - Threshold range is a CI for H₀
 - Level (α) is the false negative rate
 - Better separation using more measurements (higher dimensionality)

Design for analysis

- Consider the formal hypothesis and null hypothesis
- Understand the planned analysis before conducting the experiments
- Ensure the data will enable the analysis

Take-home messages

- · 'Formal' hypothesis
- · Null hypothesis
- Model
- Statistical testing
 - Parametric
 - Non-parametric
- Confidence interval

Take-home messages

- Experimental work requires statistical analysis
- Plan for analysis before experiment
- · Get help with statistics
 - Only certain techniques will be relevant to your particular questions and experiments.

References

- Bootstran
 - http://bcs.whfreeman.com/ips5e/content/cat_080/pdf/moore1 4.pdf
 - http://bcs.whfreeman.com/pbs/cat_140/chap18.pdf
 - http://www.wiley.com/legacy/wileychi/eoenv/pdf/Vab028-.pdf
- ANOVA
 - http://bcs.whfreeman.com/pbs/cat_140/chap14.pdf

Resources

- http://www.causascientia.org/math_stat/ ProportionCl.html
 - Testing and CI calculator for proportions

Case Study: Solving CAPTCHAs

- · Questions:
 - What CAPTCHA techniques are most difficult to solve automatically?
 - How do humans and computers compare at solving CAPTCHAs?

however

promised

Questions

- What does it mean to say a CAPTCHA has been solved by computer?
- What is the role of the experimenter/programmer in developing solution algorithms?
- How to measure difficulty of solving by computer?

Experiments

- How might you measure human performance at solving CAPTCHAs?
- How might you measure computer performance?
- · What makes it difficult to measure?

Analysis

- How valid would it be to extend results of study to the wider field of CAPTCHAs?
- What useful conclusions might we be able to draw?
- Should experiments be different to enable analysis to lead to useful conclusions?