Collecting, err, Correcting Speech Errors

Mark Johnson

Brown University

March, 2005

Supported by NSF grants LIS 9720368 and IIS0095940 Joint work with Eugene Charniak and Matt Lease

Talk outline

- What are speech repairs, and why are they interesting?
- A noisy channel model of speech repairs
- combines two very different kinds of structures
- a novel model of interpreting ill-formed input
- grammars "Rough copy" dependencies, context free and tree adjoining
- Reranking using machine-learning techniques
- Training and evaluating the model of speech errors
- RT04F evaluation

Speech errors in (transcribed) speech

• Restarts and repairs

I want a flight to Boston, uh, to Denver on Friday Why didn't he, why didn't she stay at home?

Filled pauses

I think it's, uh, refreshing to see the, uh, support ...

Parentheticals

But, you know, I was reading the other day ...

• "Ungrammatical" constructions

Allen (1999), Nakatani and Hirschberg (1994), Stolcke and Schriberg (1996) Bear, Dowding and Schriberg (1992), Charniak and Johnson (2001), Heeman and

Why focus on speech repairs?

- Filled pauses are easy to recognize (in transcripts at least)
- Parentheticals are handled by current parsers fairly well
- Ungrammatical constructions aren't necessarily fatal
- Statistical parsers learn constructions in training corpus
- parsers badly misanalyse them but speech repairs warrant special treatment, since the best

Statistical models of language

- Statistical regularities are incredibly useful!
- adjacent words (n-gram models) Early statistical models focused on dependencies between n

$$\$ \rightarrow the \rightarrow man \rightarrow in \rightarrow the \rightarrow hat \rightarrow drinks \rightarrow red \rightarrow wine \rightarrow \$$$

- Probabilities estimated from real corpora
- probability \Rightarrow model is *robust* If model permits every word sequence to occur with non-zero
- Probability distinguishes "good" from "bad" sentences
- These simple models work surprisingly well because they are dependencies are local lexicalized (capture some semantic dependencies) and most

Probabilistic Context Free Grammars

- Rules are associated with probabilities
- Probability of a tree is the product of the probabilities of its rules
- Most probable tree is "best guess" at correct syntactic structure

Head to head dependencies

- dependencies Lexicalization captures a wide variety of syntactic (and semantic!)
- Backoff and smoothing are central issues

The structure of repairs

- The Reparandum is often not a syntactic phrase
- can be empty The Interregnum is usually lexically and prosodically marked, but
- The Reparandum is often a "rough copy" of the Repair
- Repairs are typically short
- Repairs are not always copies

Shriberg 1994 "Preliminaries to a Theory of Speech Disfluencies"

Treebank representation of repairs

- spontaneous telephone conversations The Switchboard treebank contains the parse trees for 1M words of
- Each reparandum is indicated by an EDITED node (interregnum and repair are also annotated)
- But Charniak's parser never finds any EDITED nodes!

The "true model" of repairs (?)

- Speaker generates intended "conceptual representation"
- Speaker incrementally generates syntax and phonology,
- recognizes that what is said doesn't mean what was intended,
- "backs up", i.e., partially deconstructs syntax and phonology,
- starts incrementally generating syntax and phonology again
- but without a good model of "conceptual representation", this may be hard to formalize

Approximating the "true model"

- Approximate semantic representation by syntactic structure
- Tree with reparandum and interregnum excised is what speaker intended to say
- Reparandum results from attempt to generate Repair structure
- Dependencies are very different to those in "normal" language!

Approximating the "true model" (2)

- Use Repair string as approximation to intended meaning
- Reparandum string is "rough copy" of Repair string
- involves crossing (rather than nested) dependencies
- String with reparandum and interregnum excised is well-formed
- after correcting the error, what's left should have high probability
- uses model of normal language to interpret ill-formed input

Helical structure of speech repairs

- dependency structure unusual in language Backup and Repair nature of speech repairs generates a
- These dependencies seem incompatible with standard syntactic structures

Joshi (2002), ACL Lifetime achievement award talk

The Noisy Channel Model

Source signal x ... and you can get a system ...

Noisy channel model P(U|X)

- Noisy channel models combines two different submodels
- Bayes rule describes how to invert the channel

$$P(x|u) = \frac{P(u|x)P(x)}{P(u)}$$

The channel model

I want a flight to Boston, uh, I mean, to Denver on Friday Reparandum Interregnum

- Channel model is a transducer producing source:output pairs ...a:a flight:flight Ø:to Ø:Boston Ø:uh Ø:I Ø:mean to:to Denver:Denver ...
- only 62 different phrases appear in interregnum (uh, I mean)
- $\Rightarrow unigram model of interregnum phrases$
- Reparandum is "rough copy" of repair
- We need a probabilistic model of rough copies
- FSMs and CFGs can't generate copy dependencies ...
- but Tree Adjoining Grammars can

CFGs generate ww^{R} dependencies (1)

reverse w^R CFGs generate nested dependencies between a string w and its

CFGs generate ww^{R} dependencies (2)

reverse w^R CFGs generate nested dependencies between a string w and its

CFGs generate ww^{R} dependencies (3)

reverse w^R CFGs generate nested dependencies between a string w and its

CFGs generate ww^{R} dependencies (4)

reverse w^R

TAGs generate www dependencies (1)

TAGs generate www dependencies (2)

TAGs generate www dependencies (3)

TAGs generate www dependencies

Derivation of a flight ... (1)

C

a:a flight:flight 0:to 0:Boston 0:uh
0:I 0:mean to:to Denver:Denver
on:on Friday:Friday

a:a flight:flight 0:to 0:Boston 0:uh
0:I 0:mean to:to Denver:Denver
on:on Friday:Friday

a +

flight

Derivation of a flight. (4)

Derivation of a flight. <u>U</u>

Derivation of a flight (10)

Training data (1)

... a flight to Boston, uh, I mean, to Denver on Friday ... Reparandum Interregnum

- Switchboard corpus annotates reparandum, interregnum and repair
- Trained on Switchboard files sw[23]*.dps (1.3M words)
- Punctuation and partial words ignored
- 5.4% of words are in a reparandum
- 31K repairs, average repair length 1.6 words
- Number of training words: reparandum 50K (3.8%), interregnum 10K (0.8%), repair 53K (4%), too complicated 24K (1.8%)

Training data (2)

a flight to Boston, uh, I mean, to Denver on Friday... Reparandum Interregnum

- Reparandum and repair word-aligned by minimum edit distance
- Prefers identity, POS identity, similar POS alignments
- Of the 57K alignments in the training data:
- 35K (62%) are identities
 7K (12%) are insertions
- 9K (16%) are deletions
- 5.6K (10%) are substitutions
- * 2.9K (5%) are substitutions with same POS
- * 148 of 352 substitutions (42%) in heldout are not in training

Estimating the channel model

I want a flight to Boston, uh, I mean, to Denver on Friday Reparandum Interregnum

Channel model is defined in terms of several simpler distributions: $P_r(repair|flight)$: Probability of a repair starting after flight $P_t(m|Boston, Denver)$, where $m \in \{copy, substitute, insert, delete, end\}$ $P_m(tomorrow|Boston, Denver)$: Probability that next reparandum Probability of m after reparandum Boston and repair Denverword is tomorrow

Estimated repair start probabilities

Implementation details (1)

- Don't know how to efficiently search for best analysis using parser
- simpler bigram LM \Rightarrow find 25-best hypothesized sources for each sentence using a
- Calculate probability of each hypothesized source using parsing LM
- Two ways of combining channel and language model log probabilities
- Add them (noisy channel model)
- Use them as features in a machine learning algorithm \Rightarrow a reranking approach to finding best hypothesis

Implementation details (2)

 $Input\ string$

Noisy channel model with bigram LM

25 highest scoring source hypotheses

Parsing language model

Parses and probabilities for source hypotheses

MaxEnt reranker

Most likely source hypothesis

Evaluation of model's performance

MaxEnt reranker alone 0.78	MaxEnt reranker using NCM + parser LM 0.87	NCM + parser LM 0.81	NCM + bigram LM 0.75	f-score
0.38	0.25	0.35	0.45	error rate

- Evaluated on an unseen portion of Switchboard corpus
- f-score is a geometric average of EDITED words precision and recall (bigger is better)
- number of true edited words (smaller is better) error rate is the number of EDITED word errors made divided by

RT04F competition

- RT04F evaluated meta-data extraction
- Test material was unsegmented speech
- ICSI, SRI and UW supplied us with ASR output, SU boundaries and acoustic IP probabilities

Deterministic FW and IP rule application

RT04F evaluation results

Interruption point detection	Filler word detection	EDITED word detection	Task/error rate
28.6	23.7	46.1	Oracle words
55.9	40.0	76.3	ASR words

- EDITED word detection used noisy channel reranker
- Filler word detection used deterministic rules
- Interruption point detection combined these two models

Evaluation of model's performance

prosodic features	repair model	parsing model	Full model	Error rate on dev2 data
$\mid 0.541$	0.567	0.55	0.525	Oracle words
0.772	0.805	0.790	0.773	ASR words

- understanding systems Darpa runs a competitive evaluation (RT04) of speech
- EDITED word detection was one task in this evaluation
- Our system was not designed to deal with the RT04 data
- our system assumes input is segmented into sentences

Conclusion and future work

- Syntactic parsers make good language models
- Grammars are useful for lots of things besides syntax!
- Noisy channel model can combine very different kinds of models
- a lexicalized CFG model of syntactic structure
- a TAG model of "rough copy" dependencies in speech repairs
- Modern machine learning techniques are very useful
- can exploit *prosodic* and other kinds of information
- Novel way of modeling robust language comprehension
- Performs well in practice